TMD Factorization and Evolution for TMD Correlation Functions

Mert Aybat

In collaboration with Ted C. Rogers

Based on:

arXiv: 1101.5057

and Foundations of Perturbative QCD, J.C. Collins http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521855334

PreDIS 2011 - JLab

- Collinear and TMD factorization
- A unified treatment that includes evolution
- New TMD definitions
- Evolution for TMDs
- Conclusions and Outlook

Factorization in QCD

QCD gains its predictive power through factorization

Consider Drell-Yan process: $P_1 + P_2 \rightarrow l\bar{l}(Q^2) + X$

$$\frac{d\sigma_{P_1P_2 \to ll'(Q^2) + X}(s, Q^2)}{dQ^2} = \sum_{i,j} \int_0^1 dx_1 \, dx_2 \, f_{i/P_1}(x_1, \mu^2) \, f_{j/P_2}(x_2, \mu^2) \, \mathcal{H}_{ij}\left(\frac{Q^2}{x_1 x_2 s}, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2)\right)$$
Collins, Soper and Sterman (1985,1988)
$$PDFs: \text{Long distance dynamics,} \text{non-perturbative, universal,} Hard scattering function:}$$

evolution through DGLAP

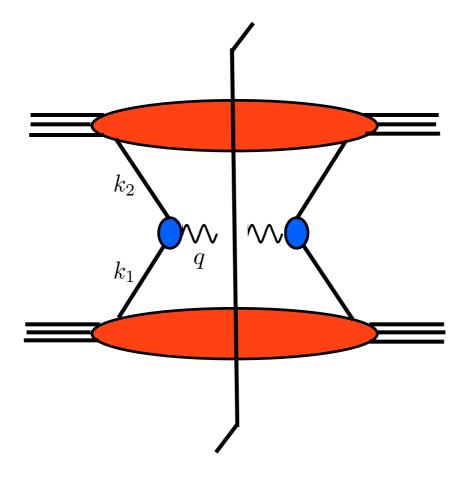
short distance dynamics, pQCD calculations

Not complete description —> transverse momentum of incoming partons are important

examples: DY, SIDIS, hadron production at e^+e^- collisions...

TMD Factorization

Consider Drell-Yan process



We want to get $\frac{d\sigma}{dq_T}$ for all q_T

Two Common Approaches

A) Typical implementation of CSS formalism

- Parametrize the non-perturbative parts.
- Global fit to several experiments (example: Tevatron data).

Landry et al (2003); Konychev and Nadolsky (2006)

CSS Formalism: Typical Implementation

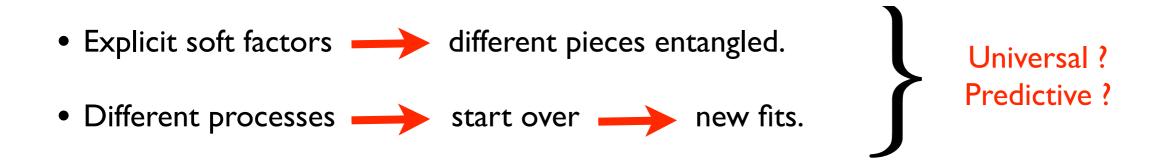
Collins-Soper-Sterman formalism for DY gives

$$d\sigma \sim \int d^{2}\mathbf{b}e^{-i\mathbf{b}\cdot\mathbf{q}_{T}} \\ \int_{x_{1}}^{1} \frac{d\hat{x}_{1}}{\hat{x}_{1}} \tilde{C}_{f/j}(x_{1}/\hat{x}_{1}, b_{*}, \mu_{b}^{2}, \mu_{b}, g(\mu_{b})) f_{j/P_{1}}(\hat{x}_{1}, \mu_{b}) \\ \int_{x_{2}}^{1} \frac{d\hat{x}_{2}}{\hat{x}_{2}} \tilde{C}_{f/j}(x_{2}/\hat{x}_{2}, b_{*}, \mu_{b}^{2}, \mu_{b}, g(\mu_{b})) f_{j/P_{2}}(\hat{x}_{2}, \mu_{b}) \\ \exp\left[\int_{1/b^{2}}^{Q^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \left\{\mathcal{A}(\alpha_{s}(\mu'))\ln\frac{Q^{2}}{\mu'^{2}} + \mathcal{B}(\alpha_{s}(\mu'))\right\}\right] \\ \exp\left[-g_{K}(b)\ln\frac{Q^{2}}{Q_{0}^{2}} - g_{1}(x_{1}, b) - g_{2}(x_{2}, b)\right] \\ + \operatorname{Large} q_{T} \operatorname{term}$$

Where is the TMD PDF ?

CSS Formalism: Typical Implementations

- Underlying presence of individual TMD PDFs is hidden.
 - TMD PDF \longrightarrow hadron structure.
 - T-Odd effects (Sivers ...) require TMD Correlation functions.



A unified treatment is needed to relate different experiments!

Want: Analogous to collinear factorization

Two Common Approaches

A) Typical implementation of CSS formalism

- Parametrize the non-perturbative parts.
- Global fit to several experiments (example: Tevatron data).
 Landry et al (2003); Konychev and Nadolsky (2006)

B) Use gaussian parametrization

- Assume x and k_T behaviors factorize.
- Fixed scale, no evolution.
- Ok for fixed, small scales but redo the fits for each experiment and for each scale. Schweitzer, Teckentrup and Metz (2010)

Main Philosophy and the Goal

Extend collinear factorization methodology to TMD factorization.

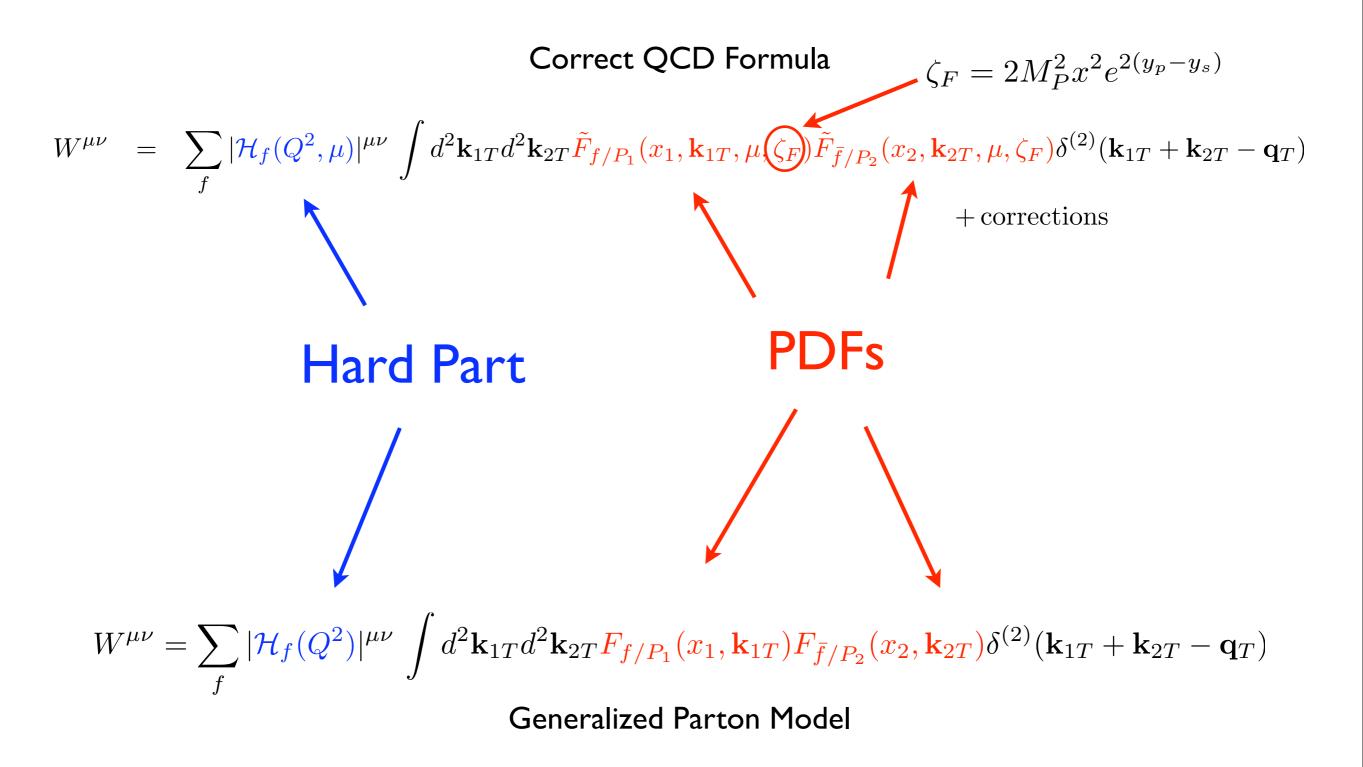
 Repository of well defined TMD fits with evolution for use in phenomenology.

https://projects.hepforge.org/tmd

• Unified treatment \rightarrow use existing fits to build a global fit.

 Connection between operator definitions and phenomenology.

Relation to Generalized Parton Model??



Definitions of TMD Correlation Functions

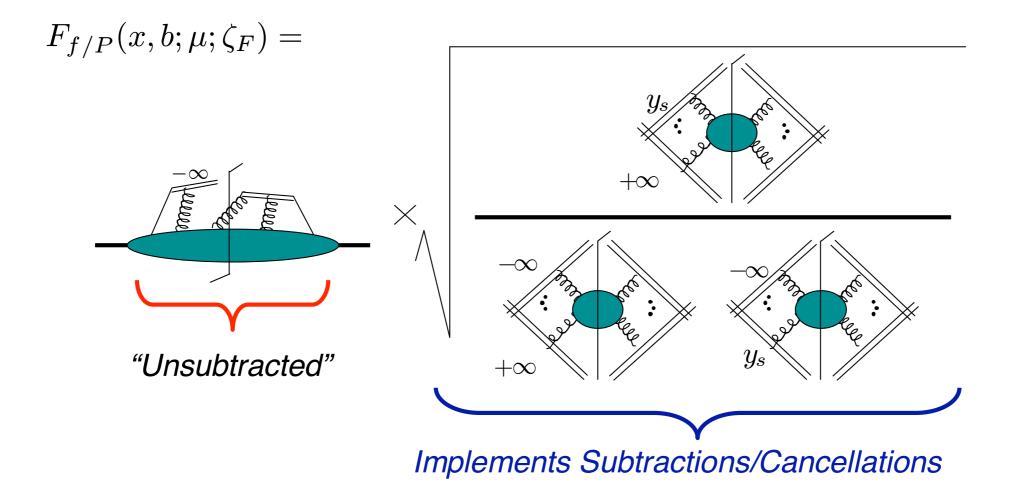
- Dictated by requirements of factorization.
- Identified with operator definitions universality/non-universality properties clear.
- Deal with all divergences.

Consistently defined TMD correlation functions

- Have evolution equations associated with them individually.
- Be analogous to generalized parton model picture.

See talk by J. Collins for the new, consistent definitions of TMD parton densities.

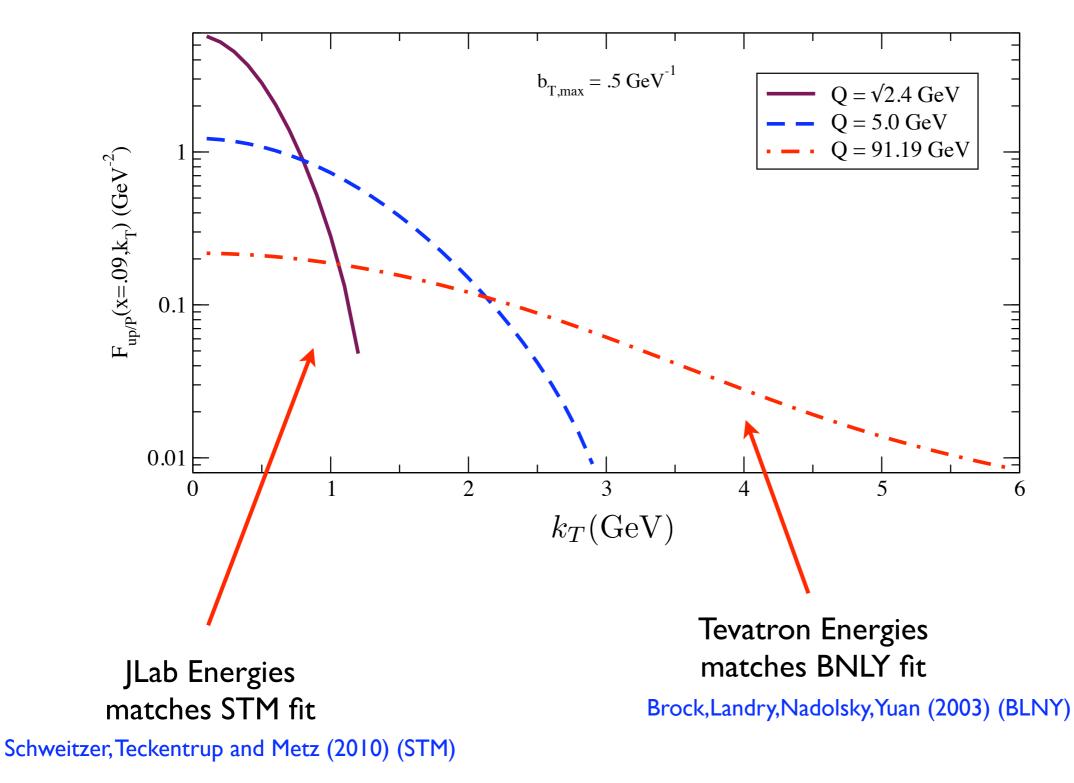
New TMD Definitions



From Foundations of Perturbative QCD, J. Collins (See talk by J. Collins and also J. Collins, TMD 2010 Trento Workshop talk)

Some Results

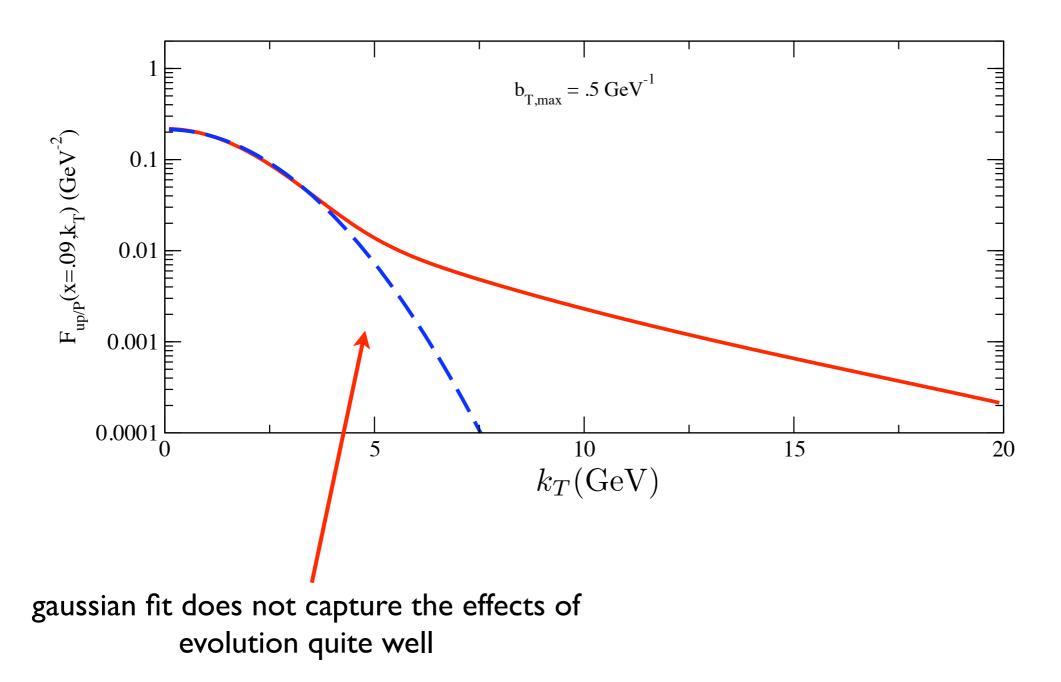
Up Quark TMD PDF, x = .09



DIS 2011 S.M. Aybat

Some Results

Up Quark TMD PDF, x = .09, Q = 91.19 GeV



Evolution for TMDs

Energy evolution from Collins-Soper equation

$$\underbrace{\frac{\partial \ln \tilde{F}(x, b_T, \mu, \zeta)}{\partial \ln \sqrt{\zeta}} = \tilde{K}(b_T, \mu) \text{ with } \tilde{K}(b_T, \mu) = \frac{1}{2} \frac{\partial}{\partial y_n} \ln \frac{\tilde{S}(b_T; y_n, -\infty)}{\tilde{S}(b_T; +\infty, y_n)}$$

Renormalization group equations

$$\frac{d\tilde{K}}{d\ln\mu} = -\gamma_K(g(\mu)) \quad \text{and} \quad \frac{d\ln\tilde{F}(x, b_T, \mu, \zeta)}{d\ln\mu} = -\gamma_F(g(\mu), \zeta/\mu^2)$$

energy evolution for γ_F :

$$\gamma_F(g(\mu); \zeta_F/\mu^2) = \gamma_F(g(\mu); 1) - \frac{1}{2}\gamma_K(g(\mu)) \ln \frac{\zeta_F}{\mu^2}$$

Evolution for TMDs

Small
$$b_T \longrightarrow$$
 collinear factorization formalism
 $\tilde{F}_{f/P}(x, b_T, \mu, \zeta_F) = \sum_j \int_x^1 \frac{d\hat{x}}{\hat{x}} \tilde{C}_{f/j}(x/\hat{x}, b_T, \zeta_F, \mu, g(\mu)) f_{j/P}(\hat{x}, \mu) + \mathcal{O}((\lambda_{QCD} b_T)^a)$
At large $b_T \longrightarrow$ perturbative description breaks down \longrightarrow scale dependence through evolution
Matching for large and small bT

$$\mathbf{b}_*(\mathbf{b}_T) = \frac{\mathbf{b}_T}{\sqrt{1 + b_T^2/b_{\max}^2}}$$

Collins and Soper (1982)

- Use collinear factorization treatment for small b_T .
- Implement matching procedure.
- Apply evolution equations.

Evolved TMDs

$$\begin{split} \tilde{F}_{f/P}(x, b_T, \mu, \zeta_F) &= \sum_j \int_x^1 \frac{d\hat{x}}{\hat{x}} \tilde{C}_{f/j}(x/\hat{x}, b_*, \zeta_F, \mu, g(\mu)) f_{j/P}(\hat{x}, \mu) \\ &\times \exp\left\{\ln\frac{\sqrt{\zeta_F}}{\mu_b} \tilde{K}(b_*, \mu_b) + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F(g(\mu'), 1) - \ln\frac{\sqrt{\zeta_F}}{\mu'} \gamma_K(g(\mu'))\right]\right\} \\ &\times \exp\left\{g_{j/P}(x, b_T) + g_K(b_T) \ln\frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} \end{split}$$

$$\begin{split} \tilde{C}_{j'/j}(x, b_T, \mu, \zeta_F/\mu^2) &= \delta_{j'j}\delta(1-x) + \delta_{j'j}\frac{\alpha_s C_F}{2\pi} \left\{ 2 \left[\ln\left(\frac{2}{\mu b_T}\right) - \gamma_E \right] \left[\left(\frac{2}{1-x}\right)_+ - 1 - x \right] + 1 - x \right] \\ &+ \delta(1-x) \left[-\frac{1}{2} [\ln(b_T^2\mu^2) - 2(\ln 2 - \gamma_E)]^2 - [\ln(b_T^2\mu^2) - 2(\ln 2 - \gamma_E)] \ln\left(\frac{\zeta_F}{\mu^2}\right) \right] \right\} + \mathcal{O}(\alpha_s^2) \end{split}$$

Evolved TMDs

$$\begin{split} \tilde{F}_{f/P}(x, b_T, \mu, \zeta_F) &= \sum_j \int_x^1 \frac{d\hat{x}}{\hat{x}} \tilde{C}_{f/j}(x/\hat{x} \underbrace{b_*} \zeta_F, \mu, g(\mu)) f_{j/P}(\hat{x}, \mu) \\ \times \exp\left\{\ln\frac{\sqrt{\zeta_F}}{\mu_b} \tilde{K}(\underbrace{b_*})\mu_b\right) + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F(g(\mu'), 1) - \ln\frac{\sqrt{\zeta_F}}{\mu'} \gamma_K(g(\mu'))\right]\right\} \times \exp\left\{g_{j/P}(x, b_T) + g_K(b_T) \ln\frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} \\ \mu_b &= \frac{C_1}{b_*(b_T)} \quad \text{with} \quad C_1 = 2e^{-\gamma_E} \end{split}$$

Evolved TMDs

$$\begin{split} \tilde{F}_{f/P}(x, b_T, \mu, \zeta_F) &= \sum_j \int_x^1 \frac{d\hat{x}}{\hat{x}} \tilde{C}_{f/j}(x/\hat{x} \underbrace{b_*}, \zeta_F, \mu, g(\mu)) f_{j/P}(\hat{x}, \mu) \\ &\times \exp\left\{ \ln \frac{\sqrt{\zeta_F}}{\mu_b} \tilde{K}(\underline{b_*}, \mu_b) + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F(g(\mu'), 1) - \ln \frac{\sqrt{\zeta_F}}{\mu'} \gamma_K(g(\mu')) \right] \right\} \times \exp\left\{ \underbrace{g_{j/P}(x, b_T)}_{f} + \underbrace{g_K(b_T)}_{f} \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}} \right\} \\ &\mu_b = \frac{C_1}{b_*(b_T)} \text{ with } C_1 = 2e^{-\gamma_E} \begin{array}{c} \text{nonperturbative } b_T \\ \text{behavior in } \tilde{F}_{f/P} \end{array} \\ &\text{nonperturbative } b_T \\ \text{behavior in } \tilde{K} \end{split}$$

Determination of the Non-perturbative Parts

Using CSS formalism for the full cross section, fits to DY Tevatron data

$$\exp\left\{-\left[g_1+g_2\ln\frac{Q}{2Q_0}+g_1g_3\ln(100x_1x_2)\right]b_T^2\right\}$$

Brock,Landry,Nadolsky,Yuan (2003) (BLNY):

Assuming flavor independence and symmetric role of PDFs we use for one specific TMD

$$\exp\left\{-\left[\frac{g_2}{2}\ln\frac{Q}{2Q_0} + g_1\left(\frac{1}{2} + g_3\ln\left(10\frac{xx_0}{x_0 + x}\right)\right)\right]b_T^2\right\}$$

with $g_1 = 0.21 \text{ GeV}^2$, $g_2 = 0.68 \text{ GeV}^2$ and $g_3 = -0.6 \text{ GeV}^2$, using $Q_0 = 1.6 \text{ GeV}$ for $b_{\text{max}} = 0.5 \text{ GeV}^{-1}$.

- For large Q and small x: reduces to BLNY fit for DY
- For $x_0 = 0.02$: matches the STM fit for SIDIS at x = 0.09 and $Q = \sqrt{2.4}$ GeV

Conclusions and Outlook

- TMD correlation functions with evolution based on definitions by J. Collins.
- Combined previous fits (BNLY and STM) which apply at different scales.
- Use TMDs in actual calculations: DY and SIDIS (work in progress).
- Improve fits, include higher order.
- Evolution for polarization dependent TMDs.
- Gluon distribution.
- Quantify factorization breaking effects.

DIS 2011 S.M. Aybat

See DIS talk by Ted Rogers.

Stay tuned for new and improved results at

https://projects.hepforge.org/tmd