NUMERICAL ANALYSIS IN BK EVOLUTION WITH IMPACT PARAMETER

Jeffrey Berger

Contents

\square BK with impact parameter
\square General features of solution with impact parameter
\square Saturation scale and diffusion in impact parameter
\square Corrected kernel for partial higher-order effects
\square Running coupling
\square Differences in prescriptions for α_{s}
\square Regularization dependence
\square Comparison with data

- F_{2} and F_{L}

Dipole Model

Photon splits into a color dipole of size r which interacts at impact parameter b with the target (nucleon)

Color dipole interacts with partons of the target through gluon exchange
$N(r, b, Y)$ is the scattering amplitude of the dipole interaction
[A.H.Mueller, Nucl. Phys B415 373 (1994)]
\square This analysis is done in the context of the dipole model of small x scattering. In this regime the evolution of the amplitude can be represented as a dipole cascade.

The BK equation

$$
\frac{\partial N_{01}}{\partial Y}=\alpha_{s} \int d^{2} \boldsymbol{x}_{2} K\left[N_{02}+N_{12}-N_{01}-N_{02} N_{12}\right]
$$

\square Enforces unitarity in the amplitude $\quad N_{i j}=N\left(x_{i j}, b_{i j}, \vartheta_{i j}, Y\right)$
\square Parent dipole $x_{01}=x_{0}-x_{1}$ splits into two dipoles of x_{02} and x_{12}
\square Splitting is determined by the kernel $K=K\left(x_{01}, x_{02}, x_{12}\right)$
\square Impact parameter $b_{i j}=\frac{1}{2}\left(x_{i}+x_{j}\right)$ only dependence is in the amplitude
\square Angle $\vartheta_{i j}$ is the angle between $x_{i j}$ and $b_{i j}$
\square Usually the amplitude is assumed uniform in impact parameter, here we take the full dependences of the amplitude on impact parameter into account

Features of BK with impact parameter

\square Leading order kernel used
\square Coupling fixed at $\frac{N_{c} \alpha_{s}}{\pi}=0.1$

$$
K=\frac{d z}{z} \frac{N_{c} \alpha_{s}}{2 \pi^{2}} \frac{x_{01}^{2}}{x_{02}^{2} x_{12}^{2}}
$$

Large contributions at $x=2 b$

Nontrivial angular dependence.

Peak of the amplitude occurs when $x=2 b$ and $x \| 2 b$
\square This behavior can be extracted from the representation in terms conformal eigenfunctions

Impact parameter tails

Dipole Size: $0.110 \mid \cos ($ phi): $0.0 \mid$ Delta $Y: 5.0 \mid \max Y: 30.0$

\square Power-like tails are generated during the evolution
\square Initial impact parameter dependence $N=1-e^{-x^{2} e^{-b^{2}}}$ is quickly forgotten
\square There is a clear 'ankle' where dependences of the amplitude on impact parameter become power-like

Towards higher order

LO (solid) vs Modified (dashed)
Impact parameter: $1.000 \mid \cos ($ phi) $): 0.0 \mid$ DeltaY: $10.0 \max Y: 50.0$

$$
\begin{aligned}
& K=\frac{d z}{z} \frac{N_{c} \alpha_{s}}{2 \pi^{2}} \frac{z}{x_{01}^{2}}\left[K_{1}^{2}\left(\frac{x_{02}}{x_{01}} \sqrt{z}\right)+K_{1}^{2}\left(\frac{x_{12}}{x_{01}} \sqrt{z}\right)\right. \\
&\left.-\frac{2 x_{02} \cdot x_{12}}{x_{02} x_{12}} K_{1}\left(\frac{x_{02}}{x_{01}} \sqrt{z}\right) K_{1}\left(\frac{x_{12}}{x_{01}} \sqrt{z}\right)\right]
\end{aligned}
$$

[L. Motyka and A. M. Stasto, Phys. Rev. D79, 085016 (2009)]
This kernel reduces to the LO kernel at large rapidies or when $x_{01} \gg x_{02}, x_{12}$
\square Kinematical cut owing to a modification in the energy denominator
\square The modified kernel slows the evolution by approximately 30\%
\square The modified kernel has almost no affect when the impact parameter dependence is neglected due to the saturation of all large dipole sizes.

Saturation Scale

$$
\left\langle N\left(r=Y_{\left.Q_{s}(b, r), b, \theta, Y\right)}\right)=0.5\right.
$$

Saturation scale was found to have the same impact parameter dependence at large b which leads us to a factorized form

$$
\begin{aligned}
& \text { Which leaas us to a actacorzec form } \\
& Q_{s}^{2}(b, Y)=Q_{0}^{2} e^{\bar{\alpha}_{3} \lambda_{s}} S(b) \quad S(b) \sim \frac{1}{b^{4}}
\end{aligned}
$$

	LO	Modified
λ_{s}	4.4	$3.6 \bar{\alpha}_{s}=0.1 \quad\left(2.5 \bar{\alpha}_{s}=0.2\right)$

\square Saturation is when the parton density becomes large and recombination effects become important
\square Defined here as the amplitude becomes large and the nonlinear term becomes important.
\square Numbers are consistent with analytical estimates
[S. Munier and R. B. Peschanski, Phys. Rev. D69, 034008 (2004)]
[A. H. Mueller and D. N. Triantafyllopoulos, Nucl. Phys. B640, 331]
Jeffrey Berger - The Pennsylvania State University DIS 2011

A Second Saturation Scale

$$
\left\langle N\left(r=1 \mathscr{Q}_{\alpha_{u}}(b, Y), b, \theta, Y\right)\right\rangle=0.5
$$

Equation has two solutions now! Same Parameterization

$$
Q_{s L}^{2}(b, Y)=Q_{0 L}^{2} e^{-\bar{\alpha} \lambda_{\Delta l} Y} S_{L}(b)
$$

	LO	Modiffed
$\lambda_{s L}$	6.0	$5.8 \bar{\alpha}_{s}=0.1 \quad\left(5.2 \bar{\alpha}_{s}=0.2\right)$

\square Larger dipole sizes have slightly different saturation scale exponents
\square More thinking to be done on this result...

Diffusion in impact parameter

$$
\left\langle N\left(r, B_{s}=b, \theta, Y\right)\right\rangle=0.5
$$

Growth of the black disk corresponds to growth of the cross section

$$
B_{s}^{2}(r, Y)=B_{s 0}^{2} e^{\bar{\alpha}_{s} \lambda_{s B} Y} F(r) \quad \sigma \approx e^{2 \lambda_{s B} Y}
$$

	LO	Modified
$\lambda_{s B}$	2.6	$2.2 \bar{\alpha}_{s}=0.1 \quad\left(2.0 \bar{\alpha}_{s}=0.2\right)$

\square Increasing energy causes the dense region of the dipole cascade to expand in impact parameter space
\square Size of the dense or 'black' region characterized by a radius of this black disk
\square Fast increase in is partially due to the lack of scale in the solution currently

Running coupling

\square Several different prescriptions for running coupling
\square Balitsky

$$
K=\frac{d z}{z} \frac{N_{c} \alpha_{s}\left(x_{01}^{2}\right)}{2 \pi^{2}}\left[\frac{x_{01}^{2}}{x_{02}^{2} x_{12}^{2}}+\frac{1}{x_{02}^{2}}\left(\frac{\alpha_{s}\left(x_{02}^{2}\right)}{\alpha_{s}\left(x_{12}^{2}\right)}-1\right)+\frac{1}{x_{12}^{2}}\left(\frac{\alpha_{s}\left(x_{12}^{2}\right)}{\alpha_{s}\left(x_{02}^{2}\right)}-1\right)\right]
$$

[1. Balitsky, Phys. Rev. D75, 014001 (2007)]

[Y. V. Kovchegov and H. Weigert, Nucl. Phys. A784, 188 (2007]
\square Parent Dipole $\quad K=\frac{d z}{z} \frac{N_{c} \alpha_{s}\left(x_{01}^{2}\right)}{2 \pi^{2}} \frac{x_{01}^{2}}{x_{02}^{2} x_{12}^{2}}$
\square Minimum Dipole $K=\frac{d z}{z} \frac{N_{c} \alpha_{s}\left(\min \left(x_{01}^{2}, x_{12}^{2}, x_{02}^{2}\right)\right)}{2 \pi^{2}} \frac{x_{01}^{2}}{x_{02}^{2} x_{12}^{2}}$

Results with running coupling

Miniumum Prescription (solid) vs Balitsky Prescription (dashed)

\square IR regularization of the kernel is important due to large dipole evolution
\square Balitsky's running coupling is well slower than the minimum dipole prescription

Adding mass parameter

\square Full cut with theta function

$$
K=\frac{d z}{z} \frac{N_{c} \alpha_{s}}{2 \pi^{2}} \frac{x_{01}^{2}}{x_{02}^{2} x_{12}^{2}} \theta\left(1 / m^{2}-x_{02}^{2}\right) \theta\left(1 / m^{2}-x_{12}^{2}\right)
$$

\square Splitting the theta function

$$
K=\frac{d z}{z} \frac{N_{c} \alpha_{s}}{2 \pi^{2}}\left[\frac{1}{x_{02}^{2}} \theta\left(1 / m^{2}-x_{02}^{2}\right)+\frac{1}{x_{12}^{2}} \theta\left(1 / m^{2}-x_{12}^{2}\right)-2 \frac{x_{02} \cdot x_{12}}{x_{02}^{2} x_{12}^{2}} \theta\left(1 / m^{2}-x_{12}^{2}\right) \theta\left(1 / m^{2}-x_{02}^{2}\right)\right]
$$

\square Bessel function cut

$$
K=\frac{d z}{z} \frac{N_{c} \alpha_{s} m^{2}}{2 \pi^{2}}\left[K_{1}^{2}\left(m x_{02}\right)+K_{1}^{2}\left(m x_{12}\right)-2 K_{1}\left(m x_{02}\right) K_{1}\left(m x_{12}\right) \frac{x_{02} \cdot x_{12}}{x_{02} x_{12}}\right]
$$

\square Running coupling with theta function

$$
K=\frac{d z}{z} \frac{N_{c} \alpha_{s}\left(x_{01}^{2}\right)}{2 \pi^{2}}\left[\frac{x_{01}^{2}}{x_{02}^{2} x_{12}^{2}}+\frac{1}{x_{02}^{2}}\left(\frac{\alpha_{s}\left(x_{02}^{2}\right)}{\alpha_{s}\left(x_{12}^{2}\right)}-1\right)+\frac{1}{x_{12}^{2}}\left(\frac{\alpha_{s}\left(x_{12}^{2}\right)}{\alpha_{s}\left(x_{02}^{2}\right)}-1\right)\right] \theta\left(1 / m^{2}-x_{12}^{2}\right) \theta\left(1 / m^{2}-x_{02}^{2}\right)
$$

\square Modified kernel with theta function

$$
K=\frac{d z}{z} \frac{N_{c} \alpha_{s}}{2 \pi^{2}} \frac{z}{x_{01}^{2}}\left[K_{1}^{2}\left(\frac{x_{02}}{x_{01}} \sqrt{z}\right)+K_{1}^{2}\left(\frac{x_{12}}{x_{01}} \sqrt{z}\right)-\frac{2 x_{02} \cdot x_{12}}{x_{02} x_{12}} K_{1}\left(\frac{x_{02}}{x_{01}} \sqrt{z}\right) K_{1}\left(\frac{x_{12}}{x_{01}} \sqrt{z}\right)\right] \theta\left(1 / m^{2}-x_{12}^{2}\right) \theta\left(1 / m^{2}-x_{02}^{2}\right)
$$

F_{2}

Fixed coupling kernels evolve too fast unless coupling is artificially low

Minimum dipole prescription is also too fast
\square The prescription by Balitsky for running coupling has unusual properties

- Slower than expected from the momentum space analysis
\square Extremely sensitive to the form of regularization of $\alpha_{s}\left(x^{2}\right)$
\square Closeness to the data should perhaps be regarded as accidental at this time

$F_{2} \& F_{L}$

$F_{\square} \square \ln$ general the slope is too steep to fit the data
2
\square Data is underestimated due to lack of contribution from large dipole sizes
\square Need a separate contribution due to these large,
F_{L} non-perturbative dipoles

$\square F_{L}$ data is not very discriminatory due to large error bars

Conclusions

\square Solving the BK equation with impact parameter is crucial - many features are left out otherwise!
$\square \mathrm{N} \rightarrow 0$ for large dipole sizes
\square Amplitude enhanced $a t x=2 b$ with peaks at $\cos (\theta)=+1,-1$
\square Power tails in impact parameter
\square Second wavefront develops evolving to larger dipole size
\square Running coupling prescriptions slow the evolution more than expected, bringing us surprisingly close to the data, however there is a large sensitivity to regularization as well as unexpected behavior.

More work to be done!

\square More kinematical constraints implemented at the kernel level.
\square Does this slow the evolution more and lead to a better fit of the data?
\square Exclusive diffractive production of J / ψ
\square Impact parameter dependence corresponds to momentum transfer
\square Numerical solution of full NLO Kernel?

Thank You

Special Thanks to : My advisor Anna Stasto as well as Henry Kowalski for discussions and use of his code and Emil Avsar for interesting discussions.

Saturation Scale - B dependence

\square Large impact parameters yield similar slopes with similar dependences

$$
\left\langle N\left(r=1 / Q_{s}(b, Y), b, \theta, Y\right)\right\rangle=0.5
$$

Saturation scale was found to have the same impact parameter dependence $a t$ large b which leads us to a factorized form

$$
Q_{s}^{2}(b, Y)=Q_{0}^{2} e^{\bar{\alpha}_{s} \lambda_{s} Y} S(b)
$$

Angular Dependence

\square Angular dependence only comes in when $x=2 b$
\square Enhancements when $\cos (\theta)=+1,-1$

Unusual slowness of the coupling

\square Naïve analysis leads us to believe the equivalence of the minimum dipole size coupling and Balitsky's
\square Numerical analysis reveals this not to be true

When one daughter dipole is small there are regions where one prescription dominates when $\cos (\theta)=+1$ [left] the minimum dipole size method dominates while when $\cos (\theta)=-1$ [right] the Balitsky prescription for running coupling dominates, however these regions are not equal in $B K$.

Surprising behaviors of Balitsky's kernel

Increasing the μ decreases the coupling but in the case of the Balitsky kernel this increases the amplitude

$$
\alpha_{s}\left(x^{2}\right)=\frac{1}{b \ln \left(\frac{1}{\Lambda^{2}}\left(\frac{1}{x^{2}}+\mu^{2}\right)\right)}
$$

Using a μ factor to regularize the coupling or a sharp cutoff was found to change the amplitude by much more than expected (a factor of 2 or more in some cases), indicating a great sensitivity to the specific form the coupling takes.

Impact Parameter is so importiant!

\square Impact parameter corresponds to momentum transfer, neglecting impact parameter is equivalent to setting momentum transfer $\rightarrow 0$
\square With BFKL this is self consistent
\square Only linear terms (two pomeron vertex) $\mathrm{P}=0$
$P=0$
\square This assumption with BK causes problems
\square Nonlinear term (three pomeron vertex)
\square Momentum transfer cannot stay zero without altering the interaction

Conformal Symmetry?

\square LO Kernel is conformally invariant
\square Expect evolution in small dipole and large dipole directions to be the same
\square Additional angular dependence? Numerics say no dice

\square Need full higher order corrections?

