AdS/CFT: Scattering amplitudes from weak to strong coupling

Jochen Bartels, Hamburg University

QCD Evolution Workshop

Jefferson Lab, April 9, 2011

- Introduction
- Weak coupling
- Strong coupling
- Conclusions

Collaborations:
JB., L.Lipatov, A.SabioVera, A.Prygarin
J.B., J.Kotanski, V.Schomerus

Introduction

Ultimate Goal: N=4 SYM could be solvable (could play the role of 'harmonic oscillator in QFT').

Main progess: anomalous dimensions for dilatation
More recent aim:
computation of scattering amplitudes at weak and at strong coupling

Special interest:
multi-leg scattering at high energies (Regge limit)

Why Regge limit:
personal interest in Regge limit
experience shows that Regge limit plays special role
integrability in the Regge limit

s large

Framework: correspondence

$g, N_{c}, \lambda=g^{2} N_{c}$

weak coupling: perturbation theory

strong coupling: semiclassical approximation, mimimal area of polygon

Weak coupling

In recent years enormous activity.
Very helpful: two loop calculations
BDS conjecture for MHV amplitudes: Bern et al.

$$
\begin{array}{r}
\operatorname{tr}\left(T^{a_{1}} \ldots T^{a_{n}}\right)+\text { noncycl.perm, } A_{n}=A_{n}^{\text {tree }} \cdot M_{n}(\epsilon) \\
\ln M_{n}=\sum_{l} a^{l}\left[\left(f^{(l)}(\epsilon) I_{n}(l \epsilon)+F_{n}(0)\right)+C^{(l)}+E_{n}^{(l)}[\epsilon]\right] \\
a=\frac{N_{c} \alpha}{2 \pi}\left(4 \pi e^{-\gamma}\right)^{\epsilon}, d=4-2 \epsilon
\end{array}
$$

Present understanding:
formula correct for $n=4$ and $n=5$
Corrections needed for $\mathrm{n} \geq 6$: remainder function $R^{(n)}$

Dual conformal symmetry:

$$
x_{i+1}-x_{i}=p_{i}
$$

Conformal transformations in dual space. In unphysical region (all invariants negative):

$$
M_{n} \sim \exp \left(\ln M_{n}^{B D S}+R^{(n)}\right)
$$

Correspondence: amplitude -Wilson loop (color non-singlet!).
Remainder function depends upon anharmonic ratios, e.g. for $n=6$:

$$
u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}, u_{2}=\frac{x_{24}^{2} x_{15}^{2}}{x_{25}^{2} x_{41}^{2}}, u_{3}=\frac{x_{26}^{2} x_{35}^{2}}{x_{25}^{2} x_{36}^{2}}=\frac{s_{2} s}{s_{345} s_{456}} \quad \text { (instead of } 8 \mathrm{~s}, \mathrm{t} \text { invariants) }
$$

Goal: find remainder function $\quad R^{(6)}$

What do we know about $R^{(n)}$:

- vanishes for $n=4,5$
(BDS correct; no unharmonic ratios)
- exact two loop results (Del Duca; Goncharov)
- $n=6$:

Comparison with leading log calculations in QCD
BDS contains Regge - pole model (gluon) : Veneziano amplitude

- missing piece: Regge cut, visible only in special physical region (known since 1979)

all energies positive

$$
u_{3}=1
$$

mixed region:

$$
\begin{gathered}
s>0, s_{2}>0 ; s_{123}<0, s_{234}<0 \\
u_{3}=e^{-2 \pi i}
\end{gathered}
$$

$$
\text { ounamound }+ \text { ouncrurnond }
$$

$E^{(2)}$ is the lowest eigenvalue of the BFKL-octet Hamiltonian $H^{(2)}$. integrable
History of integrability in Regge limit:
large- N_{c} color singlet BFKL, BKP Hamiltonian \sim closed spin chain: integrable

BKP

New: color octet BFKL, BKP Hamiltonian ~ open spin chain: integrable

More particles: $T_{2 \rightarrow 2 n}$ (3) $H^{(3)}$ 'mixed' region:

Should all be contained in remainder function!

$$
\begin{gathered}
\mathrm{Amp}^{\prime}=\operatorname{Amp}_{2 \rightarrow 4}^{B D S}\left(1+i \Delta_{2 \rightarrow 4}\right) \\
\Delta_{2 \rightarrow 4}=\frac{a}{2} \sum_{n=-\infty}^{n=\infty}(-1)^{n} \int \frac{d \nu}{\nu^{2}+\frac{n^{2}}{4}}\left(\frac{q_{2}^{*} p_{4}^{*}}{p_{5}^{*} q_{1}^{*}}\right)^{i \nu-\frac{n}{2}}\left(s_{2}^{\omega(\nu, n)}-1\right)\left(\frac{q_{2} p_{4}}{p_{5} q_{1}}\right) \\
\omega(\nu, n)=4 a \mathcal{R}\left(2 \psi(1)-\psi\left(1+i \nu+\frac{n}{2}\right)-\psi\left(1+i \nu-\frac{n}{2}\right)\right) .
\end{gathered}
$$

Leading: $\quad \mathrm{n}=1, \nu=0: \omega(0,1)=\frac{\lambda}{\pi^{2}}(2 \ln 2-1)$

What about exponentiation?

Strong coupling

Correspondence: scattering amplitude is given by minimal area A.

$$
\operatorname{Amp} \sim\langle W\rangle \sim \exp \left[-\frac{\sqrt{\lambda}}{2 \pi} A\right]=\exp \left[-\frac{\sqrt{\lambda}}{2 \pi}\left(A_{\mathrm{div}}+A_{\mathrm{BDS}}-R\right)\right]
$$

Contours (lightlike polygons) of the area are determined by kinematics, i.e. by the values of the unharmonic ratios.

For $\mathrm{n}=6$ we have three ratios: u_{1}, u_{2}, u_{3}
solve Euler-Lagrange equations classical integrable system

use auxiliary quantum system
~ Y-Equations
area related to free energy of this system

Alday, Maldacena,Sever,Vieira;
Alday,Gaiotto,Maldacena

Goal: solve Y-equations

$$
\begin{aligned}
& \log Y_{2}(\theta)=-m \sqrt{2} \cosh (\theta-i \phi)-2 \int_{-\infty}^{\infty} d \theta^{\prime} K_{1}\left(\theta-\theta^{\prime}\right) \log \left(1+Y_{2}\left(\theta^{\prime}\right)\right) \\
&-\int_{-\infty}^{\infty} d \theta^{\prime} K_{2}\left(\theta-\theta^{\prime}\right) \log \left(\left(1+Y_{1}\left(\theta^{\prime}\right)\right)\left(1+Y_{3}\left(\theta^{\prime}\right)\right)\right) \\
& \log Y_{2 \pm 1}(\theta)=-m \cosh (\theta-i \phi) \pm C-\int_{-\infty}^{\infty} d \theta^{\prime} K_{2}\left(\theta-\theta^{\prime}\right) \log \left(1+Y_{2}\left(\theta^{\prime}\right)\right) \\
&-\int_{-\infty}^{\infty} d \theta^{\prime} K_{1}\left(\theta-\theta^{\prime}\right) \log \left(\left(1+Y_{1}\left(\theta^{\prime}\right)\right)\left(1+Y_{3}\left(\theta^{\prime}\right)\right)\right) \\
& u_{1}= \frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}=\left(1+\frac{1}{Y_{2}(\theta=-i \pi / 4)}\right)^{-1} \\
& u_{2}=\frac{x_{24}^{2} x_{15}^{2}}{x_{25}^{2} x_{14}^{2}}=\left(1+\frac{1}{Y_{2}(\theta=i \pi / 4)}\right)^{-1} \\
& u_{3}= \frac{x_{35}^{2} x_{26}^{2}}{x_{36}^{2} x_{25}^{2}}=\left(1+\frac{1}{Y_{2}(\theta=-3 i \pi / 4)}\right)^{-1}
\end{aligned}
$$

with $\quad m=m\left(u_{1}, u_{2}, u_{3}\right), \phi=\phi\left(u_{1}, u_{2}, u_{3}\right), C=C\left(u_{1}, u_{2}, u_{3}\right)$

Closer look: Regge limit provides great simplification

Special values of anharmonic ratios: $u_{1} \rightarrow 0, u_{2} \rightarrow 0, u_{3} \rightarrow 1\left(e^{-2 \pi i}\right)$ allow to disregard the inhomogeneous terms of the Y -equations.

After continuation in u_{3} : solution becomes analytic.

Main results for the Regge limit:

- remainder function vanishes (up to constant) before analytic continuation
- after analytic continuation a new term appears which has Regge behavior

Strong coupling: $\quad\left(1-u_{3}\right) \sim 1 / s_{2} \quad \tilde{u}_{1,2}=\frac{u_{1,2}}{1-u_{3}}$

$$
\begin{gathered}
\text { Amp }^{\prime} \sim\left\langle W^{\prime}\right\rangle \sim \exp \left[-\frac{\sqrt{\lambda}}{2 \pi} A^{\prime}\right]=\exp \left[-\frac{\sqrt{\lambda}}{2 \pi}\left(A_{\mathrm{div}}^{\prime}+A_{\mathrm{BDS}}^{\prime}-R^{\prime}\right)\right] \\
e^{\frac{\sqrt{\lambda}}{2 \pi} R^{\prime}} \sim e^{-i \frac{\pi}{2} \frac{\sqrt{\lambda}}{4 \pi} \ln \left(\tilde{u}_{1} \tilde{u}_{2}\right)}\left(\left(1-u_{3}\right) \sqrt{\tilde{u}_{1} \tilde{u}_{2}}\right)^{\frac{\sqrt{\lambda}}{2 \pi} e_{2}}\left(\frac{\tilde{u}_{1}}{\tilde{u}_{2}}\right)^{-\frac{\sqrt{\lambda}}{\sqrt{2} \pi}} \\
e_{2}=\left(\sqrt{2}+\frac{1}{2} \log (3+2 \sqrt{2})\right)
\end{gathered}
$$

Weak coupling:

$$
\mathrm{Amp}^{\prime}=\mathrm{Amp}_{2 \rightarrow 4}^{B D S}\left(1+i \Delta_{2 \rightarrow 4}\right)
$$

$\Delta_{2 \rightarrow 4}=\frac{a}{2} \sum_{n=0}^{n=\infty}(-1)^{n} \int \frac{d \nu}{\nu^{2}+\frac{n^{2}}{4}}\left(\left(1-u_{3}\right)^{-\omega(\nu, n)}-1\right)|w|^{2 i \nu} \cosh n C$
$w \approx \sqrt{\frac{\tilde{u}_{1}}{\tilde{u}_{2}}} \quad$ and $\quad \cosh C=\frac{1-u_{1}-u_{2}-u_{3}}{2 \sqrt{u_{1} u_{2} u_{3}}} \quad$ and $\quad \omega(0,1)=-E_{2}=\frac{\lambda}{\pi^{2}}(2 \ln 2-1)$
Possible interpretation: $\quad \nu_{\text {saddle }}=i \frac{\sqrt{\lambda}}{\sqrt{2} \pi},-\omega\left(\nu_{\text {saddle }}, 0\right)=\frac{\sqrt{\lambda}}{2 \pi} e_{2}$

Conclusions

Scattering amplitudes within AdS/CFT:
Weak coupling:

- identify corrections to BDS: remainder function
- Regge limit helps: analytic structure, integrability

Strong coupling (leading order):

- Set of nonlinear equations - - -equations determine the remainder function for $\mathrm{n} \geq 6$
- First attempt to solve these equations ($n=6$):

Regge limit simplifies solving the equations (analytic solutions)

- new piece after analytic continuation: excited state in TBA
- matches the structure at weak coupling (?)

Next steps:

- generalization to more legs (larger n): more excited TBA states
- connection with collinear limit (OPE expansion)

