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1. Issues for X-ray FEL oscillator Optical Cavity   

Optical cavity affects the performance of XFELO via net power gain 
P per pass

P = g − α

gain/pass power loss/pass
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(1) For maximum gain, focusing of X-ray in the undulator to 
maximally overlap with electron beam

(2) For minimum power loss, X-ray must be well collimated at each 
crystal for narrow angular acceptance of crystal. Also heat load on 

the crystal must be relieved. 

beta function of electron beamRayleigh length of radiation

waist location

(3) Beam profile must be periodic (thus stable) after every turn.

electron beam rms length

radiation pulse lentgh

•  Conditions for Optical Cavity Design

µθB

ZR(z0) = βe(z0), σR = σe
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Geometrical optics can be formulated in phase space P of rays. In P, 
a ray and its propagation through an optical element is represented 

by a column vector and matrix. 

Free Space Transform

to determine the distribution of all rays at arbitrary
distances y from the source, where we define y ¼ 0 at
the source and y ¼ yF in the focal plane. The beam is
then given as the ensemble of all rays.
In Appendix A I introduce practical units for

lengths, angles, and bandwidth, in order to work
with reasonable numerical values as well as to avoid
tedious conversion problems. In the following, use of
the practical units is assumed.

3. Description of the Source

Let us assume that the source can be characterized by
a multivariate distribution function ρ0ðx; x0; z; z0; ηÞ
corresponding to thephasespacedensityof thesource.
In the Gaussian approximation ρ0 is expressed as

ρ0ðx; x0; z; z0; ηÞ

¼ BðEÞ exp
!
−
1
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x2

σ2x
þ x02

σ2x0
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σ2z
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; ð1Þ

where BðEÞ is the source brilliance [4,5], which is de-
fined as the number of photons per second, per area,
per solid angle, and per unit bandwidth around the
nominal beamenergyE. The total photon fluxΦ0 from
the source is then given by

Φ0 ¼
Z

ρ0ðx; x0; z; z0; ηÞdxdx0dzdz0dη; ð2Þ

which can be evaluated as

Φ0 ¼ ð2πÞ5=2σxσx0σzσz0σηBðEÞ ð3Þ

with the standard deviations σi for the respective
phase space variables. The above description is suita-
ble for synchrotron x-ray sources such aswigglers and
undulators. For our further treatment we rewrite
Eq. (1) in matrix form:

ρ0ðxÞ ¼ BðEÞ expð− 1
2
xTΣxÞ; ð4Þ

where we introduced the phase space vector x of a sin-
gle ray and its transposed vector xT,

xT ¼ ðx; x0; z; z0; ηÞ ð5Þ

as well as the matrix of the inverse variances

Σ ¼

0

BBBB@

1=σ2x 0 0 0 0
0 1=σ2x0 0 0 0
0 0 1=σ2z 0 0
0 0 0 1=σ2z0 0
0 0 0 0 1=σ2η

1

CCCCA
: ð6Þ

Note briefly that any quadratic form, such as the
argument of the exponential in Eq. (1), can be ex-
pressed by a symmetric matrix. The diagonal matrix
Σ trivially is symmetric; however, when we introduce

transformations in what follows, couplings
between the phase space variables will yield non-
vanishing off-diagonal elements. In calculations, this
symmetry constraint on the matrices describing the
phase space density along the beam is a useful tool
for error checking.

It is convenient to multiply the source brilliance
BðEÞ with all the energy-dependent attenuation fac-
tors that the beamwill encounter on its path through
the optical system. For x rays, beam attenuation is
caused by absorption in beryllium windows as well
as by the finite reflectivity of mirrors or multilayers.
Such energy-dependent factors can be calculated for
x rays with the help of the XOP software package [6]
or the CXROWebsite [7]. If we introduce the product
of all these attenuation factors asRðEÞ, we obtain the
effective source brilliance:

Beff ðEÞ ¼ RðEÞBðEÞ: ð7Þ

4. Transformations of the Phase Space Variables

In order to calculate the phase space density ρ1ðxÞ at
a position y1 downstream from the source, we have to
know the linear transformation characterized by the
Matsushita–Kaminaga matrix M that an optical ele-
ment will impose on the phase space variables:

x1 ¼ Mx0: ð8Þ

The most elementary of these transformations is the
one characteristic of a flight path. Obviously, the off-
set of a nonparallel ray from the optical axis will
change as a function of the distance from the source.
Confining ourselves temporarily to the horizontal
plane, this means that at a distance y1 from the
source the deviation x1 of the ray from the optical

Fig. 1. (a) Choice of the coordinate system: the optical axis, indi-
cated by the dashed–dotted line, is identified with the y axis. The x
axis and z axis describe the horizontal and vertical offsets of a ray
from the optical axis, respectively. As an example, a ray in the yz
plane is shown with its offset z and angle z0 with respect to the
optical axis. (b) Focusing of a parallel bundle of rays by an ideal
focusing element with focal length f in the horizontal plane.
The figure illustrates how the transformationmatrix for a focusing
element can be derived.

1 August 2008 / Vol. 47, No. 22 / APPLIED OPTICS E107

2. Matrix Formulation
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Asymmetric Crystal Transform

Bragg’s angle,

asymmetric angle

µ

to determine the distribution of all rays at arbitrary
distances y from the source, where we define y ¼ 0 at
the source and y ¼ yF in the focal plane. The beam is
then given as the ensemble of all rays.
In Appendix A I introduce practical units for

lengths, angles, and bandwidth, in order to work
with reasonable numerical values as well as to avoid
tedious conversion problems. In the following, use of
the practical units is assumed.

3. Description of the Source
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where BðEÞ is the source brilliance [4,5], which is de-
fined as the number of photons per second, per area,
per solid angle, and per unit bandwidth around the
nominal beamenergyE. The total photon fluxΦ0 from
the source is then given by

Φ0 ¼
Z
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which can be evaluated as
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with the standard deviations σi for the respective
phase space variables. The above description is suita-
ble for synchrotron x-ray sources such aswigglers and
undulators. For our further treatment we rewrite
Eq. (1) in matrix form:
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where we introduced the phase space vector x of a sin-
gle ray and its transposed vector xT,
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Note briefly that any quadratic form, such as the
argument of the exponential in Eq. (1), can be ex-
pressed by a symmetric matrix. The diagonal matrix
Σ trivially is symmetric; however, when we introduce

transformations in what follows, couplings
between the phase space variables will yield non-
vanishing off-diagonal elements. In calculations, this
symmetry constraint on the matrices describing the
phase space density along the beam is a useful tool
for error checking.

It is convenient to multiply the source brilliance
BðEÞ with all the energy-dependent attenuation fac-
tors that the beamwill encounter on its path through
the optical system. For x rays, beam attenuation is
caused by absorption in beryllium windows as well
as by the finite reflectivity of mirrors or multilayers.
Such energy-dependent factors can be calculated for
x rays with the help of the XOP software package [6]
or the CXROWebsite [7]. If we introduce the product
of all these attenuation factors asRðEÞ, we obtain the
effective source brilliance:

Beff ðEÞ ¼ RðEÞBðEÞ: ð7Þ

4. Transformations of the Phase Space Variables

In order to calculate the phase space density ρ1ðxÞ at
a position y1 downstream from the source, we have to
know the linear transformation characterized by the
Matsushita–Kaminaga matrix M that an optical ele-
ment will impose on the phase space variables:

x1 ¼ Mx0: ð8Þ

The most elementary of these transformations is the
one characteristic of a flight path. Obviously, the off-
set of a nonparallel ray from the optical axis will
change as a function of the distance from the source.
Confining ourselves temporarily to the horizontal
plane, this means that at a distance y1 from the
source the deviation x1 of the ray from the optical

Fig. 1. (a) Choice of the coordinate system: the optical axis, indi-
cated by the dashed–dotted line, is identified with the y axis. The x
axis and z axis describe the horizontal and vertical offsets of a ray
from the optical axis, respectively. As an example, a ray in the yz
plane is shown with its offset z and angle z0 with respect to the
optical axis. (b) Focusing of a parallel bundle of rays by an ideal
focusing element with focal length f in the horizontal plane.
The figure illustrates how the transformationmatrix for a focusing
element can be derived.
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Lens (Curved Mirror) Transform
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µ

θB

surface

atomic plane

x
x/b

geometry of asymmetric crystal reflection

b =
sin (θB + µ)
sin (θB − µ)

x

x′

l1

l2

Path length difference

geometry of path length difference 

∆ = l1 − l2 = −2 sin θB sinµ

sin (θB + µ)
x
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X-ray profile and correlations of rays are described by beam 
matrix, whose elements are 2nd order moments. 

Σ = 〈V V T 〉 =





〈x2〉 〈xx′〉 〈xt〉 〈xξ〉
〈x′x〉 〈x′2〉 〈x′t〉 〈x′ξ〉
〈tx〉 〈tx′〉 〈t2〉 〈tξ〉
〈ξx〉 〈ξx′〉 〈ξt〉 〈ξ2〉





A cavity is a periodic system consistsing of a series of optical 
elements and described by one-turn matrix M. 

M = M1 · · · Mn

In a general configuration of cavity (with asymmetric crystal), 
one-turn matrix M is written as 

M =





C S 0 D
C ′ S′ 0 D′

E F 1 G
0 0 0 1





Symplecticity constraint

CS′ − SC ′ = 1
E = C ′D − CD′

F = DS′ − SD′
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Optimal Gain Condition in matrix formulation

Σ =





εxβe 0 0 0
0 εx/βe 0 0
0 0 τ2 0
0 0 0 ξ2



 MΣMT = Σ

pulse length remains constant if and only if

E = F = G = 0
D = D′ = 0

isochronous
non-dispersive

Beam matrix transform through an optical element

Σ → Σ′ = 〈V ′V
′T 〉 = MΣMT

−1 <
C + S′

2
< 1, Z =

2S√
4− (C + S′)2

stability & waist 
matching
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• Examples of Configuration

3.1. BACKGROUND AND SIGNIFICANCE 15

x-rays

e
-

undulator

mirror

Figure 3.1: A possible two-crystal cavity that operates near backscatter and uses a single
elliptical grazing incidence mirror to provide focusing.

is narrower by four orders of magnitude, a pulse length (∼1 ps) that is longer by one
order of magnitude, and a pulse intensity that is smaller by three orders of magnitude.
As for the coherence, an XFELO is fully coherent transversely, similar to SASE. On the
other hand, the XFELO is also temporally fully coherent while SASE is chaotic. Together,
all of these characteristics imply that the peak brightness of an XFELO is about the same
as that of a SASE. The repetition rate of an XFELO pulse is constant at about 1 MHz –
higher by four orders of magnitude than the average repetition rate of the LCLS, and by
two orders of magnitude than that of the European XFEL. The time-averaged brightness
of an XFELO is then four orders of magnitude higher than that of the LCLS and two
orders of magnitude higher than that of the European XFEL. Performances of various
hard x-ray sources are summarized in Fig. 3.2.

Narrow bandwidth x-rays may also be generated by first producing an intense pulse
via the SASE process and then using a monochromator. Assuming that we employ the
same bunch charge, undulator parameters, and an ideal monochromator, XFELO has
∼ 102 more photons in the same narrow bandwidth; thus, the peak spectral brightness of
an XFELO is approximately two orders of magnitude larger than a SASE device whose
only difference is the increase in peak current.

3.1.3 User sciences

XFELO is a next generation hard x-ray source, having the potential of producing fully co-
herent x-ray beams of record spectral purity and record average brightness in the photon
energy range from about 5 to 25 keV. The characteristics of an XFELO are complemen-
tary to those of self-amplified spontaneous emission (SASE) FELs as briefly summarized
in Table 3.1. The unique characteristics define complementary scientific fields and x-ray
techniques, which could be radically changed by the advent of XFELOs.

Using x-ray pulses from an XFELO, the capabilities of techniques developed at third-
generation synchrotron radiation facilities – particularly those requiring high coherence
and high spectral purity – could be drastically enhanced. Currently, the APS produces
109 photons per second in the meV bandwidth, which will be increased a million-fold

Wednesday, January 18, 2012

2-crystal 1-mirror

M2,1 = L1C2L2FL2C1L1

=





XL b2L(2− L/f) 0 A(1− b)b tan θBL
−1/fb2 XL 0 A(1− b) tan θB/b

aA ab2AL 1 l2Aab(1− b) tan θB

0 0 0 1





A = 2− l2/f, L = l1/b2 + l2, XL = 1− L/f

Constraints l1 = l2 cos 2θB ≈ l2, l2 = 2f, −1 < XL < 1

This is not stable with XL = −1− 2/b2 < −1
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2-crystal 2-mirror (I)

M2,2 = L1FL2C2L3C1L2FL1

=





2X1X2 − 1 2fb2X1(1−X1X2) 0 b(1− b)B tan θB

−2X2/b2f 2X1X2 − 1 0 2(1/b− 1)BX2 tan θB

2aXs 2aLs 1 abl3(1− b) tan θB

0 0 0 1





Xs = Ls/f, Ls = l2 + b2l3/2

This is not isochronous or non-dispersive with Ls != 0
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2-crystal 2-mirror(II)

undulator

M ′
2,2 = L1C2L2FL3FL2C1L1

=





2X1X2 − 1 2fb2X1(1−X1X2) 0 2fb(1− b)B(1−X1X2) tan θB

−2X2/b2f 2X1X2 − 1 0 2(1/b− 1)BX2 tan θB

2aBX2 2fb2aB(1−X1X2) 1 2fb(1− b)aB tan θB(1− BX2)
0 0 0 1





B = 1− l2/f, X1 = 1− (l2 + l1/b2)/f, X2 = 1− l3/2f

l1

l2

l3

constraints l1 = l2 + l3/2, l2 = f, 0 < X1X2 < 1

Z = fb2

√
X1(1−X1X2)

X2
=

√

l21 +
l1b2f2

l1 − 2f
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f = 20m, l1 = 47.929m, l2 = 20m, l3 = 55.858m

X-ray profile at waist 
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30 CHAPTER 3. X-RAY OPTICS FOR XFELO
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Figure 3.8: Scheme of a four-crystal (A,B,C, and D) x-ray optical cavity that admits a
broad range of energy tuning. The ellipsoidal mirrors M1 and M2 are used as collimating
and focusing elements.

along the zigzag path. The function of the grazing incidence mirrors M1 and M2 is the
same as in the case of the two-crystal cavity in Fig. 3.6. To change the energy of x-ray
photons trapped by the cavity, the angles of incidence Θ for all four crystals have to be
changed simultaneously. The positions of crystals A and D as well as of the mirrors are
fixed for convenience, so that the lengths L, L′, and ∆G are constant. The positions of
crystals B and C are changed to adjust the same angle Θ for all crystals. The dependence
of the lengths G, F , and S on Θ is determined by the requirement that the round-trip path
length for x rays in the cavity is constant, i.e., independent on Θ. These dependencies of
the lengths and crystal angles on phtoton energy are derived in [6]. The four-crystal ge-
ometry requires that Θ < π/4. An equivalent crystal configuration is used in the so-called
(+ − −+) four-crystal x-ray monochromator, and therefore, its theory could be applied
to describe the single-pass spectral properties of the cavity (see, e.g., [32] for references
and details).

4-crystal configuration

M4 = L1FL2C4L3C3L4L4C2L3C1L2FL1

=





2Y1Y2 − 1 2fY1(1− Y1Y2) 0 (1− b)(Y1b− 1/b2)l3 tan θB

−2Y2/f 2Y1Y2 − 1 0 −(1− b)(b− 1/b2)l3 tan θB/f
a(b2 − 1/b)l3/f −Y1a(b2 − 1/b)l3 1 −a(1− b)(b + 1/b)l3 tan θB

0 0 0 1





Y1 = 1− l1
f

, Y2 = 1− 1
f

(l2 +
l3
2

(b2 +
1
b2

) + l4)
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For vertical deviation in the orientation 
of the misaligned optical element given 

by   , reference ray deviates by     .

Its solution is given as

• Misalignments

ϕ
2ϕ

Θ
Θ− ϕ

ϕ

For stability, we require a periodicity of optical 
axis deviation

2ϕ

∆x′
∆x

waist

∆x = 300.84ϕ, ∆x′ = 8.28ϕ

∆x = 10−6[m], ∆x′ = 10−7 → ϕ = 3.3× 10−9, 1.21× 10−8





∆x
∆x′

∆y
∆y′

∆ξ




= M





∆x
∆x′

∆y
∆y′

∆ξ




+

∑

k

Mk





0
2ϕ
0
2ϕ
0





3. Errors in Optical Element and their Tolerances 
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Errors in focal length of focusing mirror leads to unmatching of 
waist with stability issue.

With error by   , transfer matrix F is modified to 

F ′ =





1 0 0 0 0
1/f + ε 1 0 0 0

0 0 1 0 0
0 0 1/f + ε 1 0
0 0 0 0 1




= F (1 + εR)

where R =





0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 1





With some manipulations, total transform matrix is modified to 

M′ =M+ ε(L1RL−1
1 M+ML−1

1 RL1) + ε2(L1RL−1
1 ML−1

1 RL1)

• Focal Length Errors

ε
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We find tune by taking trace of one-turn matrix:

For 1% error,  we have
∆Qx(0.01) = 6.07× 10−3, ∆Qy(0.01) = 6.27× 10−3

But for 5% errors, we have unstable betatron motion. 

Qx = 4.68× 10−1

Qy = 4.67× 10−1

Tune should avoid half-integer value for stability

• ideal
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4. Conclusion
• We found optical cavity configuration that has asymmetric 

crystal and allows radiation with constant pulse length. 

•  We evaluated tolerance limit for mislignment and focal length 
error
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