Issues with linear optics in X-ray FEL oscillator (XFELO) cavity

Gunn Tae Park

March 7th 2012

FLS 2012

Contents

1. Issues for X-ray FEL oscillator(XFELO) optical cavity
2. Matrix Formulation
3. Errors in Optical Elements and their Tolerances
4. Conclusion

1. Issues for X-ray FEL oscillator Optical Cavity

XFELO (X-ray FEL Oscillator)

Optical cavity affects the performance of XFELO via net power gain P per pass
$\mathcal{P}=g-\alpha$
gain/pass power loss/pass

- Conditions for Optical Cavity Design
(1) For maximum gain, focusing of X-ray in the undulator to maximally overlap with electron beam
waist location electron beam rms length

$$
Z_{R}\left(z_{0}\right)=\beta_{e}\left(z_{0}\right), \quad \sigma_{R}=\sigma_{e}
$$

Rayleigh length of radiation beta function of electron beam radiation pulse lentgh
(2) For minimum power loss, X-ray must be well collimated at each crystal for narrow angular acceptance of crystal. Also heat load on the crystal must be relieved.

(3) Beam profile must be periodic (thus stable) after every turn.

2. Matrix Formulation

Geometrical optics can be formulated in phase space P of rays. In P, a ray and its propagation through an optical element is represented by a column vector and matrix.

$$
V^{\prime}=M V, \quad V=\left[\begin{array}{c}
x \\
x^{\prime} \\
t \\
\xi
\end{array}\right], \quad \xi=\delta \lambda / \lambda
$$

Free Space Transform

$$
\left[\begin{array}{c}
x_{i} \\
x_{i}^{\prime} \\
t_{i} \\
\xi_{i}
\end{array}\right] \rightarrow\left[\begin{array}{c}
x_{o} \\
x_{o}^{\prime} \\
t_{o} \\
\xi_{o}
\end{array}\right]=\left[\begin{array}{llll}
1 & l & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
x_{i}^{\prime} \\
t_{i} \\
\xi_{i}
\end{array}\right] \xrightarrow[\text { xaxis }]{\underset{\text { axis }}{\text { 2axis }}}
$$

Lens (Curved Mirror) Transform

$$
\left[\begin{array}{c}
x_{i} \\
x_{i}^{\prime} \\
t \\
\xi
\end{array}\right] \rightarrow\left[\begin{array}{c}
x_{o} \\
x_{o}^{\prime} \\
t_{o} \\
\xi_{o}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / f & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
x_{i}^{\prime} \\
t_{i} \\
\xi_{i}
\end{array}\right]^{\mathbf{y}}
$$

Asymmetric Crystal Transform

μ asymmetric angle
θ_{B} Bragg's angle,
$b=\frac{\sin \left(\theta_{B}+\mu\right)}{\sin \left(\theta_{B}-\mu\right)}$
geometry of path length difference
Path length difference

$$
\Delta=l_{1}-l_{2}=-\frac{2 \sin \theta_{B} \sin \mu}{\sin \left(\theta_{B}+\mu\right)} x
$$

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{i} \\
x_{i}^{\prime} \\
t_{i} \\
\xi
\end{array}\right] \rightarrow\left[\begin{array}{c}
x_{o} \\
x_{o}^{\prime} \\
t_{o} \\
\xi_{o}
\end{array}\right]=\left[\begin{array}{cccc}
1 / b & 0 & 0 & 0 \\
0 & b & 0 & (1-b) \tan \theta_{B} \\
a & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
x_{i}^{\prime} \\
t_{i} \\
\xi
\end{array}\right]} \\
& a=-\frac{2 \sin \theta_{B} \sin \mu}{\sin \left(\theta_{B}+\mu\right)}
\end{aligned}
$$

Pulse Length Dilation

$$
\begin{gathered}
V_{i} \rightarrow V_{o}=M_{C_{1}} M_{V} M_{C_{2}} V_{i} \\
{\left[\begin{array}{l}
0 \\
0 \\
0 \\
\xi
\end{array}\right] \rightarrow\left[\begin{array}{c}
2 \frac{\sin \mu \sin \theta_{B} \sin (\theta+\mu)}{\sin ^{2}(\theta+\mu)} l \xi \\
0 \\
4 \frac{\sin ^{2} \theta_{B} \sin ^{2} \mu}{\sin ^{2}\left(\theta_{B}-\mu\right)} l \xi \\
\xi
\end{array}\right]}
\end{gathered}
$$

A cavity is a periodic system consistsing of a series of optical elements and described by one-turn matrix \mathbf{M}.

$$
\mathbf{M}=M_{1} \cdots M_{n}
$$

In a general configuration of cavity (with asymmetric crystal), one-turn matrix \boldsymbol{M} is written as

$$
M=\left[\begin{array}{cccc}
C & S & 0 & D \\
C^{\prime} & S^{\prime} & 0 & D^{\prime} \\
E & F & 1 & G \\
0 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{r}
C S^{\prime}-S C^{\prime}=1 \\
E=C^{\prime} D-C D^{\prime} \\
F=D S^{\prime}-S D^{\prime} \\
\text { Svmplecticity constraint }
\end{array}
$$

Symplecticity constraint
X-ray profile and correlations of rays are described by beam matrix, whose elements are 2 nd order moments.

$$
\Sigma=\left\langle V V^{T}\right\rangle=\left[\begin{array}{cccc}
\left\langle x^{2}\right\rangle & \left\langle x x^{\prime}\right\rangle & \langle x t\rangle & \langle x \xi\rangle \\
\left\langle x^{\prime} x\right\rangle & \left\langle x^{\prime 2}\right\rangle & \left\langle x^{\prime} t\right\rangle & \left\langle x^{\prime} \xi\right\rangle \\
\langle t x\rangle & \left\langle t x^{\prime}\right\rangle & \left\langle t^{2}\right\rangle & \langle t \xi\rangle \\
\langle\xi x\rangle & \left\langle\xi x^{\prime}\right\rangle & \langle\xi t\rangle & \left\langle\xi^{2}\right\rangle
\end{array}\right]
$$

Beam matrix transform through an optical element

$$
\Sigma \rightarrow \Sigma^{\prime}=\left\langle V^{\prime} V^{\prime} T\right\rangle=M \Sigma M^{T}
$$

Optimal Gain Condition in matrix formulation

$$
\Sigma=\left[\begin{array}{cccc}
\varepsilon_{x} \beta_{e} & 0 & 0 & 0 \\
0 & \varepsilon_{x} / \beta_{e} & 0 & 0 \\
0 & 0 & \tau^{2} & 0 \\
0 & 0 & 0 & \xi^{2}
\end{array}\right] \quad \mathcal{M} \Sigma \mathcal{M}^{T}=\Sigma
$$

pulse length remains constant if and only if

$$
\begin{aligned}
& E=F=G=0 \\
& \text { isochronous } \\
& D=D^{\prime}=0 \\
& \text { non-dispersive }
\end{aligned}
$$

stability \& waist matching

$$
-1<\frac{C+S^{\prime}}{2}<1, \quad Z=\frac{2 S}{\sqrt{4-\left(C+S^{\prime}\right)^{2}}}
$$

- Examples of Configuration

2-crystal 1-mirror
unduator

$$
M_{2,1}=L_{1} C_{2} L_{2} F L_{2} C_{1} L_{1}
$$

$$
=\left[\begin{array}{cccc}
X_{L} & b^{2} L(2-L / f) & 0 & \mathcal{A}(1-b) b \tan \theta_{B} L \\
-1 / f b^{2} & X_{L} & 0 & \mathcal{A}(1-b) \tan \theta_{B} / b \\
a \mathcal{A} & a b^{2} \mathcal{A} L & 1 & l_{2} \mathcal{A} a b(1-b) \tan \theta_{B} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\mathcal{A}=2-l_{2} / f, L=l_{1} / b^{2}+l_{2}, X_{L}=1-L / f
$$

Constraints $\quad l_{1}=l_{2} \cos 2 \theta_{B} \approx l_{2}, \quad l_{2}=2 f, \quad-1<X_{L}<1$
This is not stable with $X_{L}=-1-2 / b^{2}<-1$

2-crystal 2-mirror (I)

$$
=\left[\begin{array}{cccc}
2 X_{1} X_{2}-1 & 2 f b^{2} X_{1}\left(1-X_{1} X_{2}\right) & 0 & b(1-b) \mathcal{B} \tan \theta_{B} \\
-2 X_{2} / b^{2} f & 2 X_{1} X_{2}-1 & 0 & 2(1 / b-1) \mathcal{B} X_{2} \tan \theta_{B} \\
2 a X_{s} & 2 a L_{s} & 1 & a b l_{3}(1-b) \tan \theta_{B} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
X_{s}=L_{s} / f, L_{s}=l_{2}+b^{2} l_{3} / 2
$$

This is not isochronous or non-dispersive with $L_{s} \neq 0$

2-crystal 2-mirror(II)

$=\left[\begin{array}{cccc}2 X_{1} X_{2}-1 & 2 f b^{2} X_{1}\left(1-X_{1} X_{2}\right) & 0 & 2 f b(1-b) \mathcal{B}\left(1-X_{1} X_{2}\right) \tan \theta_{B} \\ -2 X_{2} / b^{2} f & 2 X_{1} X_{2}-1 & 0 & 2(1 / b-1) \mathcal{B} X_{2} \tan \theta_{B} \\ 2 a \mathcal{B} X_{2} & 2 f b^{2} a \mathcal{B}\left(1-X_{1} X_{2}\right) & 1 & 2 f b(1-b) a \mathcal{B} \tan \theta_{B}\left(1-\mathcal{B} X_{2}\right) \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
\mathcal{B}=1-l_{2} / f, X_{1}=1-\left(l_{2}+l_{1} / b^{2}\right) / f, X_{2}=1-l_{3} / 2 f
$$

constraints $\quad l_{1}=l_{2}+l_{3} / 2, \quad l_{2}=f, \quad 0<X_{1} X_{2}<1$

$$
Z=f b^{2} \sqrt{\frac{X_{1}\left(1-X_{1} X_{2}\right)}{X_{2}}}=\sqrt{l_{1}^{2}+\frac{l_{1} b^{2} f^{2}}{l_{1}-2 f}}
$$

solution: $\quad f=20 \mathrm{~m}, \quad l_{1}=47.929 \mathrm{~m}, \quad l_{2}=20 \mathrm{~m}, \quad l_{3}=55.858 \mathrm{~m}$

X-ray profile at waist

Angular Divergence at Crystals

4-crystal configuration

$$
M_{4}=L_{1} F L_{2} C_{4} L_{3} C_{3} L_{4} L_{4} C_{2} L_{3} C_{1} L_{2} F L_{1}
$$

$$
=\left[\begin{array}{cccc}
2 Y_{1} Y_{2}-1 & 2 f Y_{1}\left(1-Y_{1} Y_{2}\right) & 0 & (1-b)\left(Y_{1} b-1 / b^{2}\right) l_{3} \tan \theta_{B} \\
-2 Y_{2} / f & 2 Y_{1} Y_{2}-1 & 0 & -(1-b)\left(b-1 / b^{2}\right) l_{3} \tan \theta_{B} / f \\
a\left(b^{2}-1 / b\right) l_{3} / f & -Y_{1} a\left(b^{2}-1 / b\right) l_{3} & 1 & -a(1-b)(b+1 / b) l_{3} \tan \theta_{B} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
Y_{1}=1-\frac{l_{1}}{f}, \quad Y_{2}=1-\frac{1}{f}\left(l_{2}+\frac{l_{3}}{2}\left(b^{2}+\frac{1}{b^{2}}\right)+l_{4}\right)
$$

3. Errors in Optical Element and their Tolerances

- Misalignments

For vertical deviation in the orientation of the misaligned optical element given by φ, reference ray deviates by 2φ.

For stability, we require a periodicity of optical axis deviation

$$
\left(\begin{array}{c}
\Delta x \\
\Delta x^{\prime} \\
\Delta y \\
\Delta y^{\prime} \\
\Delta \xi
\end{array}\right)=M\left(\begin{array}{c}
\Delta x \\
\Delta x^{\prime} \\
\Delta y \\
\Delta y^{\prime} \\
\Delta \xi
\end{array}\right)+\sum_{k} M_{k}\left(\begin{array}{c}
0 \\
2 \varphi \\
0 \\
2 \varphi \\
0
\end{array}\right)
$$

Its solution is given as $\quad \Delta x=300.84 \varphi, \quad \Delta x^{\prime}=8.28 \varphi$
$\Delta x=10^{-6}[m], \quad \Delta x^{\prime}=10^{-7} \rightarrow \varphi=3.3 \times 10^{-9}, 1.21 \times 10^{-8}$

- Focal Length Errors

Errors in focal length of focusing mirror leads to unmatching of waist with stability issue.

With error by ε, transfer matrix F is modified to

$$
\begin{array}{r}
F^{\prime}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 / f+\varepsilon & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 / f+\varepsilon & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)=F(1+\varepsilon R) \\
\\
\\
\text { where } R=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
\end{array}
$$

With some manipulations, total transform matrix is modified to

$$
\mathcal{M}^{\prime}=\mathcal{M}+\varepsilon\left(L_{1} R L_{1}^{-1} \mathcal{M}+\mathcal{M} L_{1}^{-1} R L_{1}\right)+\varepsilon^{2}\left(L_{1} R L_{1}^{-1} \mathcal{M} L_{1}^{-1} R L_{1}\right)
$$

Tune should avoid half-integer value for stability We find tune by taking trace of one-turn matrix:

- ideal

$$
\begin{aligned}
& Q_{x}=4.68 \times 10^{-1} \\
& Q_{y}=4.67 \times 10^{-1}
\end{aligned}
$$

For 1% error, we have

$$
\Delta Q_{x}(0.01)=6.07 \times 10^{-3}, \quad \Delta Q_{y}(0.01)=6.27 \times 10^{-3}
$$

But for 5% errors, we have unstable betatron motion.

4. Conclusion

- We found optical cavity configuration that has asymmetric crystal and allows radiation with constant pulse length.
- We evaluated tolerance limit for mislignment and focal length error

