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The terminology, jargon and problems at small x

k⊥ dependent gluon distribution”, or “unintegrated gluon distribution” “
appear in many formalisms.

Intuitively,  same meaning as “TMD” distribution.

Problem:  what is exactly meant by these “TMD PDFs” is not so clear since 
explicit definitions not always provided. 

k⊥factorization:   Hard to find proofs in literature. For outsider not clear what is 
known, guessed, conjectured, hoped...

Some formulas have different forms, and the PDFs entering these can be 
different, even though that they are all referred to as “unintegrated PDFs”.

Problem:  When provided, sometimes conflicting definitions appear.

A great deal needs to be checked so we can be sure about the physics done!



Formalisms dealing with small-x physics

Many approaches to deal with small x:

Here are some names:

Balitsky’s approach                      Non-linear “Balitsky-Kovchegov” (BK) equation.

The Color Glass Condensate (CGC) based on McLerran-Venugopalan (MV) model.

k⊥-factorization of Catani, Ciafaloni and Hautmann (CCH).

Catani, Ciafaloni, Fiorani and Marchesini (CCFM) formalism.

The “dipole” formalism 

Applications of k⊥-factorized formula originating from Gribov, Levin and Ryskin (GLR).

Time will not permit me to go through all of these so I narrow my focus sharply.  I will highlight some 
problems I have found in some of the assertions made. 

Not exhaustive 
list!!! 

For additional formalisms, see 
earlier talks on TMDs

Implemented in 
CASCADE MC (Jung)

Close relation to BFKL 
Widely used.

JIMWLK
evolution

Obviously BFKL



Parton distributions from model theory

Intuitive ideas about parton densities can be made exact in a model field theory.

Super-renormalizable 
and non-gauge

Let and be light-front creation and annihilation operators.a†(k+, k⊥) a(k+, k⊥)

Then in parton model, exactly true that: 

k+ = zP+

fα(z) =
1

2z

�
d2k⊥
(2π)3

�P |a†k,i,αak,i,α|P �
�P |P �

Intuitive definition of TMD PDF is 
that it is a number density:

fα(z) =

�
d2k⊥fα(z, k⊥)

fα(z, k⊥) =
1

2z(2π)3
�P |a†k,i,αak,i,α|P �

�P |P �

Integrated PDF:

Note that integral is 
over all momenta

Thus the terminology “unintegrated density/distribution”.  Note, however, assumptions. If assumptions 
relaxed then none of these results can be taken as true anymore.



Gluon TMD density from BFKL

BFKL: Prototype of all small-x calculations. 

Amplitude for scattering of objects A and B written as (             )
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“Impact factors” BFKL “Green’s function”,
“gg scattering amplitude”,

“gg absorptive part”

Common to call      “unintegrated gluon distribution”.

If one defines F(s, k⊥) =

�
d2k�⊥
k�2⊥

IB(k
�
⊥)F (s, k⊥, k

�
⊥)

then ImA(s, 0)

s
=
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d2k⊥
k2⊥

IA(k⊥)F(s, k⊥)

At leading log exact parameter
here not so important. But one 

needs more care at NLL

F



More on small-x gluon distribution, and the dipole 
picture

The BFKL result for scattering amplitude is of “k⊥-factorized” form.   

It is then commonly asserted that “integrated” gluon density given by

Not always
universal prefactor

G(x,Q2) = C
� Q2

d2k⊥F(x, k⊥).

Note this dependence on both sides
Are they same? Actually not!

Asserted to be density of gluons with 
between          andk+ xP+ (x+ dx)P+

At this point not at all clear to what definition these objects correspond to.

A popular way to rewrite the BFKL result is via the so-called “dipole” 
formalism. This emerges when impact factor in DIS written as

Iγ∗(k⊥) =

�
d2r⊥|ψ(r⊥)|2(1− eik⊥r⊥)

In this picture the photon splits into a qq pair (dipole) “long” before interaction. 
This dipole then interacts with hadron. This interaction coded in      above.

“Wave-function” of photon

F

There is an issue with the meaning of this
parameter, come back to this.



The meaning of the parameters in TMD PDF

In parton model, PDF is number density.  In that case the “integrated” density depends on                  
while “unintegrated” density on    and 

z

k⊥z

These are literally momentum
variables of parton 

Turning on gauge interactions         arbitrarily many gluon 
exchanges           TMDs with eikonal Wilson lines in operator. def.

Now k is sum of exchanged 
momentum in intermediate state

Then for TMDs,  rapidity divergences appear if light
like Wilson lines are used.  These have to be cut-off by a parameter ζ

For collinear (“integrated”) distribution no rapidity 
divergence, thus no    dependence.ζ

For renormalizable theory like QCD,  also dependence on ren. scale µ

These extra parameters needed in 
QCD also complicates relation 
between G and F

Thus fTMD = fTMD(z, k⊥; ζ)

    Thus generally                              and G = G(z;µ)fTMD(z, k⊥; ζ, µ)

used in Collins’ talkyn



What is the meaning of x in                                             F(x, k⊥) ?

In derivation of BFKL type factorized formula, or in dipole model,  k+
actually neglected.  Thus no dependence on       in k+ F(x, k⊥)

Then what is x?   Answer is that it is actually the rapidity cut-off, and not the z from 
parton model.

If  associate               with TMD distributions,  then it would mean F(x, k⊥)

But then what is the meaning of the relation                                                      ?

fTMD(z = 0, k⊥; ζ = x, µ)

G(x,Q2) = C
� Q2

d2k⊥F(x, k⊥).

It would be 

Conceptually this does not make much sense, and if not careful things can go wrong.
I will give one example of this.

G(z = x, µ) =

� µ2

d2k⊥fTMD(z = 0, k⊥; ζ = x, µ)

Also, being careful with the parameters makes a difference, I will give an example of this 
too.



Dipole scattering,  Wilson lines and connection
to “BFKL factorization”

In small-x literature the “gluon distribution” also written using Wilson lines:

Balitsky’s treatment of         scattering leads to γ∗γ∗

A(s, t) = i
s

2
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e2i
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Similarly in dipole model one models interaction via same Wilson lines. In CGC same 
formula taken for DIS.

vector along direction of 
motion of dipole

To avoid rapidity divergence, Wilson line taken off light cone by ζ

Evolution eq wrt                        BK equation for ζ Nζ(x⊥, y⊥) ≡ 1− 1

Nc
�Tr{Uζ(x⊥)U

†
ζ (y⊥)�

Dipole “scattering 
amplitude”

≡ 1− Sζ(x⊥, y⊥)



Dipole formalism and an application: Inclusive 
gluon production, and problems

A myriad of “gluon distributions” appear in dipole formalism:

φ(ζ, k⊥) = Cφ
�

d2x⊥
x2
⊥

e−ik⊥·x⊥Nζ(x⊥)

ϕ(ζ, k⊥) = Cϕ k2⊥

�
d2x⊥e

−ik⊥·x⊥Nζ(x⊥)

F(ζ, k⊥) = CF
�

d2x⊥e
−ik⊥·x⊥Sζ(x⊥)

I have not been able to 
pin down universal prefactors 

so let me leave them unspecified

Kovchegov and Tuchin (hep-ph/0111362) studied single inclusive gluon production in DIS on 
“classical” nucleus.  Using dipole formalism they arrive at a formula which is then “identified” 
with GLR formula:

These appear in different formulas in phenomenological applications and I here give one example. Which 
is “real” gluon distribution...? Note that again none has z dependence...

dσ

d2k⊥dy
=

2αs

CF k2⊥

�
d2q⊥

f1(x1, q2⊥) f2(x2, |k⊥ − q⊥|2)
q2⊥(k⊥ − q⊥)2

Now, what is then f here?



Continuation from previous slide

In GLR,  f was “defined” as: 

f(x, q2⊥) =
dxG(x, q2⊥)

d ln q2⊥

Using thus GLR,  KT identified                with                 with prefactorf(x, q2⊥) ϕ(x, q2⊥) Cϕ =
Nc

(2π)4αs

To begin with note again the issue with the meaning of x in these formulas.

Given the classical formulation of the nucleus it was possible to directly calculate G, with the 
definition that it is a number density in longitudinal momentum.

Comments and problems:

Note: This is classical 
calculation so 
problems of QCD not 
appear

Using same formalism one could also calculate ϕ(x, q2⊥)

(A)

Then using (A) above the results could be compared.

Yet the results of the two different calculations do not
agree...



Continuing...

Thus the integral of “unintegrated” distribution did not agree with integrated one...

The identification of                with GLR formula is still being used, however. ϕ(x, q2⊥)

Thus one needs to be extra careful here. Moreover, GLR formula came with different 
forms...

Formula used in pp and AA collision where TMD factorization has not been established. 
In fact there are explicit counter examples that it fails in pp...

Collins, Qiu         0705.2141
Rogers, Mulders  1001.2977

Additional warning:                 will give y dependence of produced particle. 
dσ

d2k⊥dy

Leading small-x formalism extremely poor for this, however, because of large 
kinematical approximations. 

Naive application dangerous



Importance of kinematics and possible implications

Remember again picture of factorization:
k enters in impact 
factor too

In formula

kinematical approximations as noted earlier

Then in impact factor         used instead of true momentum of partonxbj

σ =

�
d2k⊥
k2⊥

I(k⊥)F(xbj , k⊥)

Can make a big difference!

Exact kinematics shifts x to higher values: Important for non-linear physics, 
especially an issue at low Q2



Example of application for FL

Golec-Biernat, Stasto: 0905.1321

Actually effect for F2 is 
bigger...

When looking for saturation 
in data, we must be careful 
of these effects.

Question is whether we are?


