Power corrections in PV-DIS

Andrei Belitsky ASU

Outline

- PV DIS
- Cahn-Gilman asymmetry
- Corrections to CG
- Twist-4
- Nucleon light-cone wave functions
- Estimates

PV-DIS

$$
\sin ^{2} \theta_{W}=0.20 \pm 0.03
$$

- Probe of PV weak neutral current in SM
- Precise measurement of the Weinberg angle
- Tool to measure flavor and isospin dependence of nucleon PDFs
- Access New Physics (NP)

Standard and New Physics

$$
C_{1 \alpha}=2 g_{A}^{e} g_{V}^{\alpha}
$$

$C_{2 \alpha}=2 g_{V}^{e} g_{A}^{\alpha}$

$\mathcal{L}_{\mathrm{PV}}=\frac{G_{F}}{\sqrt{2}}\left[\bar{e} \gamma^{\mu} \gamma_{5} e\left(C_{1 u} \bar{u} \gamma_{\mu} u+C_{1 d} \bar{d} \gamma_{\mu} d\right)+\bar{e} \gamma^{\mu} e\left(C_{2 u} \bar{u} \gamma_{\mu} \gamma_{5} u+C_{2 d} \bar{d} \gamma_{\mu} \gamma_{5} d\right)\right]$

- Measurement of weak charges

$$
g_{V, A}^{f}=Q_{w f}^{L} \pm Q_{w f}^{R} \quad Q_{w, f}^{\alpha}=T_{3}\left(f_{\alpha}\right)-Q(f) \sin ^{2} \theta_{W}
$$

- And their deviation due to New Physics

$$
C_{1 \alpha}=2 g_{A}^{e} g_{V}^{\alpha}+\delta C_{1 \alpha} \quad C_{2 \alpha}=2 g_{V}^{e} g_{A}^{\alpha}+\delta C_{2 \alpha}
$$

Current info on Cs

from Reimer '10 (DIS 2010)

Cahn-Gilman asymmetry

- All hadronic effects cancel in the asymmetry on deuteron (parton model = twist-two):

$$
A_{L R}=\frac{G_{F} Q^{2}}{2 \sqrt{2} \pi \alpha} \frac{3}{5}\left[\left(2 C_{1 u}-C_{1 d}\right)+\left(2 C_{2 u}-C_{2 d}\right) \frac{1-(1-y)^{2}}{1+(1-y)^{2}}\right] \simeq 10^{-4} Q^{2}\left[\mathrm{GeV}^{2}\right]
$$

- Hadronic effects manifest themselves as small corrections to the Cahn-Gilam formula

Correcting CG asymmetry

$$
\begin{aligned}
& A_{L R}=-\frac{G_{F} Q^{2}}{2 \sqrt{2} \pi \alpha} \frac{3}{5}\left[\tilde{a}_{1}+\tilde{a}_{2} \frac{1-(1-y)^{2}}{1+(1-y)^{2}}\right] \\
& \tilde{a}_{k}=-\left(2 C_{k u}-C_{k d}\right)\left[1+R_{j}(\mathrm{NP})+R_{j}(\mathrm{CSV})+R_{j}(\mathrm{TMC})+R_{j}(\mathrm{HT})\right]
\end{aligned}
$$

- In attempt to measure NP, all other corrections to CG have to be under theoretical control
- Alternatively, precision PV-DIS can be used to probe subtle hadronic physics effects
- Precision measurements over wide range of kinematics could potentially disentangle different effects

Asymmetry: exactly

$$
\left.A_{L R}=-\frac{G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha} g_{A}^{e} Y_{1} \frac{F_{1}^{\gamma Z}}{F_{1}^{\gamma}}+g_{V}^{e} Y_{3} \frac{F_{3}^{\gamma Z}}{F_{1}^{\gamma}}\right]
$$

- Sources of hadronic and perturbative effects:

$$
\left.\begin{array}{l}
Y_{1}=\left(\frac{1+R^{\gamma Z}}{1+R^{\gamma}}\right) \frac{1+(1-y)^{2}-y^{2}\left[1-r^{2} /\left(1+R^{\gamma Z}\right)\right]-2 x y M / E}{1+(1-y)^{2}-y^{2}\left[1-r^{2} /\left(1+R^{\gamma}\right)\right]-2 x y M / E} \xrightarrow{C G} \xrightarrow{C} \tag{1}\\
Y_{3}=\left(\frac{r^{2}}{1+R^{\gamma}}\right) \frac{1}{1+(1-y)^{2}-y^{2}\left[1-r^{2} /\left(1+R^{\gamma}\right)\right]-2 x y M / E} \\
R^{\gamma(\gamma Z)}=\left(1+\frac{4 x^{2} M^{2}}{Q^{2}}\right) \frac{F_{2}^{\gamma(\gamma Z)}}{2 x F_{1}^{\gamma(\gamma Z)}}-1
\end{array} \quad \frac{C G}{1+(1-y)^{2}}\right)
$$

- CG (=parton-model) limit yields hadronic-free result

$$
\frac{F_{1}^{\gamma Z}}{F_{1}^{\gamma}} \rightarrow-\frac{3}{5}\left(2 C_{1 u}-C_{1 d}\right)
$$

Strong corrections

- Higher order correction in strong coupling

$$
R^{\gamma(\gamma Z)} \sim O\left(\alpha_{s}\right)
$$

- Target mass effects (important at large-x)

$$
\xi=2 x /\left(1+\sqrt{1+4 x^{2} M^{2} / Q^{2}}\right)
$$

- Charge-symmetry violation (x-dep., Q^{2}-indep.)

$$
\delta u=u_{p}-d_{n} \quad \delta d=d_{p}-u_{n}
$$

- Dynamical higher twists (x-dep., Q^{2}-dep.)

JLab precision measurements

Focus: detection
of physics beyond
Standard Model

- PV program:
- Moller

- QWeak (elastic scattering): $C_{1 q}$
- Hall C (baseline equipment): $C_{2 q}$
- SoLID (Solenoidal Large Intensity Device) PV-DIS: $C_{2 q}$

JLab PV-DIS experiments

- HallA@6GeV [PR-08-011]
- Kinematics:

$$
Q^{2}=1.1,1.9 \mathrm{GeV}^{2}
$$

- Accuracy:

$$
\delta A_{d} / A_{d}=2.52 \%(2.11 \%)[\text { tot.(stat.) }]
$$

- HallC@12GeV [PR12-07-102]
- Kinematics:

$$
Q^{2}=3.3 \mathrm{GeV}^{2}, \quad\langle x\rangle=0.34
$$

- Accuracy:
$\delta A_{d} / A_{d}=0.5 \%(0.6 \%)$ [stat.(sys.)]
- HallA-SoLID @ 12GeV

Twist-four corrections

$$
\sigma_{L}-\sigma_{R} \sim W_{u d}
$$

Asymmetry is determined by the hadronic tensor

$W_{u d}^{\mu \nu}(p, q)=\operatorname{Im}\left[\frac{i}{4 \pi M_{D}} \int d^{4} z e^{i q \cdot z}\langle D(p)| T\left\{\bar{u}(z) \gamma^{\mu} u(z) \bar{d}(0) \gamma^{\nu} d(0)+(u \leftrightarrow d)\right\}|D(p)\rangle\right]$
LC OPE starts at twist-four

Twist-four correction to CG asymmetry

$$
R_{1}^{\mathrm{tw}-4}=\frac{1}{Q^{2}} \frac{\alpha_{s} \pi}{5\left(1-\frac{20}{9} \sin ^{2} \theta_{W}\right)} \frac{x \tilde{\mathcal{Q}}_{D}(x)}{u_{D}(x)+d_{D}(x)}
$$

with twist-four "distribution"

$$
\langle D| \mathcal{Q}(z)|D\rangle=i \int_{-1}^{1} d x e^{2 i(p \cdot z) x} \tilde{\mathcal{Q}}_{D}(x)
$$

LCWF

$$
|p,+\rangle=|p,+\rangle_{u u d}+|p,+\rangle_{u u d g}+\ldots
$$

- Three-quark ($q q q$) component
$|p,+\rangle_{3 q}=-\frac{\epsilon^{i j k}}{\sqrt{6}} \int[\mathcal{D} X]_{3} \Psi_{123}^{(0)}(X) \times\left(u_{i \uparrow}^{\dagger}(1) u_{j \downarrow}^{\dagger}(2) d_{k \uparrow}^{\dagger}(3)-u_{i \uparrow}^{\dagger}(1) d_{j \downarrow}^{\dagger}(2) u_{k \uparrow}^{\dagger}(3)\right)|0\rangle$

Bolz-Kroll form:

$\Psi_{123}^{(0)}=\frac{f_{N}}{4 \sqrt{6}} \phi\left(x_{1}, x_{2}, x_{3}\right) \Omega_{3}\left(a_{3}, x_{i}, \boldsymbol{k}_{\perp i}\right)$
Diehl et al.'98
$\Omega_{N}\left(a_{N}, x_{i}, \boldsymbol{k}_{\perp i}\right)=\frac{\left(16 \pi^{2} a_{N}^{2}\right)^{N-1}}{x_{1} x_{2} \ldots x_{N}} \exp \left[-a_{N}^{2} \sum_{i} \boldsymbol{k}_{\perp i}^{2} / x_{i}\right]$

$$
\begin{aligned}
& \left\langle\boldsymbol{k}_{\perp}\right\rangle=411 \mathrm{MeV} \\
& a_{3}=0.75 \mathrm{GeV}^{-1}
\end{aligned}
$$

Proton Form Factor
$\Phi_{3}(x)=60 x_{1} x_{2} x_{3}\left(1+3 x_{1}\right)$

Probability of $3 q$ state in the nucleon:

$P_{3 q}=\frac{435}{112} f_{N}^{2} \rho_{3} \simeq 0.17$

LCWF (cont'd)

- Three-quark-gluon ($q q q G)$ component
$\left.|p,+\rangle_{u u d g_{\downarrow}}=\epsilon^{i j k} \int[\mathcal{D} X]_{4} \Psi_{1234}^{\downarrow}(X) a_{\downarrow}^{a, \dagger}(4)\left[t^{a} u_{\uparrow}(1)\right]_{i}^{\dagger} u_{j \uparrow}^{\dagger}(2)\right) d_{k \uparrow}^{\dagger}(3)|0\rangle$
$|p,+\rangle_{u u d g^{\uparrow}}=\epsilon^{i j k} \int[\mathcal{D} X]_{4}\left\{\Psi_{1234}^{\dagger}(1)(X)\left[t^{a} u_{\downarrow}(1)\right]_{i}^{\dagger}\left(u_{j \uparrow}^{\dagger}(2) d_{k \downarrow}^{\dagger}(3)-d_{j \uparrow}^{\dagger}(2) u_{k \downarrow}^{\dagger}(3)\right) a_{\uparrow}^{a, \dagger}(4)\right.$ $\left.+\Psi_{1234}^{\uparrow(2)}(X) u_{i \downarrow}^{\dagger}(1)\left(\left[t^{a} u_{\downarrow}(2)\right]_{j}^{\dagger} d_{k \uparrow}^{\dagger}(3)-\left[t^{a} d_{\downarrow}(2)\right]_{j}^{\dagger} u_{k \uparrow}^{\dagger}(3)\right) a_{\uparrow}^{a, \dagger}(4)\right\}|0\rangle$

Bolz-Kroll form:

$\Psi_{1234}=\frac{1}{\sqrt{2 x_{4}}} \psi_{g}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \Omega_{4}\left(a_{g}, x_{i}, \boldsymbol{k}_{\perp i}\right)$
Models (leading conformal wave only):
$g \phi_{g}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-210 m_{N} \lambda_{1}^{g} x_{1} x_{2} x_{3} x_{4}^{2}$
$g \psi_{g}^{(i)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-105 m_{N}\left(\lambda_{2}^{g} \pm \lambda_{3}^{g}\right) x_{1} x_{2} x_{3} x_{4}^{2}$
Probabilities of $3 q G$ state in the nucleon:

$$
P_{g^{\downarrow}}=\frac{35}{8 g^{2}} m_{N}^{2} \rho_{4}\left(\lambda_{1}^{g}\right)^{2} \simeq 0.15 \quad \quad P_{g^{\uparrow}}=\frac{105}{16 g^{2}} m_{N}^{2} \rho_{4}\left[\left(\lambda_{2}^{g}\right)^{2}+\left(\lambda_{3}^{g}\right)^{2}\right] \simeq 0.185
$$

Twist-four corrections

- $q q q G / q q q:$
$\left[\widetilde{Q}_{p}(x)\right]_{\text {tot }} /\left[\widetilde{Q}_{p}(x)\right]_{q q q} \sim(1-x)^{3}$
- Large-x behavior:
$\left[\widetilde{Q}_{p}(x)\right]_{\text {tot }} /\left.u_{p}(x)\right|_{x \rightarrow 1} \sim \log (1-x)$

Target mass effects

- Proton asymmetry is enhanced by $\sim 8 \%$
- Less then 1% effect on deuteron asymmetry

Charge-symmetry violation

- Sensitivity to CSV $\tilde{a}_{1}=\tilde{a}_{1}^{(0)}+\delta^{\mathrm{CSV}} \tilde{a}_{1}$

$$
\frac{\delta^{\mathrm{CSV}} \tilde{a}_{1}}{\tilde{a}_{1}^{(0)}}=\left(-\frac{3}{10}+\frac{1}{2} \frac{2 C_{1 u}+C_{1 d}}{2 C_{1 u}-C_{1 d}}\right) \frac{\delta u-\delta d}{u+d}
$$

MRST'04

$$
\delta u-\delta d \simeq 2 \kappa(1-x)^{4} \sqrt{x}
$$

Conclusions

- PV-DIS on deuteron is arguably a clean(er) probe for NP
- Future experimental capabilities will hopefully allow to disentangle various effects
- LR asymmetry on deuteron is sensitive to single twist-4 quark matrix element
- LCWF estimates demonstrate boarderline effect: it has to be included to improve sensitivity to NP

