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Outline 

 Synchronization System Layout for X-ray FELs 

 

 Timing Jitter of Femtosecond Lasers 

 Fiber Lasers 

 Solid-State Lasers 

 

 Timing Distribution Over Stabilized Fiber Links 

     Influence of Polarization Mode Dispersion 

 

 Implementations at DESY, FERMI and plans for the 

European XFEL 
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Timing of X-ray Free Electron Lasers 

Today, we have long-term stable pulsed sub-10 fs timing available 

FLASH, FERMI and the European XFEL 

300 m  -   3 km 

Tomorrow sub-fs timing will be required. 

LCLS in Stanford is operating since April 2009 

fs x-ray  

pulses 
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Timing Distribution and Synchronization 

J. Kim et al, FEL 2004. 

fs x-ray  

pulses 

Other approaches : R. Wilcox, LBNL, cw-distribution  
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Why Optical Pulses (Mode-locked Lasers)? 

 Real marker in time and RF domain, every harmonic can be extracted at 

the end station. 

 Suppress Brillouin scattering and undesired reflections. 

 Optical cross correlation can be used for link stabilization or for optical-

to-optical synchronization of other lasers. 

 Pulses can be directly used to seed amplifiers, EO-sampling, …. 

 Group delay is directly stabilized, not optical phase delay. 

 After power failure system can auto-calibrate! 

frequency 

… ... 

fR 2fR NfR 

TR = 1/fR 

time 
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Timing Jitter of Femtosecond Lasers 

J. Kim and F. X. Kärtner, Laser & Phot. Rev., 1–25 (2009). 

H. A. Haus and A. Mecozzi, IEEE JQE 29, 983 (1993).  



How Do We Measure Low Jitter? 
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Sensitive Time Delay Measurements  
 

by 
 

Balanced Optical Cross Correlation 



Single-Crystal Balanced Cross-Correlator 
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Reflect fundamental 

Transmit SHG Transmit fundamental 

Reflect SHG 

Type-II phase-matched PPKTP crystal 

J. Kim et al., Opt. Lett. 32, 1044 (2007) 

T. Schibli et al, OL 28, 947 (2003) 



Single-Crystal Balanced Cross-Correlator 
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In comparison: 

Typical microwave mixer 

Slope ~1 mV/fs @ 10 GHz 

Greatly reduced thermal drifts! 

80 pJ, 200 fs  

1550nm input pulses 

at 200 MHz rep. rate 



Timing Jitter of Fiber Lasers 
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Modelocked 
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J. Kim, et al. , Opt. Lett. 32, 3519 (2007). 

Phase detector method  Timing Detector method 
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Low timing jitter (<1 fs) in the high frequency range [100 kHz, 10 MHz] 

Timing Jitter of Fiber Lasers 

 J. Cox et al. Opt. Lett., 35, 3522 (2010) 



Attosecond Jitter and Below? 
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How do we get to Attosecond Jitter Lasers? 

Intracavity losses down (Factor of 50) 
 

Intracavity energy up (Factor of 50) 
 

 10-fs pulses (Factor of 100) 
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Timing Jitter of 10 fs Ti:sapphire Lasers  

~ 1V / fs 
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Timing Jitter of 10-fs Ti:sapphire Lasers  
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Nearly shot noise 

limited 
Pump laser intensity 

noise converted to 

phase noise 

Environmental 

noise suppressed 

by feedback loop 



Plotted in 

zeptoseconds 

Plotted in 

attoseconds 

Integrated Timing Jitter 
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Two-Laser Synchronization with 100 kHz BW 

17 A. Benedick, et al. Nat. Photonics 6, 97-100, 2012  



18 

Timing - Stabilized 
 

Fiber Links 
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Timing-Stabilized Fiber Links 

PZT-based fiber 

stretcher 

Mode-locked laser 

Fiber link ~ several 

hundreds meters 

to a few kilometers 

isolator 

Timing 

Comparison 
Faraday 

rotating 

mirror 

Cancel fiber length fluctuations slower than the pulse travel time (2nL/c). 

1 km fiber: travel time = 10 μs  ~100 kHz BW 



2 Link Test System 

20 

 Faraday Rotating Mirror (FRM): ensures orthogonal 

polarization upon return 

 

 Polarization controller eliminates polarization drift at output 
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Limitations by PMD 
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• Stress of fiber link critical to PMD 

• PZT stretcher  ~80 fs PMD 

• Longterm solution: PM-Fiber Link 



1-week operation w/ Pol. Control 
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5 fs (rms) drifts over one week of operation 

Residual drifts: Thermal expansion in X-correlators  
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Implementation at FLASH - DESY 

Sebastian Scholz 



Reference Pulse Distribution to 16 Fiber Links 

24 Sebastian Scholz 



Optical Cross-Correlator for Photo Injector Laser 

25 Sebastian Scholz 
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Initial: 3 x Opt. to Laser, 6 x BAM, 6 x Opt. to RF 

Upgrade:  additional 6 x Opt. RF 

 

Link length up to 3.5 km! 

European XFEL Timing Overview 1-week operation w/ Pol. Control 

European XFEL Timing Overview 
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Conclusions 

    Typical fiber lasers  ~ 1 fs jitter for frequencies > 10 kHz 

 

    Solid-state lasers ~ 10 as jitter for frequencies > 10 kHz (pump noise limited) 

 

Potential for < 1 as jitter! 

   Pulsed timing distribution systems can give long term stable timing      

     to X-ray FELs: < 10 fs  over  ~ a week. 

 

   Increase long term stability, robustness and < 1fs stability:  

     PM – Fiber Links + Integrated Balanced Cross Correlators. 

 

   Systems at the 10 fs level have been successfully implemented at FLASH –  

     DESY, FERMI and are also considered for timing of the European XFEL. 

    Fundamental jitter in modelocked lasers is really low! 


