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PV-DIS

Probe of PV weak neutral current in SM

Precise measurement of the Weinberg angle

Tool to measure flavor and isospin dependence 
of nucleon PDFs 

Access New Physics (NP)
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Figure 1: The current and future knowledge of the coupling constants C1q (Left) [14, 11, 9, 12] and C2q

(Right) is shown. In both figures, the green diagonal band shows the expected uncertainty from the PVDIS
program at JLab, and the red ellipse shows the results from the PDG’s best fit [13]. Note that in the C2 plane,
the ellipse covers an area much larger than the entire graph which was plotted on the same scale as the C1q

couplings for comparison.

Table 1: This table shows the dependence of “new physics”, CSV and Higher Twist on the kinematic
variables xBj, Y (see Eq. 2) and Q2.

xBj Y Q2

New Physics No Yes No
CSV Yes No No
Higher Twist Yes No Yes

Outside of these kinematics, additional hadronic effects may also contribute. These include charge
symmetry violation (CSV) at the quark level and higher-twist effects. The dependence of Ad

DIS to
these affects as a function of kinematic variables is shown in Tab. 1.

Charge symmetry violation in deuterium would manifest itself as an xBj-dependent but Q2-
independent difference in Ad

DIS from the predictions of Eq. 2. Recently, non-zero CSV effects have
been allowed in some parton distribution fits. These fits tend to favor a small amount of CSV [15].
In addition, recent models of charge symmetry also tend to favor a similar, small CSV [16]. Based
on these estimates size of the effect on Ad

DIS should be approximately 0.25% to 0.5%.
The small amount of theoretical work which has been completed has shown that the effects of

higher-twist on Ad
DIS are small, but possibly not negligible [17]. At the same time, there is currently

no experimental information on the contribution of higher-twist to parity violating observables.
An interesting aspect of higher-twist contributions in PVDIS is that only quark-quark correlations
can will produce an observable effect in the first term in Eq. 2. PVDIS appears to be the only
experimentally accessible to this important class of higher-twist terms. (For a summary of a recent
workshop on higher-twist effects in PVDIS, please see Appdx. B in Ref. [8].)
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Cahn-Gilman asymmetry

All hadronic effects cancel in the asymmetry on 
deuteron (parton model = twist-two):

Hadronic effects manifest themselves as small 
corrections to the Cahn-Gilam formula
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Correcting CG asymmetry

In attempt to measure NP, all other corrections to CG 
have to be under theoretical control

Alternatively, precision PV-DIS can be used to probe 
subtle hadronic physics effects

Precision measurements over wide range of 
kinematics could potentially disentangle different 
effects 
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Asymmetry: exactly

2C2u − C2d � 0.04

ALR = − GFQ2
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Strong corrections
Higher order correction in strong coupling

Target mass effects (important at large-x)

Charge-symmetry violation (x-dep., Q2-indep.)

Dynamical higher twists (x-dep., Q2-dep.)
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JLab precision measurements

PV program:

Moller

QWeak (elastic scattering):

Hall C (baseline equipment):

SoLID (Solenoidal Large Intensity Device) PV-DIS:

Precision Era

• 12 GeV program at JLab to begin 2014:

- Moller
- Qweak
- SOLID, 6 GeV, and 12, GeV experiments

• The focus has shifted from the SM WNC theory to detecting 
hints of physics beyond the SM.
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Figure 1.3: Current and proposed weak mixing angle measurements vs. the energy
scale µ. The three future measurements are located at appropriate µ values but the
vertical locations are arbitrary.

An additional advantage of the proposed measurement, which was not relevant
to the discussion above, is that it would be undertaken at a low 4-momentum transfer
scale, in contrast to the SLC and CERN measurements, both of which were carried
out at the top of the Z0 resonance. This difference in energy scales enhances the
sensitivity of the proposed measurement dramatically to as yet undiscovered super-
weak interactions at the TeV scale, which we discuss in the next section.

A convenient way to track various electroweak measurements is to use sin2 θW

as a bookkeeping parameter. As mentioned earlier in the discussion of the theoret-

    
(J. Erler, M. Ramsey-Musolf)

Focus: detection 
of physics beyond
Standard Model

C1q

C2q

C2q



JLab PV-DIS experiments
HallA@6GeV [PR-08-011]

Kinematics:

Accuracy: 

HallC@12GeV [PR12-07-102]
Kinematics:

Accuracy:

HallA-SoLID @ 12GeV

δAd/Ad = 2.52%(2.11%) [tot.(stat.)]

δAd/Ad = 0.5%(0.6%) [stat.(sys.)]

Q2 = 3.3GeV2, �x� = 0.34
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Figure 10: Projected data with errors for the proposed experiment.

effect depends on strongly on x but is independent of y, in contrast to physics
beyond the Standard Model. This signature will be a powerful method to
demonstrate that CSV is indeed the explanation for any deviation from the
prediction of Equation 12.

7.2 Fitting the PVDIS Data to Untangle the Physics

The observation of CSV is possible with our apparatus only if the effect
varies with x. An x-independent CSV effect would be indistinguishable from
a change in the C1’s. It is quite natural, however, to expect that the x-
dependence is similar to that shown in Figure 9, and we will make that
assumption in our further discussion.

If negligible Q2 and x dependence is observed, we will have to make
plausible assumptions about the form of the possible hadronic effects in order
to untangle the various effects of hadronic and electroweak physics. We plan
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Projected data with errors for SOLID     
(K.Kumar, P. Souder)

• SOLID plans to measure the asymmetry at a percent level 
   over a wide kinematic range:

Q2 = 1.1, 1.9 GeV2 �x� = 0.3
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Twist-four corrections

Wµν
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Asymmetry is determined by the hadronic tensor

LC OPE starts at twist-four

Twist-four correction to CG asymmetry

Balitsky & Braun ’89

with twist-four “distribution”
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Three-quark (qqq) component

LCWF
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Figure 3: Parton distributions obtained from the N = 3, 4, 5 Fock states (P3 = 0.17,
P4 = P5 = 0.1). The model results are compared to the 1995 GRV LO parametrisation [28]
at a factorisation scale of 1 GeV. For the sea distributions we sum over the three flavours.
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size parameter for all Fock states is unrealistic: as we saw before the valence Fock state
is rather compact corresponding to about a half of the charge radius. Consequently the
higher Fock states have to develop the full radius. For the purpose of evaluating the form
factors from Eqs. (66) and (68) we take a3 = a4 = a5 as before and put as a simple ansatz
aN = 1.3 a3 for N > 5, where the factor 1.3 is adjusted to the data for F1 p. A substantially
larger factor would strongly suppress the higher Fock state contributions, a smaller one
would lead to large contributions exceeding the form factor data.17 Then we set

∑

N>5

q(N)
a (x) = qa(x) −

∑

N=3,4,5

q(N)
a (x) , (70)

where qa is taken from the GRV parametrisation [28] and the three lowest Fock state
contributions from our model. In this way we account for the sum of all Fock states in
a phenomenological way. The results obtained in this manner are confronted to the data
[40, 41] in Fig. 5.
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Figure 5: Electromagnetic form factor of the proton and neutron using the model parton
distributions for the valence Fock state only, the N = 3, 4, 5 Fock states, and all Fock
states on the basis of the GRV parametrisation at the factorisation scale 1 GeV [28], cf.
(70). Data for F1 and GM are taken from [40, 41].

For large values of the momentum transfer our simple model agrees very well with
the data, i.e. the dimensional counting behaviour is well mimicked by soft physics. Below
about 10 GeV2 the model is not perfect, deviations of the order of 20%, i.e. of the order
of m2/(−t), are to be noticed. Such corrections are to be expected in our model, where
proton spin-flip effects and orbital angular momentum in the wave functions are not taken

17We note at his point that in contrast to our ansatz a transverse size parameter a = 0.84 GeV−1

common to all Fock states was used in [17].
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Twist-four corrections
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and the overall normalization constant being

c3q = P3q
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. (62)
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Performing the final integration is straightforward and

one can obtain a closed analytical form of �Qp(x) (how-

ever, the resulting expression is quite long and in order to

save space it will not be displayed here). The twist-four

distribution is displayed in the upper panel of Fig. 2. The

dashed and dotted lines correspond to its three-quark and

quark-gluon components, respectively. Both of them ex-

hibit a global minimum at x � 0.4. In the lower panel

of Fig. 2, we blow up its high-x region to demonstrate

the node structure of the three-quark contribution. As

x → 1 the four-parton quark-gluon component of �Qp(x)
is suppressed by the decay factor (1−x)3 with respect to

the three-quark component. At the same time the twist-

four distribution �Qp(x) is enhanced in comparison with

the twist-two parton densities calculated within the same

model, �Qp(x)/up(x) ∼ log(1− x) for x → 1.

Our predictions for the twist-four correction Rtw−4
1 to

the Cahn- Gilman formula is shown in Fig. 3. In order to

make an comparison with the results of Ref. [14] easier,

we display Rtw−4
1 for Q2 = 4, 6, 8, 10, 12GeV

2
. It turns

out that our prediction for Rtw−4
1 is roughly twice as

large as that of Ref. [14] with the minimum of the func-

tion being slightly shifted towards lower x� (i.e., from

x� � 0.7 to x� � 0.6). Note that the x-dependence of the

twist-four contribution is much better determined than
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1 (x)

FIG. 3: The estimate Rtw−4
1 as a function of the Bjorken x for

different values of Q2. The curves from the bottom to top cor-
respond to the values Q2 = 4, 6, 8, 10, 12GeV2, respectively.
The experimental accuracy of SoLID is ±0.005 for Rtw−4

1 at
an average Q2 of 3.3 GeV2 and �x� = 0.34.

its normalization: The three-quark component of the nu-

cleon wave functions is constrained by the existing exper-

imental data (parton densities and nucleon form factor,

[24]), but the ansatz (55) for the quark-gluon wave func-

tions has to be regarded as an exploratory estimate (see

Ref. [26] for a discussion). Nevertheless, since for large

x� the contribution due to the quark-gluon components

tot
qqq

qqqG [ �Qp(x)]tot/[ �Qp(x)]qqq ∼ (1− x)3

[ �Qp(x)]tot/up(x)
���
x→1

∼ log(1− x)

qqqG/qqq:

Large-x behavior:
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FIG. 3. An illustration of the breaking of the RγZ = Rγ induced by the target mass and per-

turbative corrections. We plot a ratio RγZ/Rγ as obtained in proton scattering. The dot-dashed

curve is generated in the absence of TMCs but at NLO, whereas the solid (OPE), dashed (1/Q2

expansion), and dotted (CF) curves include the nucleon mass effect as well.
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FIG. 4. Similar to Figure 3, but for RγZ/Rγ as determined in electron-deuteron scattering. Here,

the nature of the deuteron as an iso-scalar target softens the breaking of RγZ = Rγ . The conven-

tions for the linestyles are identical to Figure 3.

With some understanding of the behavior of RγZ and Rγ under TMCs, we wish to perform

a similar calculation in the full, parity-violating asymmetry APV . As before, we consider

a ratio of corrected/uncorrected asymmetries in the various prescriptions; the result of this

calculation at low and intermediate Q2 is given in Figure 5. For low Q2, we note a relative

similarity among the various prescriptions to intermediate x ≈ 0.6 at which the effect of

TMCs is ≈ 6%; as one moves to largest x, the OPE and CF treatments obtain the greatest

effect (≈ 8%), whereas the O(1/Q2) expansion of the LT OPE falls to zero. These effects
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FIG. 5. The mass effect in the parity-violating asymmetry ATMC/A(0) at low and intermediate Q2.

We plot the mass effect in our three primary prescriptions – the OPE (solid), O(1/Q2) expansion

(dashed), and CF (dotted) treatments.

are quickly suppressed as one evolves to intermediate Q2 = 10 GeV2 for which the TMCs

are ≤ 2%, and the O(1/Q2) expansion agrees with the other prescriptions to higher x. This

observation is consistent with the general message for experimental efforts: though mass

effects can be sizable for lower values of Q2, they may be brought into considerable control by

moving to modestly larger Q2 at which the computed TMCs exhibit less model-dependence.

It is natural to extend this calculation to the deuteron, for which the property of iso-

scalarity diminishes flavor-dependence as previously noted; the resulting asymmetry is de-

pendent only on the electroweak couplings and the kinematical parameters Y1, Y3 [9]:

APV = −
(

3GFQ2

10
√
2πα

)

[Y1 (2C1u − C1d) + Y3 (2C2u − C2d) ] , (12)

where the C1u, C1d, etc are coupling constants. The disappearance of the explicit dependence

of the deuteron asymmetry on SFs leads to a very small sensitivity to TMCs: generally, even

at small Q2, the mass effect in the deuteron is sub-percent and model-independent in the

sense that the various prescriptions outlined here yield similarly small corrections. This is

promising for experimental efforts that aim (for instance) to precisely extract the electroweak

coupling constants from electron-deuteron scattering events.

Lastly, as the SF ratio Rn/p = F n
2 /F

p
2 is sensitive to the behavior of the PDF ratio d/u,

it has attracted substantial interest as a means of constraining various quark models. This

is apparent if we observe, for example, that if the large-x ratio d/u → 0, then the SF ratio

behaves as Rn/p → −1
2C1d/C1u ≈ 0.9. Given this interest in the phenomenology of Rn/p
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Proton asymmetry is enhanced by ~8%

Less then 1% effect on deuteron asymmetry
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Hobbs & Melnitchouk’08
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FIG. 2: The relative magnitudes of R1(HT ) and R1(CSV ) as a function of the Bjorken-x variable

for a representative value of Q
2
= 6 GeV

2
. using δu−δd = 2κf(x) where f(x) = x

−1/2
(1−x)

4
(x−

0.0909) for κ = −0.8. The top curve and bottom curves give R1(CSV ) for the choices κ = −0.8

and κ = 0.65 respectively in Eqs.(75) and (76). The middle curve is the MIT Bag Model estimate

for R1(HT ).

bands for the possible CSV correction. In order for a measurement of the Y1-term to probe

this scenario, one would need an experimental sensitivity of ∼ 0.2% with knowledge of the

CSV and HT corrections at a similar or better level theoretical precision. On the other

hand, the planned 4% measurement of the proton’s weak charge by the Q-Weak experiment

at Jefferson Lab will probe the same scenario for a one TeV Zχ. A similar comparison with

other scenarios suggests that for a determination of R1(new) to be competitive with the

Q-Weak experiment as a probe of new physics3, one would need a combined experimental

and theoretical uncertainty of better than ∼ 0.5%. At present, then, it appears that a study

3
We note that the RHS of Eq. (45) of Ref. [43] contains an error and should be multiplied by a factor of

eight. As a result, the mass bound scale factor for δ̃1 in Table I should be multiplied by 2
√
2. The same

factor should be applied to the last entries in Tables II-IV.

R1(tw − 4)[Mantry et al.]

R1(tw − 4)[this work]

Q2 = 6GeV2
M
R
S
T

� 0
4

Sensitivity to CSV

δCSVã1

ã(0)1

=

�
− 3

10
+

1

2

2C1u + C1d

2C1u − C1d

�
δu− δd

u+ d

ã1 = ã(0)1 + δCSVã1

MRST’04

from Mantry, Ramsey-Musolf ’11

see also Hobbs & Melnitchouk’08

δA
d
/A

d

δu− δd � 2κ(1− x)4
√
x



Conclusions

PV-DIS on deuteron is arguably a clean(er) probe 
for NP

Future experimental capabilities will hopefully 
allow to disentangle various effects

LR asymmetry on deuteron is sensitive to single 
twist-4 quark matrix element

LCWF estimates demonstrate boarderline effect: 
it has to be included to improve sensitivity to NP  


