

Ground design of the 3 GeV accelerator-complex for synchrotron radiation facility in East Japan

Light Source in East Japan

Presented @ FLS2012, J-Lab, Newport News 2012.3.7

Hiroyuki Hama with Beam Physics G. Electron Light Science Centre Tohoku University

Particular incentive

We are aware that the role of East Japan (Tohoku area) for basic science, technology and industry has been very much significant because the Japanese activities of many scientific fields was getting paralyzed and atrophied after the disaster of the Great East Japan Earthquake and Tsunami, March 11, 2011. Nevertheless there has been no light source in East Japan (Tohoku area) so far.

An advanced low emittance 3 GeV machine for X-ray should be established in East Japan.

Requirements and target performance

- 1 X-ray analysis for elements with relatively small atomic numbers, which will be important material to substitute rare-earth elements.
- 2 Low emittance beam for complete control of polarization for radiation from insertions, and ultra-high resolution X ray spectroscopy by nanobeam confinement.
- 3 Clear observation of material function and structure in nano-region.
- 4 Short pulse X ray for real-time analysis of chemical reaction and phase transition in matter.
- 5 Proper operation to derive maximum performance of the light source.
- 6 Low cost and energy saving light source facility.

On the other hand, rapid progress in accelerator technology and science

- 1 Well understanding of nonlinear dynamics for the low emittance ring
- 2 Ultra-short period in-vacuum undulator
- 3 Topping-up operation
- 4 C-band linac technology for XFEL (SACLA)
 - • • •

Advanced light source facility but high reliability and stability based on recent established accelerator science and technology

Target of Light Source Performance

Wavelength $0.1 \sim 20 \text{ keV}$ Brilliance 10^{21} phs/s/mm²/mrad²/0.1%b.w.@ 1~10 keV

Target of Machine Performance

Beam energy ~ 3 GeV Horizontal emittance < 2 nmrad

Circumference

~ 3 GeV < 2 nmrad < **300 m**

Things to keep in mind

- Laser slicing / low alpha operation toward short-pulse production
- Topping up operation
- Seeded soft X-ray FEL driven by a C-band injector

Recent 3 GeV class light sources

Ring	Energy (GeV)	Circumference (m)	Number of cells	Beam current (mA)	Emittance (nmrad)	Brilliance @ 2-10 keV
DIAMOND	3	562.6	24	300	2.7	1020
ALBA	3	268.8	16	400	4.3	1020
TPS	3	518.4	24	400	1.6	1021
MAX-IV	3	528	20	500	0.24	1021
NSLS II	3	792	30	500	0.55	1021
SPring-8	8	1436	44	100	3.4	1020

It seems to be very difficult to realize < 2 nmrad emittance with a circumference less than 300 m

Memorandum in designing lattice

- Proper and rational length of straight section
- •Smaller cell number and many bends
- •At least 10 straight section for insertions ($N_{cell} \ge 12$)
- •No super long straight section, simple lattice without technical difficulty
- Introduce combined function magnets to make compact
- Employ pulse quad (or sext) beam injection

Storage ring lattice design

Lattice design strategy

Theoretical minimum emittance

$$\varepsilon_{x}^{\min} = \frac{1}{4\sqrt{15}} \frac{C_{q}\gamma^{2}\theta^{3}}{J_{x}} (achromat), \qquad \varepsilon_{x}^{\min} = \frac{1}{12\sqrt{15}} \frac{C_{q}\gamma^{2}\theta^{3}}{J_{x}} (non - achromat)$$

$$C_{q} = 3.83 \times 10^{-13} \text{ (mrad)}$$

$$\theta \text{; bending angle (rad)}$$

$$J_{x} \text{; horizontal damping partition } (1 \sim 1.5)$$

$$\Rightarrow$$

$$18 - 27 \text{ nmrad } (n_{B} = 20) // 2.2 - 3.3 \text{ nmrad } (n_{B} = 40) // 0.65 - 0.98 \text{ nmrad } (n_{B} = 60)$$

$$n_{B} \text{; number of identical bending magnets}$$

•Conventional Double-Bend Achromat (DBA) lattice Many straight sections, but limited emittance for given ring.

ex. ALBA (C=270 m, 16 cells): <u>ε ~ 4 nmrad</u>

Many dipoles ???????

=> However, we do not want difficult and complicate lattice ! Moreover construction and commissioning should be quick.

Number of cells and number of bends

From theoretical limit of emittance, \sim 50 bends are at least required toward 2 nmrad at 3 GeV, practically.

• Consider the distance between bends in an arc

$C \approx 2\pi\rho + N\ell_{ss} + N(n-1)S$	for example,	N	n	<i>S</i> (m)
ho ; bending radius	C = 300 m	24	2	1.4
N; number of cells	$\rho = 12 \text{ m} (B = 0.83 T)$	16	3	3.0
ℓ_{ss} ; length of straight section + ~3 m	$N \times n=48$	12	4	3.6
<i>n</i> ; number of bending mag in a cell	$\ell_{\rm ss} = 5 \mathrm{m}$	8	6	4.0
S; length between bending mags	66	-	-	

 \Rightarrow For a 300 m ring, 24-cell DBA seems impossible, maybe 16-cell TBA too.

No trade-off and compromise between number of beam lines, the low emittance should be 1st priority.

Springboard is **12-cell of quad-bend lattice**. Non-achromat is being default toward less than **2** nmrad.

Lattice function in a normal cell

Major machine parameters

Energy	E	2.997 GeV ($B\rho = 10$)
Circumference	С	289.2 m
Betatron tune	$(v_{x'}, v_y)$	(22.10, 5.27)
Natural chromaticity	$(\xi_{x'}, \xi_y)$	(- 56.99, - 33.58)
Natural horizontal emittance ^{*)}	$\mathcal{E}_{\mathbf{x}}$	1.862 nmrad
Momentum compaction factor	α	0.00076
Damping time ^{*)}	$(au_{\mathrm{x}\prime} \ au_{\mathrm{y}\prime} \ au_{\mathrm{\epsilon}})$	(6.32, 8.88, 5.56) ms
Natural energy spread ^{*)}	$\sigma_{\! m E}/E$	8.69×10^{-4}
Synchrotron energy loss ^{*)}	ΔE	0.652 MeV/turn
Min. and max. horizontal beta function	$(\beta_x^{\min}, \beta_x^{\max})$	(0.28, 14.71) m
Min. and max. vertical beta function	$(\beta_{\mathrm{y}}^{\mathrm{min}}, \beta_{\mathrm{y}}^{\mathrm{max}})$	(4.00, 26.80) m
Min. and max. dispersion function	$(\eta_{\mathrm{x}}^{\mathrm{min}},\eta_{\mathrm{x}}^{\mathrm{max}})$	(0.02, 0.21) m
Length (number) of straight section	$L_{\rm ss}$	5 m (12)
Lattice functions at straight section	$(eta_{x'} \ eta_{y'} \ \eta_x)$	(13, 4, 0.07) m

*)Only dipoles are taken into account

 $S E J_{apan}$

Nonlinearity correction

SEJ

Nonlinear dispersions

SEJ_{apan}

• No idea for advantage of linearized dispersion (may be not bad) •10

 $S E J_{apan}$

Brilliance@300mA

Gap^{und.}min = 5 mm

Still below 10²¹, but favorably comparable with recent 3 GeV class machines
 Require more brightness in lower energy region

 => optimization of undulator parameters

Injector

- •Less future progress for booster synchrotron
- Employing recent advanced linac technology to secure potential ability
 - ⇒ Seeded soft X-ray free electron laser (s-SXFEL) for high quality laser (longitudinal single mode)
 - $\varepsilon_{\rm photon}$ < 3 keV (~ 0.4 nm)

 $P_{\text{peak}} > 1 \text{ GW}$

• Independently developed C-band technology in SACLA has to be succeeded.

Expected characteristics of C-band injector

Beam energy	3 GeV
Normalized emittance	1 πmm mrad (0.17 nm rad @ 3GeV)
Maximum bunch charge	1 nC
Bunch length	2 ps
Energy spread	0.06%
Maximum repetition rate	50 Hz (1 ~ 10 Hz @ topping up)

- •Bunch compressors have to be equipped in advance of s-SXFEL, but the total length is still \sim 100 m.
- •Choke structure is not necessary, conventional style of the accelerating structure to reduce cost.

L SEJ

Things to be considered

10-insertion is sufficient ? (Biggest question to be discussed)

If the ring circumference can be extended to ~ 350 m,

Does the emittance reach around 1 nmrad, then **the brilliance exceeds** 10²¹?

- => How about 14 cells ?
- => How about 3-bend 20 cells ?
- => Further short period undulator such as $\lambda_u = 15 \text{ mm}$

Still rare earth elements are important, need high energy photons above 20 keV.

Higher field bends such as B = 1.5 T is sufficient (presently B = 0.91 T)?

- => Increase the energy loss/turn, load of the RF cavity becomes serious
- => Insert short straight sections (~ 0.5 m) and put strong mini-undulator
- => How about a superconducting multipole wiggler ?

Other stuff

Injection scheme

Pulsed-multipole injection is a solution because of limited number of s.s.

RF cavity

Considering a standard superconducting one developed at KEK

Allowable alignment error

C-band linac spec

Other stuff

Injection scheme

Pulsed-multipole injection is a solution because of limited number of s.s.

RF cavity

Considering a standard superconducting one developed at KEK

Allowable alignment error and COD correction scheme

Higher field bends such as B = 1.5 T is sufficient (presently B = 0.91 T)?

- => Increase the energy loss/turn, load of the RF cavity becomes serious
- => Insert short straight sections (~ 0.5 m) and put strong mini-undulator
- => How about a superconducting wiggler ?

The LSEJ project is now supported by a collaboration of 7 national universities and industries in Tohoku area.

Expected budget 250 M\$

Our basic policy

We will quit the project if the budget is not approved within 2 years because of upcoming projects of SPring-8 II and PF-ERL.

