

Overview of XFELO parameters

Ryan R. Lindberg Advanced Photon Source, Argonne National Laboratory

Joint ERL-FEL Session ICFA Workshop of Future Light Sources Thomas Jefferson National Accelerator Facility

Higher current for more gain

				_
γmc ²	7 GeV	E _{beam}	7 GeV	
Q	25 pC	Q	25 pC	
I _{peak}	10 A	I peak	100 A	P(t) - 1
E _{x,n}	0.2 mm-mrad	Е _{х, п}	0.2 mm-mrad	
$\Delta\gamma mc^2$	1.4 MeV	$\Delta\gamma mc^2$	0.02%	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Lund	52 m	L _{und}	20 m	
G	0.36	G	1.64	
R _{tot}	0.85	R _{tot}	0.5	0 t (fs)
crystal	C(4 4 4)	crystal	C(4 4 4)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
•	<u>.</u>			
Pout	1.7 MW	P _{out}	8.4 MW	$\begin{bmatrix} \mathbf{G} & \mathbf{G} & \mathbf{G} \\ \mathbf{G} & \mathbf{G} & \mathbf{G} \\ \mathbf{G} & \mathbf{G} & \mathbf{G} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{\text{total}} & \mathbf{G} \\ \mathbf{G} & \mathbf{G} & \mathbf{G} \end{bmatrix}$
Photons/	1.1×10^{9}	Photons/	8.7×10^{8}	$\begin{bmatrix} 3 \\ -2 \\ -2 \end{bmatrix} \begin{bmatrix} 0.6 \\ -2 \\ -2 \end{bmatrix} = \begin{bmatrix} R_{\text{tot}} \\ -2 \\ -2 \end{bmatrix}$
pulse	1.1 10	pulse	0.7 10	$\approx 0.4 \begin{bmatrix} 1_{\text{thin}} \\ P(\omega) \end{bmatrix}$
ΔE_{FWHM}	1.95 meV	ΔE_{FWHM}	15 meV	$\begin{bmatrix} 0.2 \\ =4 \\ & 20 \\ & E \\ & $
$\Delta t_{\rm FWHH}$	1.58 ps	$\Delta t_{\rm FWHH}$	170 fs	$\begin{bmatrix} 0.0 & -40 & -20 & 0 & 20 \\ & -40 & -20 & 0 & 20 \\ & & \Delta E \text{ (meV)} \end{bmatrix}$

R.R. Lindberg, K-J. Kim, Yu. Shvyd'ko, and W.M. Fawley, Phys. Rev. ST-AB. 14, 010701 (2011)

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Δ

Higher current for more gain

	-					
γmc ²	7 GeV		E_{beam}	7 GeV	E _{beam}	7 GeV
Q	25 pC		Q	25 pC	Q	25 pC
I _{peak}	10 A		I peak	100 A	I _{peak}	100 A
ε _{<i>x,n</i>}	0.2 mm-mrad		Е _{х, n}	0.2 mm-mrad	E _{x,n}	0.4 mm-mrad
$\Delta\gamma mc^2$	1.4 MeV		$\Delta\gamma mc^2$	1.4 MeV	$\Delta\gamma mc^2$	1.4 MeV
Lund	52 m		L _{und}	20 m	L _{und}	40 m
G	0.36		G	1.64	G	1.23
R _{tot}	0.85		R _{tot}	0.5	R _{tot}	0.5
crystal	C(4 4 4)		crystal	C(4 4 4)	crystal	C(4 4 4)
	-	• •				
P _{out}	1.7 MW		Pout	8.4 MW	P _{out}	1.1 MW
Photons/ pulse	1.1×10 ⁹		Photons/ pulse	8.7×10^{8}	Photons/ pulse	8.2×10^{8}
ΔE_{FWHM}	1.95 meV		ΔE_{FWHM}	15 meV	ΔE_{FWHM}	15 meV
$\Delta t_{\rm FWHH}$	1.58 ps		$\Delta t_{\rm FWHH}$	170 fs	$\Delta t_{\rm FWHH}$	165 fs

R.R. Lindberg, K-J. Kim, Yu. Shvyd'ko, and W.M. Fawley, Phys. Rev. ST-AB. 14, 010701 (2011)

γmc ²	7 GeV
Q	25 pC
I _{peak}	10 A
ε _{<i>x</i>,<i>n</i>}	0.2 mm-mrad
$\Delta\gamma mc^2$	1.4 MeV
L _{und}	52 m
G	0.36
R _{tot}	0.85
crystal	C(4 4 4)

Pout	1.7 MW
Photons/ pulse	1.1×10 ⁹
$\Delta E_{\rm FWHM}$	1.95 meV
$\Delta t_{\rm FWHH}$	1.58 ps

Negligible emittance: $\gamma \varepsilon_{x,n} \ll \frac{\lambda}{4\pi}$

 $\varepsilon_{x,n} \lesssim 0.01 \text{ mm} \cdot \text{mrad}$

R.R. Lindberg, K-J. Kim, Yu. Shvyd'ko, and W.M. Fawley, Phys. Rev. ST-AB. 14, 010701 (2011)

γmc ²	7 GeV
Q	25 pC
I _{peak}	10 A
ε _{<i>x</i>,<i>n</i>}	0.2 mm-mrad
$\Delta\gamma mc^2$	1.4 MeV
L _{und}	52 m
G	0.36
R _{tot}	0.85
crystal	C(4 4 4)

Pout	1.7 MW
Photons/ pulse	1.1×10 ⁹
ΔE_{FWHM}	1.95 meV
$\Delta t_{\rm FWHH}$	1.58 ps

R.R. Lindberg, K-J. Kim, Yu. Shvyd'ko, and W.M. Fawley, Phys. Rev. ST-AB. 14, 010701 (2011)

γmc ²	7 GeV
Q	25 pC
I _{peak}	10 A
ε _{<i>x</i>,<i>n</i>}	0.2 mm-mrad
$\Delta\gamma mc^2$	1.4 MeV
L _{und}	52 m
G	0.36
R _{tot}	0.85
crystal	C(4 4 4)

Pout	1.7 MW
Photons/ pulse	1.1×10 ⁹
$\Delta E_{\rm FWHM}$	1.95 meV
$\Delta t_{\rm FWHH}$	1.58 ps

R.R. Lindberg, K-J. Kim, Yu. Shvyd'ko, and W.M. Fawley, Phys. Rev. ST-AB. 14, 010701 (2011)

γmc ²	7 GeV
Q	25 pC
I _{peak}	10 A
Е _{<i>x</i>,<i>n</i>}	0.2 mm-mrad
$\Delta\gamma mc^2$	1.4 MeV
L _{und}	52 m
G	0.36
R _{tot}	0.85
crystal	C(4 4 4)

Negligible emittance: $\gamma arepsilon_{x,n} \ll rac{\lambda}{4\pi}$	
$\varepsilon_{x,n} \lesssim 0.01 \text{ mm} \cdot \text{mrad} \qquad \qquad$	
Negligible energy spread: $\frac{\Delta\gamma}{\gamma} \ll rac{1}{2N_u}$	Both $G \rightarrow 11$
$\Delta \gamma m c^2 \lesssim 100 \text{ keV}$ $G \to 2.3$	

Pout	1.7 MW
Photons/ pulse	1.1×10 ⁹
ΔE_{FWHM}	1.95 meV
$\Delta t_{\rm FWHH}$	1.58 ps

Halving emittance and energy spread: $\varepsilon_{x,n} = 0.1 \text{ mm} \cdot \text{mrad}, \ \Delta \gamma mc^2 = 0.7 \text{ MeV} \quad G \to 1.8$

R.R. Lindberg, K-J. Kim, Yu. Shvyd'ko, and W.M. Fawley, Phys. Rev. ST-AB. 14, 010701 (2011)

γmc ²	7 GeV
Q	25 pC
I _{peak}	10 A
ε _{<i>x</i>,<i>n</i>}	0.2 mm-mrad
$\Delta\gamma mc^2$	1.4 MeV
L _{und}	52 m
G	0.36
R _{tot}	0.85
crystal	C(4 4 4)

Pout	1.7 MW
Photons/ pulse	1.1×10 ⁹
$\Delta E_{\rm FWHM}$	1.95 meV
$\Delta t_{\rm FWHH}$	1.58 ps

Halving emittance and energy spread: $\varepsilon_{x,n} = 0.1 \text{ mm} \cdot \text{mrad}, \ \Delta \gamma mc^2 = 0.7 \text{ MeV} \quad G \to 1.8$

One way to decrease emittance is to decrease charge

R.R. Lindberg, K-J. Kim, Yu. Shvyd'ko, and W.M. Fawley, Phys. Rev. ST-AB. 14, 010701 (2011)

Smaller emittance beams for XFELO

Decrease in emittance ~50%, energy spread by factor of 6, and width by 2 permits proposed XFELO in JAERI-KEK ERL design to operate 5 GeV and lower peak current*

Decrease in emittance by ~2.5, energy spread by factor of 14, and width by 4 permits lasing at the 3rd harmonic at 3.5 GeV⁺

As an extreme example of the possible uses of low charge, we have adapted the 1pC, ultra-short beams first proposed for high-gain FELs in the "single spike" regime ${}^{\text{FELS}}$

$$Q = 1 \text{ pC}, \quad \sigma_e = 250 \text{ fs} \Rightarrow I = 1.6 \text{ A}$$

 $\varepsilon_{xn} = 0.062 \text{ mm} \cdot \text{mrad} \qquad \Delta E = 250 \text{ keV}$

* R. Hajima and N. Nishimori, Proc. of 2009 FEL Conf
† Dai, H. Deng, and Z. Dai, Phys. Rev. Lett. **108**, 034802 (2012).
¥ J.B. Rosenzweig, et al., *Nucl. Instrum. Methods A.* **593**, 39 (2008).

XFELO using ultra-small emittance beam @ 1pC

31 kW

5×10⁶

6.3 meV

0.42 ps

γmc ²	7 GeV	E _{beam}	7 GeV
Q	25 pC	Q	1 pC
I _{peak}	10 A	I peak	1.6 A
E _{x,n}	0.2 mm-mrad	E _{<i>x</i>,<i>n</i>}	0.062 mm-mrad
Δγmc ²	1.4 MeV	Δγmc ²	250 keV
L _{und}	52 m	L _{und}	52 m
G	0.36	G	0.74
R _{tot}	0.85	R _{tot}	0.5
crystal	C(4 4 4)	crystal	C(4 4 4)

P _{out}	1.7 MW	P _{out}	
Photons/ pulse	1.1×10 ⁹	Photons/ pulse	
$\Delta E_{\rm FWHM}$	1.95 meV	ΔE_{FWHM}	
$\Delta t_{\rm FWHH}$	1.58 ps	$\Delta t_{\rm FWHH}$	

XFELO using ultra-small emittance beam @ 1pC

γmc ²	7 GeV	E _{beam}	7 GeV
Q	25 pC	Q	1 pC
I _{peak}	10 A	I _{peak}	1.6 A
E _{x,n}	0.2 mm-mrad	E _{<i>x</i>,<i>n</i>}	0.062 mm-mrad
Δγmc ²	1.4 MeV	Δγmc ²	250 keV
L _{und}	52 m	L _{und}	52 m
G	0.36	G	0.74
R _{tot}	0.85	R _{tot}	0.85
crystal	C(4 4 4)	crystal	C(4 4 4)

Pout	1.7 MW	
Photons/ pulse	1.1×10 ⁹	
$\Delta E_{\rm FWHM}$	1.95 meV	
$\Delta t_{ m FWHH}$	1.58 ps	

Pout	500 kW
Photons/ pulse	1×10 ⁸
$\Delta E_{\rm FWHM}$	6.3 meV
$\Delta t_{ m FWHH}$	0.42 ps

XFELO using ultra-small emittance beam @ 1pC

vmc ²	7 GeV	E_{t}	7 GeV	E	7 GeV
		- beam		<i>L</i> beam	
<i>Q</i>	25 pC	Q	1 pC	Q	1 pC
I peak	10 A	I peak	1.6 A	I _{peak}	1.6 A
E _{x,n}	0.2 mm-mrad	E _{x,n}	0.062 mm-mrad	E _{x,n}	0.062 mm-mrad
Δγmc ²	1.4 MeV	Δγmc ²	250 keV	Δγmc ²	250 keV
L _{und}	52 m	L _{und}	52 m	L _{und}	35 m
G	0.36	G	0.74	G	0.39
R _{tot}	0.85	R _{tot}	0.85	R _{tot}	0.85
crystal	C(4 4 4)	crystal	C(4 4 4)	crystal	C(4 4 4)
					•
Pout	1.7 MW	P _{out}	500 kW	P _{out}	650 MW
Photons/ pulse	1.1×10 ⁹	Photons/ pulse	1×10 ⁸	Photons/ pulse	1.2×10 ⁸
ΔE_{FWHM}	1.95 meV	ΔE_{FWHM}	6.3 meV	ΔE_{FWHM}	5.6 meV
$\Delta t_{\rm FWHH}$	1.58 ps	$\Delta t_{\rm FWHH}$	0.42 ps	$\Delta t_{\rm EWHH}$	0.4 fs

Tevatron-size Ultimate storage ring

Michael Borland investigated the possibility of a Tevatron-sized ultimate storage, and found the settled on the following 2 damping undulators

11 GeV beam energy with 2 damping undulators

Geometric emittance = 1.1 pm Energy spread = 15.4 MeV

Bunch length \sim 8 ps @ 100 pC (I \sim 5 A)

Energy spread dominated, with single pass gain ${\sim}1\%$

"Naïve" scaling to 7 GeV -> Energy spread = 6.3 MeV and negligible emittance

 $N_u = 500 \rightarrow G = 6\%$ $N_u = 1000 \rightarrow G = 9\%$

Caveats: beam damping time probably quite long, how will other parameters change?

Storage ring-based XFELO not impossible, but the large natural energy spread makes this very challenging...is there an opportunity here?

M. Borland, "A Tevatron-sized Ultimate Storage Ring Light Source Based on the PEP-X Lattice," AOP-TN-2011-039 (2011)