NLO evolution of structure functions at small-x

Giovanni A. Chirilli

Lawrence Berkeley Laboratory

JLAB-Newport News, QCD-evolution, 08 - 09 April 2011

- Light-cone OPE versus OPE in color dipoles.
- High-energy scattering and Wilson lines formalism.
- Factorization in rapidity.
- NLO Photon Impact Factor: analytic result.
- Brief review of the LO and NLO BK equation.
- Triple Pomeron vertex through Wilson line formalism: planar (leading N_c) and non-planar (next to-leading N_c) contribution.
- Truncation of the Balitsky-hierarchy
- Conclusions and outlook.

Incoherent-vs-Coherent

Incoherent Interactions

Bjorken Limit

$$Q^2 \to \infty, \ s \to \infty$$

 $x_{\rm B} = \frac{Q^2}{s}$ fixed
resum $\alpha_s \ln \frac{Q^2}{\Lambda_{\rm QCD}}$

Incoherent-vs-Coherent

Incoherent Interactions

Coherent Interactions

Bjorken Limit

$$Q^2 \to \infty, \ s \to \infty$$

 $x_{\rm B} = \frac{Q^2}{s}$ fixed
resum $\alpha_s \ln \frac{Q^2}{\Lambda_{\rm QCD}}$

Regge Limit

$$Q^2$$
 fixed, $s \to \infty$
 $x_{\rm B} = \frac{Q^2}{s} \to 0$
resum $\alpha_s \ln \frac{1}{x_{\rm B}}$

 μ^2 - factorization scale (normalization point)

- $k_{\perp}^2 > \mu^2$ coefficient functions $k_{\perp}^2 < \mu^2$ matrix elements of light-ray operators (normalized at μ^2)

 μ^2 - factorization scale (normalization point)

 $k_{\perp}^2 > \mu^2$ - coefficient functions $k_{\perp}^2 < \mu^2$ - matrix elements of light-ray operators (normalized at μ^2) OPE in light-ray operators $(x - y)^2 \rightarrow 0$

$$T\{j_{\mu}(x)j_{\nu}(y)\} = \frac{(x-y)_{\xi}}{2\pi^{2}(x-y)^{4}} \Big[1 + \frac{\alpha_{s}}{\pi}(\ln(x-y)^{2}\mu^{2} + C)\Big]\bar{\psi}(x)\gamma_{\mu}\gamma^{\xi}\gamma_{\nu}[x,y]\psi(y) + \frac{\alpha_{s}}{2\pi^{2}(x-y)^{4}}\Big[1 + \frac{\alpha_{s}}{\pi}(\ln(x-y)^{2}\mu^{2} + C)\Big]\bar{\psi}(x)\gamma_{\mu}\gamma^{\xi}\gamma_{\nu}[x,y]\psi(y) + \frac{\alpha_{s}}{2\pi^{2}(x-y)^{4}}\Big[1 + \frac{\alpha_{s}}{\pi}(\ln(x-y)^{2}\mu^{2} + C)\Big]\bar{\psi}(x)\gamma_{\mu}\gamma^{\xi}\gamma_{\nu}[x,y]\psi(y)$$

$$[x,y] \equiv Pe^{ig\int_0^1 du (x-y)^{\mu}A_{\mu}(ux+(1-u)y)}$$
 - gauge link

 μ^2 - factorization scale (normalization point)

 $k_{\perp}^2 > \mu^2$ - coefficient functions $k_{\perp}^2 < \mu^2$ - matrix elements of light-ray operators (normalized at μ^2) Renorm-group equation for light-ray operators \Rightarrow DGLAP evolution of

parton densities

$$(x-y)^2 = 0$$

$$\mu^2 \frac{d}{d\mu^2} \bar{\psi}(x)[x,y]\psi(y) = K_{\text{LO}}\bar{\psi}(x)[x,y]\psi(y) + \alpha_s K_{\text{NLO}}\bar{\psi}(x)[x,y]\psi(y)$$

η - rapidity factorization scale

Rapidity Y > η - coefficient function ("impact factor") Rapidity Y < η - matrix elements of (light-like) Wilson lines with rapidity divergence cut by η

$$U_x^{\eta} = \operatorname{Pexp}\left[ig \int_{-\infty}^{\infty} dx^+ A_+^{\eta}(x_+, x_\perp)\right]$$
$$A_{\mu}^{\eta}(x) = \int \frac{d^4k}{(2\pi)^4} \theta(e^{\eta} - |\alpha_k|) e^{-ik \cdot x} A_{\mu}(k)$$

The high-energy operator expansion is

$$T\{\hat{j}_{\mu}(x)\hat{j}_{\nu}(y)\} = \int d^{2}z_{1}d^{2}z_{2} I^{\text{LO}}_{\mu\nu}(z_{1}, z_{2}, x, y)\text{Tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\}$$

+
$$\int d^{2}z_{1}d^{2}z_{2}d^{2}z_{3} I^{\text{NLO}}_{\mu\nu}(z_{1}, z_{2}, z_{3}, x, y)[\text{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{3}}\}\text{tr}\{\hat{U}^{\eta}_{z_{3}}\hat{U}^{\dagger\eta}_{z_{2}}\} - N_{c}\text{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\}]$$

In the leading order the impact factor is Möbius invariant In the NLO one should also expect conf. invariance since $I_{\mu\nu}^{\rm NLO}$ is given by tree diagrams

G. A. Chirilli (LBL)

η - rapidity factorization scale

Evolution equation for color dipoles

$$\frac{d}{d\eta} \operatorname{tr} \{ U_x^{\eta} U_y^{\dagger \eta} \} = \frac{\alpha_s}{2\pi^2} \int d^2 z \frac{(x-y)^2}{(x-z)^2 (y-z)^2} [\operatorname{tr} \{ U_x^{\eta} U_y^{\dagger \eta} \} \operatorname{tr} \{ U_x^{\eta} U_y^{\dagger \eta} \} - N_c \operatorname{tr} \{ U_x^{\eta} U_y^{\dagger \eta} \}] + \alpha_s K_{\text{NLO}} \operatorname{tr} \{ U_x^{\eta} U_y^{\dagger \eta} \} + O(\alpha_s^2)$$

$$K_{\text{NLO}} = ? \qquad (\text{Linear part of } K_{\text{NLO}} = K_{\text{NLO BFKL}})$$

(Linear part of $K_{\rm NLO} = K_{\rm NLO BFKL}$)

Expansion of $F_2(x)$ in color dipoles in the next-to-leading order

Expansion of $F_2(x)$ in color dipoles in the next-to-leading order

plan

- Calculate the NLO photon impact factor.
- Calculate the NLO evolution of color dipole.
- Convolute the solution with the initial conditions for the evolution and get the amplitude.

G. A. Chirilli (LBL)

NLO structure functions at small-x

Propagation in the shock wave: Wilson line (Spectator frame)

Each path is weighted with the gauge factor $Pe^{ig \int dx_{\mu}A^{\mu}}$. Since the external field exists only within the infinitely thin wall, quarks and gluons do not have time to deviate in the transverse direction \Rightarrow we can replace the gauge factor along the actual path with the one along the straight-line path.

Each path is weighted with the gauge factor $Pe^{ig \int dx_{\mu}A^{\mu}}$. Since the external field exists only within the infinitely thin wall, quarks and gluons do not have time to deviate in the transverse direction \Rightarrow we can replace the gauge factor along the actual path with the one along the straight-line path.

Each path is weighted with the gauge factor $Pe^{ig \int dx_{\mu}A^{\mu}}$. Since the external field exists only within the infinitely thin wall, quarks and gluons do not have time to deviate in the transverse direction \Rightarrow we can replace the gauge factor along the actual path with the one along the straight-line path.

LO and NLO Impact Factor

$$T\{\hat{j}_{\mu}(x)\hat{j}_{\nu}(y)\} = \int d^{2}z_{1}d^{2}z_{2} I^{\text{LO}}_{\mu\nu}(z_{1}, z_{2}, x, y) \operatorname{Tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\}$$

+
$$\int d^{2}z_{1}d^{2}z_{2}d^{2}z_{3} I^{\text{NLO}}_{\mu\nu}(z_{1}, z_{2}, z_{3}, x, y) [\operatorname{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{3}}\} \operatorname{tr}\{\hat{U}^{\eta}_{z_{3}}\hat{U}^{\dagger\eta}_{z_{2}}\} - N_{c}\operatorname{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\}]$$

LO Impact Factor diagram: I^{LO}

LO and NLO Impact Factor

$$T\{\hat{j}_{\mu}(x)\hat{j}_{\nu}(y)\} = \int d^{2}z_{1}d^{2}z_{2} I^{\text{LO}}_{\mu\nu}(z_{1}, z_{2}, x, y)\text{Tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\}$$

+
$$\int d^{2}z_{1}d^{2}z_{2}d^{2}z_{3} I^{\text{NLO}}_{\mu\nu}(z_{1}, z_{2}, z_{3}, x, y)[\text{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{3}}\}\text{tr}\{\hat{U}^{\eta}_{z_{3}}\hat{U}^{\dagger\eta}_{z_{2}}\} - N_{c}\text{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\}]$$

NLO Impact Factor diagrams: I^{NLO}

G. A. Chirilli (LBL)

NLO structure functions at small-x

Conformal vectors:

$$\kappa = \frac{\sqrt{s}}{2x_*} \left(\frac{p_1}{s} - x^2 p_2 + x_\perp \right) - \frac{\sqrt{s}}{2y_*} \left(\frac{p_1}{s} - y^2 p_2 + y_\perp \right)$$

$$\zeta_1 = \left(\frac{p_1}{s} + z_{1\perp}^2 p_2 + z_{1\perp} \right), \qquad \zeta_2 = \left(\frac{p_1}{s} + z_{2\perp}^2 p_2 + z_{2\perp} \right)$$

Here $x^2 = -x_{\perp}^2$, $x_* \equiv x_{\mu} p_2^{\mu}$ (similarly for y); $\mathcal{R} = \frac{\kappa^2(\zeta_1, \zeta_2)}{2(\kappa \cdot \zeta_1)(\kappa \cdot \zeta_2)}$

$$I_{\mu\nu}^{\rm LO}(z_1, z_2) = \frac{\mathcal{R}^2}{\pi^6(\kappa \cdot \zeta_1)(\kappa \cdot \zeta_2)} \frac{\partial^2}{\partial x^{\mu} \partial y^{\nu}} \big[(\kappa \cdot \zeta_1)(\kappa \cdot \zeta_2) - \frac{1}{2} \kappa^2 (\zeta_1 \cdot \zeta_2) \big]$$

NLO Impact Factor

The NLO impact factor is not Möbius invariant \Rightarrow the color dipole with the cutoff $\eta = \ln \sigma$ is not invariant.

NLO Impact Factor

$$I_{\mu\nu}^{\rm NLO}(x,y;z_1,z_2,z_3;\eta) = -I_{\mu\nu}^{\rm LO} \times \frac{\alpha_s}{2\pi} \frac{z_{13}^2}{z_{12}^2 z_{23}^2} \ln \frac{\sigma s}{4} \mathcal{Z}_3 + \text{conf.}$$

The NLO impact factor is not Möbius invariant \Rightarrow the color dipole with the cutoff $\eta = \ln \sigma$ is not invariant.

However, if we define a composite operator (a - analog of μ^{-2} for usual OPE)

$$\begin{aligned} \left[\mathrm{Tr} \{ \hat{U}_{z_1}^{\eta} \hat{U}_{z_2}^{\dagger \eta} \} \right]^{\mathrm{conf}} &= \mathrm{Tr} \{ \hat{U}_{z_1}^{\eta} \hat{U}_{z_2}^{\dagger \eta} \} \\ &+ \frac{\alpha_s}{4\pi} \int d^2 z_3 \, \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \left[\frac{1}{N_c} \mathrm{tr} \{ \hat{U}_{z_1}^{\eta} \hat{U}_{z_3}^{\dagger \eta} \} \mathrm{tr} \{ \hat{U}_{z_3}^{\eta} \hat{U}_{z_2}^{\dagger \eta} \} - \mathrm{Tr} \{ \hat{U}_{z_1}^{\eta} \hat{U}_{z_2}^{\dagger \eta} \} \right] \ln \frac{a z_{12}^2}{z_{13}^2 z_{23}^2} + O(\alpha_s^2) \end{aligned}$$

the impact factor becomes conformal in the NLO.

G. A. Chirilli (LBL)

Conformal Composite Operator

$$\begin{aligned} \left[\text{Tr}\{\hat{U}_{z_1}\hat{U}_{z_2}^{\dagger}\} \right]_{a,\eta}^{\text{conf}} \\ &= \text{Tr}\{\hat{U}_{z_1}^{\sigma}\hat{U}_{z_2}^{\dagger\sigma}\} + \frac{\alpha_s}{2\pi^2} \int d^2 z_3 \, \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \left[\text{Tr}\{T^n \hat{U}_{z_1}^{\sigma} \hat{U}_{z_3}^{\dagger\sigma} T^n \hat{U}_{z_3}^{\sigma} \hat{U}_{z_2}^{\dagger\sigma}\} - N_c \, \text{Tr}\{\hat{U}_{z_1}^{\sigma} \hat{U}_{z_2}^{\dagger\sigma}\} \right] \ln \frac{4a z_{12}^2}{s z_{13}^2 z_{23}^2} + O(\alpha_s^2) \end{aligned}$$

$$\begin{aligned} \left[\text{Tr}\{\hat{U}_{z_{1}}\hat{U}_{z_{2}}^{\dagger}\} \right]_{a,\eta}^{\text{conf}} \\ &= \text{Tr}\{\hat{U}_{z_{1}}^{\sigma}\hat{U}_{z_{2}}^{\dagger\sigma}\} + \frac{\alpha_{s}}{2\pi^{2}} \int d^{2}z_{3} \frac{z_{12}^{2}}{z_{13}^{2}z_{23}^{2}} \left[\text{Tr}\{T^{n}\hat{U}_{z_{1}}^{\sigma}\hat{U}_{z_{3}}^{\dagger\sigma}T^{n}\hat{U}_{z_{3}}^{\sigma}\hat{U}_{z_{2}}^{\dagger\sigma}\} - N_{c}\text{Tr}\{\hat{U}_{z_{1}}^{\sigma}\hat{U}_{z_{2}}^{\dagger\sigma}\} \right] \ln \frac{4az_{12}^{2}}{sz_{13}^{2}z_{23}^{2}} + O(\alpha_{s}^{2}) \end{aligned}$$

$$\begin{split} \left[\text{Tr}\{\hat{U}_{z_{1}}\hat{U}_{z_{2}}^{\dagger}\} \right]_{a,\eta}^{\text{conf}} \\ &= \text{Tr}\{\hat{U}_{z_{1}}^{\sigma}\hat{U}_{z_{2}}^{\dagger\sigma}\} + \frac{\alpha_{s}}{2\pi^{2}} \int d^{2}z_{3} \frac{z_{12}^{2}}{z_{13}^{2}z_{23}^{2}} \left[\text{Tr}\{T^{n}\hat{U}_{z_{1}}^{\sigma}\hat{U}_{z_{3}}^{\dagger\sigma}T^{n}\hat{U}_{z_{3}}^{\sigma}\hat{U}_{z_{2}}^{\dagger\sigma}\} - N_{c}\text{Tr}\{\hat{U}_{z_{1}}^{\sigma}\hat{U}_{z_{2}}^{\dagger\sigma}\} \right] \ln \frac{4az_{12}^{2}}{sz_{13}^{2}z_{23}^{2}} + O(\alpha_{s}^{2}) \end{split}$$

$$\begin{split} & [\mathrm{Tr}\{\hat{U}_{z_{1}}\hat{U}_{z_{2}}^{\dagger}\}]_{a}^{\mathrm{conf}} \\ &= \mathrm{Tr}\{\hat{U}_{z_{1}}^{\sigma}\hat{U}_{z_{2}}^{\dagger\sigma}\} + \frac{\alpha_{s}}{2\pi^{2}}\int d^{2}z_{3} \frac{z_{12}^{2}}{z_{13}^{2}z_{23}^{2}} [\mathrm{Tr}\{T^{n}\hat{U}_{z_{1}}^{\sigma}\hat{U}_{z_{3}}^{\dagger\sigma}T^{n}\hat{U}_{z_{3}}^{\sigma}\hat{U}_{z_{2}}^{\dagger\sigma}\} - N_{c}\mathrm{Tr}\{\hat{U}_{z_{1}}^{\sigma}\hat{U}_{z_{2}}^{\dagger\sigma}\}]\ln\frac{4az_{12}^{2}}{\sigma^{2}sz_{13}^{2}z_{23}^{2}} + O(\alpha_{s}^{2}) \end{split}$$

$$\begin{aligned} \left[\text{Tr}\{\hat{U}_{z_{1}}\hat{U}_{z_{2}}^{\dagger}\} \right]_{a,\eta}^{\text{conf}} \\ &= \text{Tr}\{\hat{U}_{z_{1}}^{\sigma}\hat{U}_{z_{2}}^{\dagger\sigma}\} + \frac{\alpha_{s}}{2\pi^{2}} \int d^{2}z_{3} \frac{z_{12}^{2}}{z_{13}^{2}z_{23}^{2}} \left[\text{Tr}\{T^{n}\hat{U}_{z_{1}}^{\sigma}\hat{U}_{z_{3}}^{\dagger\sigma}T^{n}\hat{U}_{z_{3}}^{\sigma}\hat{U}_{z_{2}}^{\dagger\sigma}\} - N_{c}\text{Tr}\{\hat{U}_{z_{1}}^{\sigma}\hat{U}_{z_{2}}^{\dagger\sigma}\} \right] \ln \frac{4az_{12}^{2}}{sz_{13}^{2}z_{23}^{2}} + O(\alpha_{s}^{2}) \end{aligned}$$

$$\begin{aligned} \left[\text{Tr}\{\hat{U}_{z_1}\hat{U}_{z_2}^{\dagger}\} \right]_a^{\text{conf}} \\ &= \text{Tr}\{\hat{U}_{z_1}^{\sigma}\hat{U}_{z_2}^{\dagger\sigma}\} + \frac{\alpha_s}{2\pi^2} \int d^2 z_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \left[\text{Tr}\{T^n \hat{U}_{z_1}^{\sigma} \hat{U}_{z_3}^{\dagger\sigma} T^n \hat{U}_{z_3}^{\sigma} \hat{U}_{z_2}^{\dagger\sigma}\} - N_c \text{Tr}\{\hat{U}_{z_1}^{\sigma} \hat{U}_{z_2}^{\dagger\sigma}\} \right] \ln \frac{4a z_{12}^2}{\sigma^2 s z_{13}^2 z_{23}^2} + O(\alpha_s^2) \end{aligned}$$

Using the leading-order evolution equation

$$\frac{d}{d\eta} \operatorname{Tr}\{\hat{U}_{z_1}^{\sigma}\hat{U}_{z_2}^{\dagger\sigma}\} = \sigma \frac{d}{d\sigma} \operatorname{Tr}\{\hat{U}_{z_1}^{\sigma}\hat{U}_{z_2}^{\dagger\sigma}\} = \frac{\alpha_s}{\pi^2} \int d^2 z_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} [\operatorname{Tr}\{T^n \hat{U}_{z_1}^{\sigma} \hat{U}_{z_3}^{\dagger\sigma} T^n \hat{U}_{z_3}^{\sigma} \hat{U}_{z_2}^{\dagger\sigma}\} - N_c \operatorname{Tr}\{\hat{U}_{z_1}^{\sigma} \hat{U}_{z_2}^{\dagger\sigma}\}]$$

$$\Rightarrow \frac{d}{d\eta} [\operatorname{Tr}\{\hat{U}_{z_1} \hat{U}_{z_1}^{\dagger}\}]_a^{\operatorname{conf}} = 0 \qquad (\text{with } O(\alpha_s^2) \text{ accuracy}).$$

$$\begin{aligned} \left[\text{Tr}\{\hat{U}_{z_{1}}\hat{U}_{z_{2}}^{\dagger}\} \right]_{a,\eta}^{\text{conf}} \\ &= \text{Tr}\{\hat{U}_{z_{1}}^{\sigma}\hat{U}_{z_{2}}^{\dagger\sigma}\} + \frac{\alpha_{s}}{2\pi^{2}} \int d^{2}z_{3} \frac{z_{12}^{2}}{z_{13}^{2}z_{23}^{2}} \left[\text{Tr}\{T^{n}\hat{U}_{z_{1}}^{\sigma}\hat{U}_{z_{3}}^{\dagger\sigma}T^{n}\hat{U}_{z_{3}}^{\sigma}\hat{U}_{z_{2}}^{\dagger\sigma}\} - N_{c}\text{Tr}\{\hat{U}_{z_{1}}^{\sigma}\hat{U}_{z_{2}}^{\dagger\sigma}\} \right] \ln \frac{4az_{12}^{2}}{sz_{13}^{2}z_{23}^{2}} + O(\alpha_{s}^{2}) \end{aligned}$$

$$\begin{aligned} \left[\text{Tr}\{\hat{U}_{z_1}\hat{U}_{z_2}^{\dagger}\} \right]_a^{\text{conf}} \\ &= \text{Tr}\{\hat{U}_{z_1}^{\sigma}\hat{U}_{z_2}^{\dagger\sigma}\} + \frac{\alpha_s}{2\pi^2} \int d^2 z_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \left[\text{Tr}\{T^n \hat{U}_{z_1}^{\sigma} \hat{U}_{z_3}^{\dagger\sigma} T^n \hat{U}_{z_3}^{\sigma} \hat{U}_{z_2}^{\dagger\sigma}\} - N_c \text{Tr}\{\hat{U}_{z_1}^{\sigma} \hat{U}_{z_2}^{\dagger\sigma}\} \right] \ln \frac{4a z_{12}^2}{\sigma^2 s z_{13}^2 z_{23}^2} + O(\alpha_s^2) \end{aligned}$$

Using the leading-order evolution equation

$$\frac{d}{d\eta} \operatorname{Tr}\{\hat{U}_{z_1}^{\sigma}\hat{U}_{z_2}^{\dagger\sigma}\} = \sigma \frac{d}{d\sigma} \operatorname{Tr}\{\hat{U}_{z_1}^{\sigma}\hat{U}_{z_2}^{\dagger\sigma}\} = \frac{\alpha_s}{\pi^2} \int d^2 z_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} [\operatorname{Tr}\{T^n \hat{U}_{z_1}^{\sigma} \hat{U}_{z_3}^{\dagger\sigma} T^n \hat{U}_{z_3}^{\sigma} \hat{U}_{z_2}^{\dagger\sigma}\} - N_c \operatorname{Tr}\{\hat{U}_{z_1}^{\sigma} \hat{U}_{z_2}^{\dagger\sigma}\}]$$

$$\Rightarrow \frac{d}{d\eta} [\operatorname{Tr}\{\hat{U}_{z_1}\hat{U}_{z_2}^{\dagger}\}]_a^{\operatorname{conf}} = 0 \qquad \text{(with } O(\alpha_s^2) \text{ accuracy}.$$

$$2a\frac{d}{da}[\mathrm{Tr}\{\hat{U}_{z_1}\hat{U}_{z_2}^{\dagger}\}]_a^{\mathrm{conf}} = \frac{\alpha_s}{\pi^2} \int d^2 z_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} [\mathrm{Tr}\{T^n \hat{U}_{z_1}^{\sigma} \hat{U}_{z_3}^{\dagger \sigma} T^n \hat{U}_{z_3}^{\sigma} \hat{U}_{z_2}^{\dagger \sigma}] - N_c \mathrm{Tr}\{\hat{U}_{z_1}^{\sigma} \hat{U}_{z_2}^{\dagger \sigma}\}]$$

0

Analogy:

When the UV cutoff does not respect the symmetry of a local operator, the composite local renormalized operator must be corrected by finite counter-terms order by order in perturbation theory.

$$T\{\hat{j}_{\mu}(x)\hat{j}_{\nu}(y)\} = \int d^{2}z_{1}d^{2}z_{2} I^{\text{LO}}_{\mu\nu}(z_{1}, z_{2}, x, y)\text{tr}[\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\}]^{\text{conf}} + \int d^{2}z_{1}d^{2}z_{2}d^{2}z_{3} I^{\text{NLO}}_{\mu\nu}(z_{1}, z_{2}, z_{3}, x, y)[\frac{1}{N_{c}}\text{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{3}}\}\text{tr}\{\hat{U}^{\eta}_{z_{3}}\hat{U}^{\dagger\eta}_{z_{2}}\} - \text{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\}]$$

Analogy:

When the UV cutoff does not respect the symmetry of a local operator, the composite local renormalized operator must be corrected by finite counter-terms order by order in perturbation theory.

$$T\{\hat{j}_{\mu}(x)\hat{j}_{\nu}(y)\} = \int d^{2}z_{1}d^{2}z_{2} I^{\text{LO}}_{\mu\nu}(z_{1}, z_{2}, x, y)\text{tr}[\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\}]^{\text{conf}} \\ + \int d^{2}z_{1}d^{2}z_{2}d^{2}z_{3} I^{\text{NLO}}_{\mu\nu}(z_{1}, z_{2}, z_{3}, x, y)[\frac{1}{N_{c}}\text{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{3}}\}\text{tr}\{\hat{U}^{\eta}_{z_{3}}\hat{U}^{\dagger\eta}_{z_{2}}\} - \text{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\}]$$

$$I_{\mu\nu}^{\rm NLO} = -I_{\mu\nu}^{\rm LO} \frac{\alpha_s N_c}{4\pi} \int dz_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \ln \frac{z_{12}^2 e^{2\eta} a s^2}{z_{13}^2 z_{23}^2} \mathcal{Z}_3^2 + \text{conf.}$$

The new NLO impact factor is conformally invariant.

Analogy:

When the UV cutoff does not respect the symmetry of a local operator, the composite local renormalized operator must be corrected by finite counter-terms order by order in perturbation theory.

$$T\{\hat{j}_{\mu}(x)\hat{j}_{\nu}(y)\} = \int d^{2}z_{1}d^{2}z_{2} I^{\text{LO}}_{\mu\nu}(z_{1}, z_{2}, x, y)\text{tr}[\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\}]^{\text{conf}} \\ + \int d^{2}z_{1}d^{2}z_{2}d^{2}z_{3} I^{\text{NLO}}_{\mu\nu}(z_{1}, z_{2}, z_{3}, x, y)[\frac{1}{N_{c}}\text{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{3}}\}\text{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\} - \text{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\}]$$

$$I_{\mu\nu}^{\rm NLO} = -I_{\mu\nu}^{\rm LO} \frac{\alpha_s N_c}{4\pi} \int dz_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \ln \frac{z_{12}^2 e^{2\eta} a s^2}{z_{13}^2 z_{23}^2} \mathcal{Z}_3^2 + \text{conf.}$$

The new NLO impact factor is conformally invariant.

In conformal ${\cal N}=4$ SYM theory one can construct the composite conformal dipole operator order by order in perturbation theory.

G. A. Chirilli (LBL)

NLO structure functions at small-x

Photon Impact Factor at NLO

I. Balitsky and G. A. C. 2010

$$\begin{split} \Delta &\equiv (x-y), \qquad x_* = x^+ \sqrt{s/2}, \qquad y_* = y^+ \sqrt{s/2}, \qquad R \equiv \frac{\Delta^2 z_{12}^2}{x_* y_* Z_1 Z_2} \\ I_{\mu\nu}^{NLO}(x,y) &= \frac{\alpha_s}{4\pi^7 \Delta^4} \frac{\partial \kappa^\alpha}{\partial x^\mu} \frac{\partial \kappa^\beta}{\partial y^\nu} \int \frac{dz_1 dz_2}{z_{12}^4} \mathcal{U}(z_1,z_2) R^2 \Biggl\{ -\frac{2}{\kappa^2} \Bigl(g^{\alpha\beta} - 2 \frac{\kappa^\alpha \kappa^\beta}{\kappa^2} \Bigr) \\ &+ \frac{\zeta_1^\alpha \zeta_2^\beta + \zeta_1 \leftrightarrow \zeta_2}{(\kappa \cdot \zeta_1)(\kappa \cdot \zeta_2)} \Bigl[4\text{Li}_2(1-R) - \frac{2\pi^2}{3} + \frac{2\ln R}{1-R} + \frac{\ln R}{R} - 4\ln R + \frac{1}{2R} - 2 - 4C - \frac{2C}{R} \\ &+ 2(\ln \frac{1}{R} + \frac{1}{R} - 2) \Bigl(\ln \frac{1}{R} + 2C \Bigr) \Bigr] + \Bigl(\frac{\zeta_1^\alpha \zeta_1^\beta}{(\kappa \cdot \zeta_1)^2} + \zeta_1 \leftrightarrow \zeta_2 \Bigr) \Bigl[\frac{\ln R}{R} - \frac{2C}{R} + 2 \frac{\ln R}{1-R} - \frac{1}{2R} \Bigr] \\ &+ \Bigl[-2 \frac{\ln R}{1-R} - \frac{\ln R}{R} + \ln R - \frac{3}{2R} + \frac{5}{2} + 2C + \frac{2C}{R} \Bigr] \Bigl[\frac{\zeta_1^\alpha \kappa^\beta + \zeta_1^\beta \kappa^\alpha}{(\kappa \cdot \zeta_1)\kappa^2} + \zeta_1 \leftrightarrow \zeta_2 \Bigr] \\ &+ \frac{g^{\alpha\beta}(\zeta_1 \cdot \zeta_2)}{(\kappa \cdot \zeta_1)(\kappa \cdot \zeta_2)} \Bigl[\frac{2\pi^2}{3} - 4\text{Li}_2(1-R) - 2\Bigl(\ln \frac{1}{R} + \frac{1}{R} + \frac{1}{2R^2} - 3 \Bigr) \Bigl(\ln \frac{1}{R} + 2C \Bigr) \\ &+ 6\ln R - \frac{2}{R} + 2 + \frac{3}{2R^2} \Bigr] \Biggr\} \end{split}$$

Photon Impact Factor at NLO

I. Balitsky and G. A. C. 2010

$$\begin{split} \Delta &\equiv (x-y), \qquad x_* = x^+ \sqrt{s/2}, \qquad y_* = y^+ \sqrt{s/2}, \qquad R \equiv \frac{\Delta^2 z_{121}^2}{x_* y_* Z_1 Z_2} \\ I_{\mu\nu}^{NLO}(x,y) &= \frac{\alpha_s}{4\pi^7 \Delta^4} \frac{\partial \kappa^{\alpha}}{\partial x^{\mu}} \frac{\partial \kappa^{\beta}}{\partial y^{\nu}} \int \frac{dz_1 dz_2}{z_{12}^4} \mathcal{U}(z_1,z_2) R^2 \Biggl\{ -\frac{2}{\kappa^2} \Bigl(g^{\alpha\beta} - 2 \frac{\kappa^{\alpha} \kappa^{\beta}}{\kappa^2} \Bigr) \\ &+ \frac{\zeta_1^{\alpha} \zeta_2^{\beta} + \zeta_1 \leftrightarrow \zeta_2}{(\kappa \cdot \zeta_1)(\kappa \cdot \zeta_2)} \Bigl[4 \text{Li}_2(1-R) - \frac{2\pi^2}{3} + \frac{2\ln R}{1-R} + \frac{\ln R}{R} - 4\ln R + \frac{1}{2R} - 2 - 4C - \frac{2C}{R} \\ &+ 2(\ln \frac{1}{R} + \frac{1}{R} - 2) \Bigl(\ln \frac{1}{R} + 2C \Bigr) \Bigr] + \Bigl(\frac{\zeta_1^{\alpha} \zeta_1^{\beta}}{(\kappa \cdot \zeta_1)^2} + \zeta_1 \leftrightarrow \zeta_2 \Bigr) \Bigl[\frac{\ln R}{R} - \frac{2C}{R} + 2 \frac{\ln R}{1-R} - \frac{1}{2R} \Bigr] \\ &+ \Bigl[- 2 \frac{\ln R}{1-R} - \frac{\ln R}{R} + \ln R - \frac{3}{2R} + \frac{5}{2} + 2C + \frac{2C}{R} \Bigr] \Bigl[\frac{\zeta_1^{\alpha} \kappa^{\beta} + \zeta_1^{\beta} \kappa^{\alpha}}{(\kappa \cdot \zeta_1) \kappa^2} + \zeta_1 \leftrightarrow \zeta_2 \Bigr] \\ &+ \Bigl[\frac{g^{\alpha\beta}(\zeta_1 \cdot \zeta_2)}{(\kappa \cdot \zeta_1)(\kappa \cdot \zeta_2)} \Bigl[\frac{2\pi^2}{3} - 4 \text{Li}_2(1-R) - 2\Bigl(\ln \frac{1}{R} + \frac{1}{R} + \frac{1}{2R^2} - 3 \Bigr) \Bigl(\ln \frac{1}{R} + 2C \Bigr) \\ &+ 6\ln R - \frac{2}{R} + 2 + \frac{3}{2R^2} \Bigr] \Biggr\} \end{split}$$

Photon Impact Factor at NLO

Conformal vectors

$$\begin{split} \kappa^{\mu} &=\; \frac{\sqrt{s}}{2x_{*}} (\frac{p_{1}^{\mu}}{s} - x^{2}p_{2}^{\mu} + x_{\perp}^{\mu}) - \frac{\sqrt{s}}{2y_{*}} (\frac{p_{1}^{\mu}}{s} - y^{2}p_{2}^{\mu} + y_{\perp}^{\mu}) \\ \zeta_{1}^{\mu} &=\; \left(\frac{p_{1}^{\mu}}{s} + z_{1\perp}^{2}p_{2}^{\mu} + z_{1\perp}^{\mu}\right), \qquad \zeta_{2}^{\mu} \;=\; \left(\frac{p_{1}^{\mu}}{s} + z_{2\perp}^{2}p_{2}^{\mu} + z_{2\perp}^{\mu}\right) \end{split}$$

Photon Impact Factor at NLO

Conformal vectors

$$\begin{split} \kappa^{\mu} &= \frac{\sqrt{s}}{2x_{*}} (\frac{p_{1}^{\mu}}{s} - x^{2}p_{2}^{\mu} + x_{\perp}^{\mu}) - \frac{\sqrt{s}}{2y_{*}} (\frac{p_{1}^{\mu}}{s} - y^{2}p_{2}^{\mu} + y_{\perp}^{\mu}) \\ \zeta_{1}^{\mu} &= (\frac{p_{1}^{\mu}}{s} + z_{1\perp}^{2}p_{2}^{\mu} + z_{1\perp}^{\mu}), \qquad \zeta_{2}^{\mu} &= (\frac{p_{1}^{\mu}}{s} + z_{2\perp}^{2}p_{2}^{\mu} + z_{2\perp}^{\mu}) \end{split}$$

DIS photon impact factor is a linear combination of the following tensor basis

$$\mathcal{I}_1^{\mu\nu} = g^{\mu\nu} \qquad \qquad \mathcal{I}_2^{\mu\nu} = \frac{\kappa^\mu \kappa^\nu}{\kappa^2}$$

$$\mathcal{I}_3^{\mu\nu} = \frac{\kappa^{\mu}\zeta_1^{\nu} + \kappa^{\nu}\zeta_1^{\mu}}{\kappa\cdot\zeta_1} + \frac{\kappa^{\mu}\zeta_2^{\nu} + \kappa^{\nu}\zeta_2^{\mu}}{\kappa\cdot\zeta_2}$$

$$\mathcal{I}_{4}^{\mu\nu} = \frac{\kappa^{2}\zeta_{1}^{\mu}\zeta_{1}^{\nu}}{(\kappa\cdot\zeta_{1})^{2}} + \frac{\kappa^{2}\zeta_{2}^{\mu}\zeta_{2}^{\nu}}{(\kappa\cdot\zeta_{2})^{2}} \qquad \qquad \mathcal{I}_{5}^{\mu\nu} = \frac{\zeta_{1}^{\mu}\zeta_{2}^{\nu} + \zeta_{2}^{\mu}\zeta_{1}^{\nu}}{\zeta_{1}\cdot\zeta_{2}}$$

Cornalba, Costa, Penedones (2010)

$$\begin{split} &\int \frac{d^2 z_1 d^2 z_2}{z_{12}^2} I_{LO}^{\mu\nu}(z_1, z_2) \Big(\frac{\kappa^2}{(\kappa \cdot \zeta_0)^2}\Big)^{\gamma} = \frac{1}{\Delta^2 x_* y_*} B(1-\gamma) \Gamma(\gamma+2) \Gamma(3-\gamma) \\ &\times \Big\{\frac{\gamma(1-\gamma) D_1}{12(1+\gamma)(2-\gamma)} + \frac{D_2}{2(1+\gamma)(2-\gamma)} - \frac{D_3^{\mu\nu}}{8(1+\gamma)(2-\gamma)} \\ &- \frac{\gamma(1-\gamma) D_4^{\mu\nu}}{16(1+2\gamma)(3-2\gamma)(1+\gamma)(2-\gamma)} - \frac{D_1^{\mu\nu} + D^{\mu}\nu_2}{8}\Big\}_{\mu\nu} \Big(\frac{\kappa^2}{(\kappa \cdot \zeta_0)^2}\Big)^{\gamma} \end{split}$$
$$\begin{split} &\int \frac{d^2 z_1 d^2 z_2}{z_{12}^2} I_{L0}^{\mu\nu}(z_1, z_2) \Big(\frac{\kappa^2}{(\kappa \cdot \zeta_0)^2}\Big)^{\gamma} = \frac{1}{\Delta^2 x_* y_*} B(1-\gamma) \Gamma(\gamma+2) \Gamma(3-\gamma) \\ &\times \Big\{\frac{\gamma(1-\gamma) D_1^{\mu\nu}}{12(1+\gamma)(2-\gamma)} + \frac{D_2^{\mu\nu}}{2(1+\gamma)(2-\gamma)} - \frac{D_3^{\mu\nu}}{8(1+\gamma)(2-\gamma)} \\ &- \frac{\gamma(1-\gamma) D_4}{16(1+2\gamma)(3-2\gamma)(1+\gamma)(2-\gamma)} - \frac{D_1^{\mu\nu} + D_2^{\mu\nu}}{8}\Big\}_{\mu\nu} \Big(\frac{\kappa^2}{(\kappa \cdot \zeta_0)^2}\Big)^{\gamma} \end{split}$$

where

$$\begin{split} (D_1 + D_2)^{\mu\nu} &= -2\Delta^2 x_* y_* \kappa^{-2} \partial_x^{\mu} \partial_y^{\nu} \kappa^2 \\ D_2^{\mu\nu} &= -\Delta^2 x_* y_* \partial_x^{\mu} (\ln \kappa^2) \partial_y^{\nu} \ln \kappa^2 \\ D_3^{\mu\nu} &= 4\gamma \Delta^2 x_* y_* \big[(\partial_x^{\mu} \ln \kappa^2) \partial_{\nu}^{y} \ln(\kappa \cdot \zeta_0) + (\partial_y^{\nu} \ln \kappa^2) \partial_{\mu}^{x} \ln(\kappa \cdot \zeta_0) - (\partial_x^{\mu} \ln \kappa^2) \partial_y^{\nu} \ln \kappa^2 \big] \\ D_4^{\mu\nu} &= 4\gamma (1 + 2\gamma) \Delta^2 x_* y_* \big[-\frac{1}{3} \partial_x^{\mu} \partial_y^{\nu} \ln \kappa^2 - \partial_x^{\mu} (\ln \kappa^2) \partial_y^{\nu} \ln \kappa^2 \\ + (\partial_x^{\mu} \ln \kappa^2) \partial_{\nu}^{y} \ln(\kappa \cdot \zeta_0) + (\partial_y^{\nu} \ln \kappa^2) \partial_{\mu}^{x} \ln(\kappa \cdot \zeta_0) - 2\partial_{\mu}^{x} \ln(\kappa \cdot \zeta_0) \partial_{\nu}^{y} \ln(\kappa \cdot \zeta_0) \big] \end{split}$$

Regularization of the rapidity divergence

Matrix elements of Wilson lines: $\langle Tr\{U(x)U^{\dagger}(y)\}\rangle_A$ are divergent

For light-like Wilson lines loop integrals are divergent in the longitudinal direction

$$\int_0^\infty \frac{d\alpha}{\alpha} = \int_{-\infty}^\infty d\eta = \infty$$

$$\begin{split} F_2(x_B) &\simeq \int d^2 z_1 d^2 z_2 \ I^{LO}(z_1, z_2) \langle \operatorname{tr} \{ U_{z_1}^{\eta} U_{z_2}^{\dagger \eta} \} \rangle \qquad \eta = \ln \frac{1}{x_B} \\ &+ \frac{\alpha_s}{\pi} \int d^2 z_1 d^2 z_2 d^2 z_3 \ I^{NLO}(z_1, z_2, z_3) \langle \operatorname{tr} \{ U_{z_1}^{\eta} U_{z_3}^{\dagger \eta} \} \operatorname{tr} \{ U_{z_3} U_{z_2}^{\dagger \eta} \} \rangle \end{split}$$

Regularization of the rapidity divergence

Matrix elements of Wilson lines: $\langle Tr\{U(x)U^{\dagger}(y)\rangle_A\}$ are divergent

For light-like Wilson lines loop integrals are divergent in the longitudinal direction

$$\int_0^\infty \frac{d\alpha}{\alpha} \; = \; \int_{-\infty}^\infty d\eta \; = \; \infty$$

Regularization by: slope

$$U^{\eta}(x_{\perp}) = \Pr\left\{ ig \int_{-\infty}^{\infty} du \ n_{\mu} \ A^{\mu}(un + x_{\perp}) \right\} \qquad n^{\mu} = p_{1}^{\mu} + e^{-2\eta} p_{2}^{\mu}$$

Regularization of the rapidity divergence

Matrix elements of Wilson lines: $\langle Tr\{U(x)U^{\dagger}(y)\rangle_A\}$ are divergent

For light-like Wilson lines loop integrals are divergent in the longitudinal direction

$$\int_0^\infty \frac{d\alpha}{\alpha} = \int_{-\infty}^\infty d\eta = \infty$$

Regularization by: slope

$$U^{\eta}(x_{\perp}) = \text{Pexp}\Big\{ ig \int_{-\infty}^{\infty} du \ n_{\mu} \ A^{\mu}(un + x_{\perp}) \Big\} \qquad n^{\mu} = p_{1}^{\mu} + e^{-2\eta} p_{2}^{\mu}$$

Regularization by: Rigid cut-off (used in NLO)

$$\begin{split} U^{\eta}_{x} &= \operatorname{Pexp}\Big[ig \int_{-\infty}^{\infty} du \ p_{1}^{\mu}A^{\eta}_{\mu}(up_{1}+x_{\perp})\Big] \\ A^{\eta}_{\mu}(x) &= \int \frac{d^{4}k}{(2\pi)^{4}}\theta(e^{\eta}-|\alpha_{k}|)e^{-ik\cdot x}A_{\mu}(k) \end{split}$$

 $k^\mu = \alpha_k \, p_1^\mu + \beta_k \, p_2^\mu + k_\perp^\mu$

G. A. Chirilli (LBL)

Evolution Equation

$$rac{d}{d\eta} \mathrm{Tr}\{\hat{U}_x\hat{U}_y^{\dagger}\} \;\; \Rightarrow \;\; rac{d}{d\eta} \langle \mathrm{Tr}\{\hat{U}_x\hat{U}_y^{\dagger}\}
angle$$

To get the evolution equation, consider the dipole with the rapidies up to η_1 and integrate over the gluons with rapidity $\eta_1 > \eta > \eta_2$. This integral gives the kernel of the evolution equation (multiplied by the dipole(s) with rapidity up to η_2).

In the frame || to η_1 the gluons with $\eta < \eta_1$ are seen as pancake.

Particles with different rapidity perceive each other as Wilson lines.

G. A. Chirilli (LBL)

Leading order: BK equation

Non-linear evolution equation: BK equation

$$U_z^{ab} = \operatorname{Tr}\{t^a U_z t^b U_z^{\dagger}\} \quad \Rightarrow (U_x U_y^{\dagger})^{\eta_1} \to (U_x U_y^{\dagger})^{\eta_2} + \alpha_s (\eta_1 - \eta_2) (U_x U_z^{\dagger} U_z U_y^{\dagger})^{\eta_2}$$

Non-linear evolution equation: BK equation

$$U_z^{ab} = \operatorname{Tr}\{t^a U_z t^b U_z^{\dagger}\} \quad \Rightarrow (U_x U_y^{\dagger})^{\eta_1} \to (U_x U_y^{\dagger})^{\eta_2} + \alpha_s (\eta_1 - \eta_2) (U_x U_z^{\dagger} U_z U_y^{\dagger})^{\eta_2}$$

$$\hat{\mathcal{U}}(x,y) \equiv 1 - \frac{1}{N_c} \operatorname{Tr}\{\hat{U}(x_{\perp})\hat{U}^{\dagger}(y_{\perp})\}$$

BK equation: Ian Balitsky (1996), Yu. Kovchegov (1999)

$$\frac{d}{d\eta}\hat{\mathcal{U}}(x,y) = \frac{\alpha_s N_c}{2\pi^2} \int \frac{d^2 z \ (x-y)^2}{(x-z)^2 (y-z)^2} \Big\{\hat{\mathcal{U}}(x,z) + \hat{\mathcal{U}}(z,y) - \hat{\mathcal{U}}(x,y) - \hat{\mathcal{U}}(x,z)\hat{\mathcal{U}}(z,y)\Big\}$$

Alternative approach: JIMWLK (1997-2000)

Non-linear evolution equation: BK equation

$$\begin{aligned} U_z^{ab} &= \operatorname{Tr}\{t^a U_z t^b U_z^{\dagger}\} \quad \Rightarrow (U_x U_y^{\dagger})^{\eta_1} \to (U_x U_y^{\dagger})^{\eta_2} + \alpha_s (\eta_1 - \eta_2) (U_x U_z^{\dagger} U_z U_y^{\dagger})^{\eta_2} \\ \hat{\mathcal{U}}(x, y) &\equiv 1 - \frac{1}{N_c} \operatorname{Tr}\{\hat{U}(x_{\perp})\hat{U}^{\dagger}(y_{\perp})\} \end{aligned}$$

BK equation: Ian Balitsky (1996), Yu. Kovchegov (1999)

$$\frac{d}{d\eta}\hat{\mathcal{U}}(x,y) = \frac{\alpha_s N_c}{2\pi^2} \int \frac{d^2 z \ (x-y)^2}{(x-z)^2 (y-z)^2} \left\{ \hat{\mathcal{U}}(x,z) + \hat{\mathcal{U}}(z,y) - \hat{\mathcal{U}}(x,y) - \hat{\mathcal{U}}(x,z)\hat{\mathcal{U}}(z,y) \right\}$$

Alternative approach: JIMWLK (1997-2000)

LLA for DIS in pQCD \Rightarrow BFKL

(LLA: $\alpha_s \ll 1, \alpha_s \eta \sim 1$)

Non linear evolution equation: BK equation

$$\begin{aligned} U_z^{ab} &= \operatorname{Tr}\{t^a U_z t^b U_z^{\dagger}\} \quad \Rightarrow (U_x U_y^{\dagger})^{\eta_1} \to (U_x U_y^{\dagger})^{\eta_2} + \alpha_s (\eta_1 - \eta_2) (U_x U_z^{\dagger} U_z U_y^{\dagger})^{\eta_2} \\ \hat{\mathcal{U}}(x, y) &\equiv 1 - \frac{1}{N_c} \operatorname{Tr}\{\hat{U}(x_{\perp})\hat{U}^{\dagger}(y_{\perp})\} \end{aligned}$$

BK equation: Ian Balitsky (1996), Yu. Kovchegov (1999)

$$\frac{d}{d\eta}\hat{\mathcal{U}}(x,y) = \frac{\alpha_s N_c}{2\pi^2} \int \frac{d^2 z \ (x-y)^2}{(x-z)^2 (y-z)^2} \left\{ \hat{\mathcal{U}}(x,z) + \hat{\mathcal{U}}(z,y) - \hat{\mathcal{U}}(x,y) - \hat{\mathcal{U}}(x,z)\hat{\mathcal{U}}(z,y) \right\}$$

Alternative approach: JIMWLK (1997-2000)

LLA for DIS in pQCD \Rightarrow BFKL (LLA: $\alpha_s \ll 1, \ \alpha_s \eta \sim 1$) LLA for DIS in sQCD \Rightarrow BK eqn (LLA: $\alpha_s \ll 1, \ \alpha_s \eta \sim 1, \ \alpha_s^2 A^{1/3} \sim 1$)

G. A. Chirilli (LBL)

Formally, a light-like Wilson line

$$\left[\infty p_1 + x_{\perp}, -\infty p_1 + x_{\perp}\right] = \operatorname{Pexp}\left\{ig \int_{-\infty}^{\infty} dx^+ A_+(x^+, x_{\perp})\right\}$$

is invariant under inversion (with respect to the point with $x^- = 0$).

Formally, a light-like Wilson line

$$[\infty p_1 + x_\perp, -\infty p_1 + x_\perp] = \operatorname{Pexp}\left\{ ig \int_{-\infty}^{\infty} dx^+ A_+(x^+, x_\perp) \right\}$$

is invariant under inversion (with respect to the point with $x^- = 0$).

Indeed, $(x^+, x_\perp)^2 = -x_\perp^2 \Rightarrow \text{after the inversion } x_\perp \to x_\perp/x_\perp^2 \text{ and } x^+ \to x^+/x_\perp^2$

Formally, a light-like Wilson line

$$[\infty p_1 + x_\perp, -\infty p_1 + x_\perp] = \operatorname{Pexp}\left\{ ig \int_{-\infty}^{\infty} dx^+ A_+(x^+, x_\perp) \right\}$$

is invariant under inversion (with respect to the point with $x^- = 0$).

Indeed, $(x^+, x_\perp)^2 = -x_\perp^2 \Rightarrow \text{after the inversion } x_\perp \to x_\perp/x_\perp^2 \text{ and } x^+ \to x^+/x_\perp^2 \Rightarrow$ $[\infty p_1 + x_\perp, -\infty p_1 + x_\perp] \to \text{Pexp}\left\{ig \int_{-\infty}^{\infty} d\frac{x^+}{x_\perp^2} A_+(\frac{x^+}{x_\perp^2}, \frac{x_\perp}{x_\perp^2})\right\} = [\infty p_1 + \frac{x_\perp}{x_\perp^2}, -\infty p_1 + \frac{x_\perp}{x_\perp^2}]$

Formally, a light-like Wilson line

$$[\infty p_1 + x_\perp, -\infty p_1 + x_\perp] = \operatorname{Pexp}\left\{ ig \int_{-\infty}^{\infty} dx^+ A_+(x^+, x_\perp) \right\}$$

is invariant under inversion (with respect to the point with $x^- = 0$).

Indeed,

$$(x^+, x_\perp)^2 = -x_\perp^2 \Rightarrow \text{after the inversion } x_\perp \to x_\perp/x_\perp^2 \text{ and } x^+ \to x^+/x_\perp^2 \Rightarrow$$

 $[\infty p_1 + x_\perp, -\infty p_1 + x_\perp] \to \text{Pexp}\left\{ig \int_{-\infty}^{\infty} d\frac{x^+}{x_\perp^2} A_+(\frac{x^+}{x_\perp^2}, \frac{x_\perp}{x_\perp^2})\right\} = [\infty p_1 + \frac{x_\perp}{x_\perp^2}, -\infty p_1 + \frac{x_\perp}{x_\perp^2}]$

 \Rightarrow The dipole kernel is invariant under the inversion $V(x_{\perp}) = U(x_{\perp}/x_{\perp}^2)$

$$\frac{d}{d\eta} \operatorname{Tr}\{V_x V_y^{\dagger}\} = \frac{\alpha_s}{2\pi^2} \int \frac{d^2 z}{z^4} \frac{(x-y)^2 z^4}{(x-z)^2 (z-y)^2} [\operatorname{Tr}\{V_x V_z^{\dagger}\} \operatorname{Tr}\{V_z V_y^{\dagger}\} - N_c \operatorname{Tr}\{V_x V_y^{\dagger}\}]$$

SL(2,C) for Wilson lines

$$\begin{split} \hat{S}_{-} &\equiv \frac{i}{2}(K^{1} + iK^{2}), \quad \hat{S}_{0} \equiv \frac{i}{2}(D + iM^{12}), \quad \hat{S}_{+} \equiv \frac{i}{2}(P^{1} - iP^{2}) \\ &[\hat{S}_{0}, \hat{S}_{\pm}] = \pm \hat{S}_{\pm}, \quad \frac{1}{2}[\hat{S}_{+}, \hat{S}_{-}] = \hat{S}_{0}, \\ &[\hat{S}_{-}, \hat{U}(z, \bar{z})] = z^{2}\partial_{z}\hat{U}(z, \bar{z}), \quad [\hat{S}_{0}, \hat{U}(z, \bar{z})] = z\partial_{z}\hat{U}(z, \bar{z}), \quad [\hat{S}_{+}, \hat{U}(z, \bar{z})] = -\partial_{z}\hat{U}(z, \bar{z}) \end{split}$$

 $z \equiv z^1 + iz^2, \overline{z} \equiv z^1 + iz^2, \quad U(z_\perp) = U(z, \overline{z})$

SL(2,C) for Wilson lines

$$\begin{split} \hat{S}_{-} &\equiv \frac{i}{2}(K^{1} + iK^{2}), \quad \hat{S}_{0} \equiv \frac{i}{2}(D + iM^{12}), \quad \hat{S}_{+} \equiv \frac{i}{2}(P^{1} - iP^{2}) \\ &[\hat{S}_{0}, \hat{S}_{\pm}] = \pm \hat{S}_{\pm}, \quad \frac{1}{2}[\hat{S}_{+}, \hat{S}_{-}] = \hat{S}_{0}, \\ &[\hat{S}_{-}, \hat{U}(z, \bar{z})] = z^{2}\partial_{z}\hat{U}(z, \bar{z}), \quad [\hat{S}_{0}, \hat{U}(z, \bar{z})] = z\partial_{z}\hat{U}(z, \bar{z}), \quad [\hat{S}_{+}, \hat{U}(z, \bar{z})] = -\partial_{z}\hat{U}(z, \bar{z}) \end{split}$$

$$z \equiv z^1 + iz^2, \overline{z} \equiv z^1 + iz^2, \quad U(z_\perp) = U(z, \overline{z})$$

Conformal invariance of the evolution kernel

$$\begin{split} &\frac{d}{d\eta} [\hat{S}_{-}, \mathrm{Tr}\{U_{x}U_{y}^{\dagger}\}] = \frac{\alpha_{s}N_{c}}{2\pi^{2}} \int dz \ K(x, y, z) [\hat{S}_{-}, \mathrm{Tr}\{U_{x}U_{y}^{\dagger}\} \mathrm{Tr}\{U_{x}U_{y}^{\dagger}\}] \\ \Rightarrow \left[x^{2} \frac{\partial}{\partial x} + y^{2} \frac{\partial}{\partial y} + z^{2} \frac{\partial}{\partial z}\right] K(x, y, z) = 0 \end{split}$$

SL(2,C) for Wilson lines

$$\begin{split} \hat{S}_{-} &\equiv \frac{i}{2}(K^{1} + iK^{2}), \quad \hat{S}_{0} \equiv \frac{i}{2}(D + iM^{12}), \quad \hat{S}_{+} \equiv \frac{i}{2}(P^{1} - iP^{2}) \\ &[\hat{S}_{0}, \hat{S}_{\pm}] = \pm \hat{S}_{\pm}, \quad \frac{1}{2}[\hat{S}_{+}, \hat{S}_{-}] = \hat{S}_{0}, \\ &[\hat{S}_{-}, \hat{U}(z, \bar{z})] = z^{2}\partial_{z}\hat{U}(z, \bar{z}), \quad [\hat{S}_{0}, \hat{U}(z, \bar{z})] = z\partial_{z}\hat{U}(z, \bar{z}), \quad [\hat{S}_{+}, \hat{U}(z, \bar{z})] = -\partial_{z}\hat{U}(z, \bar{z}) \end{split}$$

$$z \equiv z^1 + iz^2, \overline{z} \equiv z^1 + iz^2, \quad U(z_\perp) = U(z, \overline{z})$$

Conformal invariance of the evolution kernel

$$\begin{aligned} \frac{d}{d\eta} [\hat{S}_{-}, \mathrm{Tr}\{U_{x}U_{y}^{\dagger}\}] &= \frac{\alpha_{s}N_{c}}{2\pi^{2}} \int dz \ K(x, y, z) [\hat{S}_{-}, \mathrm{Tr}\{U_{x}U_{y}^{\dagger}\} \mathrm{Tr}\{U_{x}U_{y}^{\dagger}\}] \\ \Rightarrow \left[x^{2} \frac{\partial}{\partial x} + y^{2} \frac{\partial}{\partial y} + z^{2} \frac{\partial}{\partial z}\right] K(x, y, z) = 0 \end{aligned}$$

In the leading order - OK. In the NLO - ?

G. A. Chirilli (LBL)

$$\frac{d}{d\eta} Tr\{U_x U_y^{\dagger}\} = \int \frac{d^2 z}{2\pi^2} \left(\alpha_s \frac{(x-y)^2}{(x-z)^2 (z-y)^2} + \alpha_s^2 K_{NLO}(x,y,z) \right) [Tr\{U_x U_z^{\dagger}\} Tr\{U_z U_y^{\dagger}\} - N_c Tr\{U_x U_y^{\dagger}\}] + \alpha_s^2 \int d^2 z d^2 z' \left(K_4(x,y,z,z') \{U_x, U_{z'}^{\dagger}, U_z, U_y^{\dagger}\} + K_6(x,y,z,z') \{U_x, U_{z'}^{\dagger}, U_z, U_z^{\dagger}, U_y^{\dagger}\} \right)$$

 K_{NLO} is the next-to-leading order correction to the dipole kernel and K4 and K6 are the coefficients in front of the (tree) four- and six-Wilson line operators with arbitrary white arrangements of color indices.

In general

$$\frac{d}{d\eta} \operatorname{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} = \alpha_s K_{\text{LO}} \operatorname{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} + \alpha_s^2 K_{\text{NLO}} \operatorname{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} + O(\alpha_s^3)$$

In general

$$\frac{d}{d\eta} \operatorname{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} = \alpha_s K_{\text{LO}} \operatorname{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} + \alpha_s^2 K_{\text{NLO}} \operatorname{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} + O(\alpha_s^3)$$

$$\alpha_s^2 K_{\rm NLO} \operatorname{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} = \frac{d}{d\eta} \operatorname{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} - \alpha_s K_{\rm LO} \operatorname{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} + O(\alpha_s^3)$$

In general

$$\frac{d}{d\eta} \operatorname{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} = \alpha_s K_{\text{LO}} \operatorname{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} + \alpha_s^2 K_{\text{NLO}} \operatorname{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} + O(\alpha_s^3)$$

$$\alpha_s^2 K_{\rm NLO} \operatorname{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} = \frac{d}{d\eta} \operatorname{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} - \alpha_s K_{\rm LO} \operatorname{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} + O(\alpha_s^3)$$

We calculate the "matrix element" of the r.h.s. in the shock-wave background

$$\langle \alpha_s^2 K_{\rm NLO} {\rm Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} \rangle = \frac{d}{d\eta} \langle {\rm Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} \rangle - \langle \alpha_s K_{\rm LO} {\rm Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} \rangle + O(\alpha_s^3)$$

In general

$$\frac{d}{d\eta} \operatorname{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} = \alpha_s K_{\text{LO}} \operatorname{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} + \alpha_s^2 K_{\text{NLO}} \operatorname{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} + O(\alpha_s^3)$$

$$\alpha_s^2 K_{\text{NLO}} \text{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} = \frac{d}{d\eta} \text{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} - \alpha_s K_{\text{LO}} \text{Tr}\{\hat{U}_x \hat{U}_y^{\dagger}\} + O(\alpha_s^3)$$

We calculate the "matrix element" of the r.h.s. in the shock-wave background

$$\langle \alpha_s^2 K_{\rm NLO} {\rm Tr} \{ \hat{U}_x \hat{U}_y^{\dagger} \} \rangle = \frac{d}{d\eta} \langle {\rm Tr} \{ \hat{U}_x \hat{U}_y^{\dagger} \} \rangle - \langle \alpha_s K_{\rm LO} {\rm Tr} \{ \hat{U}_x \hat{U}_y^{\dagger} \} \rangle + O(\alpha_s^3)$$

Subtraction of the (LO) contribution (with the rigid rapidity cutoff) $\Rightarrow \qquad \left[\frac{1}{\nu}\right]_{+} \text{ prescription in the integrals over Feynman parameter } \nu$

Typical integral

$$\int_0^1 d\nu \, \frac{1}{(k-p)_{\perp}^2 \nu + p_{\perp}^2 (1-\nu)} \Big[\frac{1}{\nu} \Big]_+ \, = \, \frac{1}{p_{\perp}^2} \ln \frac{(k-p)_{\perp}^2}{p_{\perp}^2}$$

Diagrams with 2 gluons interaction

Diagrams with 2 gluons interaction

Diagrams with 2 gluons interaction

"Running coupling" diagrams

$1 \rightarrow 2$ dipole transition diagrams

Diagrams of the NLO gluon contribution

 $\mathcal{N} = 4$ SYM diagrams (scalar and gluino loops)

$$\begin{split} &\frac{d}{d\eta} \mathrm{Tr}\{U_x U_y^{\dagger}\} \ = \ \frac{\alpha_s}{2\pi^2} \int d^2 z \left([\mathrm{Tr}\{U_x U_z^{\dagger}\} \mathrm{Tr}\{U_z U_y^{\dagger}\} - N_c \mathrm{Tr}\{U_x U_y^{\dagger}\}] \right. \\ & \times \left\{ \frac{(x-y)^2}{X^2 Y^2} \Big[1 + \frac{\alpha_s N_c}{4\pi} (\frac{11}{3} \ln(x-y)^2 \mu^2 + \frac{67}{9} - \frac{\pi^2}{3}) \Big] \\ &- \frac{11}{3} \frac{\alpha_s N_c}{4\pi} \frac{X^2 - Y^2}{X^2 Y^2} \ln \frac{X^2}{Y^2} - \frac{\alpha_s N_c}{2\pi} \frac{(x-y)^2}{X^2 Y^2} \ln \frac{X^2}{(x-y)^2} \ln \frac{Y^2}{(x-y)^2} \Big\} \\ &+ \frac{\alpha_s}{4\pi^2} \int d^2 z' \left\{ [\mathrm{Tr}\{U_x U_z^{\dagger}\} \mathrm{Tr}\{U_z U_{z'}^{\dagger}\} \{U_{z'} U_y^{\dagger}\} - \mathrm{Tr}\{U_x U_z^{\dagger} U_{z'} U_y^{\dagger} U_z U_{z'}^{\dagger}\} \right. \\ &- (z' \to z) \Big] \frac{1}{(z-z')^4} \Big[-2 + \frac{X'^2 Y^2 + Y'^2 X^2 - 4(x-y)^2 (z-z')^2}{2(X'^2 Y^2 - Y'^2 X^2)} \ln \frac{X'^2 Y^2}{Y'^2 X^2} \Big] \\ &+ \left[\mathrm{Tr}\{U_x U_z^{\dagger}\} \mathrm{Tr}\{U_z U_{z'}^{\dagger}\} \{U_{z'} U_y^{\dagger}\} - \mathrm{Tr}\{U_x U_z^{\dagger} U_{z'} U_z^{\dagger} U_z U_{z'}^{\dagger}\} - (z' \to z) \right] \\ &\times \left[\frac{(x-y)^4}{X^2 Y'^2 (X^2 Y'^2 - X'^2 Y^2)} + \frac{(x-y)^2}{(z-z')^2 X^2 Y'^2} \right] \ln \frac{X^2 Y'^2}{X'^2 Y^2} \Big\} \Big) \end{split}$$

Our result Agrees with NLO BFKL

(Comparing the eigenvalue of the forward kernel)

It respects unitarity

G. A. Chirilli (LBL)

$$\begin{split} &\frac{d}{d\eta} \operatorname{Tr}\{U_{x}U_{y}^{\dagger}\} = \frac{\alpha_{s}}{2\pi^{2}} \int d^{2}z \left([\operatorname{Tr}\{U_{x}U_{z}^{\dagger}\}\operatorname{Tr}\{U_{z}U_{y}^{\dagger}\} - N_{c}\operatorname{Tr}\{U_{x}U_{y}^{\dagger}\}] \right. \\ &\times \left\{ \frac{(x-y)^{2}}{X^{2}Y^{2}} \left[1 + \frac{\alpha_{s}N_{c}}{4\pi} (\frac{11}{3}\ln(x-y)^{2}\mu^{2} + \frac{67}{9} - \frac{\pi^{2}}{3}) \right] \right. \\ &- \frac{11}{3} \frac{\alpha_{s}N_{c}}{4\pi} \frac{X^{2} - Y^{2}}{X^{2}Y^{2}} \ln \frac{X^{2}}{Y^{2}} - \frac{\alpha_{s}N_{c}}{2\pi} \frac{(x-y)^{2}}{X^{2}Y^{2}} \ln \frac{X^{2}}{(x-y)^{2}} \ln \frac{Y^{2}}{(x-y)^{2}} \right\} \\ &+ \frac{\alpha_{s}}{4\pi^{2}} \int d^{2}z' \left\{ [\operatorname{Tr}\{U_{x}U_{z}^{\dagger}\}\operatorname{Tr}\{U_{z}U_{z'}^{\dagger}\}\{U_{z'}U_{y}^{\dagger}\} - \operatorname{Tr}\{U_{x}U_{z}^{\dagger}U_{z'}U_{y}^{\dagger}U_{z}U_{z'}^{\dagger}\} \right\} \\ &- (z' \to z)] \frac{1}{(z-z')^{4}} \left[-2 + \frac{X'^{2}Y^{2} + Y'^{2}X^{2} - 4(x-y)^{2}(z-z')^{2}}{2(X'^{2}Y^{2} - Y'^{2}X^{2})} \ln \frac{X'^{2}Y^{2}}{Y'^{2}X^{2}} \right] \\ &+ \left[\operatorname{Tr}\{U_{x}U_{z}^{\dagger}\}\operatorname{Tr}\{U_{z}U_{z'}^{\dagger}\}\{U_{z'}U_{y}^{\dagger}\} - \operatorname{Tr}\{U_{x}U_{z}^{\dagger}U_{z}U_{z}^{\dagger}\} - (z' \to z) \right] \\ &\times \left[\frac{(x-y)^{4}}{X^{2}Y'^{2}(X^{2}Y'^{2} - X'^{2}Y^{2})} + \frac{(x-y)^{2}}{(z-z')^{2}X^{2}Y'^{2}} \right] \ln \frac{X^{2}Y'^{2}}{X'^{2}Y^{2}} \right\} \end{split}$$

NLO kernel = Running coupling terms + Non-conformal term + Conformal term

Evolution equation for color dipoles in $\mathcal{N} = 4$

(I. Balitsky and G.A.C. 2009)

$$\begin{split} &\frac{d}{d\eta} \mathrm{Tr} \{ \hat{U}_{z_{1}}^{\eta} \hat{U}_{z_{2}}^{\dagger \eta} \} \\ &= \frac{\alpha_{s}}{\pi^{2}} \int d^{2} z_{3} \frac{z_{12}^{2}}{z_{13}^{2} z_{23}^{2}} \left\{ 1 - \frac{\alpha_{s} N_{c}}{4\pi} \left[\frac{\pi^{2}}{3} + 2 \ln \frac{z_{13}^{2}}{z_{12}^{2}} \ln \frac{z_{23}^{2}}{z_{12}^{2}} \right] \right\} \\ &\times [\mathrm{Tr} \{ T^{a} \hat{U}_{z_{1}}^{\eta} \hat{U}_{z_{3}}^{\dagger \eta} T^{a} \hat{U}_{z_{3}}^{\eta} \hat{U}_{z_{2}}^{\dagger \eta} \} - N_{c} \mathrm{Tr} \{ \hat{U}_{z_{1}}^{\eta} \hat{U}_{z_{2}}^{\dagger \eta} \}] \\ &- \frac{\alpha_{s}^{2}}{4\pi^{4}} \int \frac{d^{2} z_{3} d^{2} z_{4}}{z_{34}^{4}} \frac{z_{12}^{2} z_{34}^{2}}{z_{13}^{2} z_{24}^{2}} \left[1 + \frac{z_{12}^{2} z_{34}^{2}}{z_{13}^{2} z_{24}^{2} - z_{23}^{2} z_{14}^{2}} \right] \ln \frac{z_{13}^{2} z_{24}^{2}}{z_{14}^{2} z_{23}^{2}} \\ &\times \mathrm{Tr} \{ [T^{a}, T^{b}] \hat{U}_{z_{1}}^{\eta} T^{a'} T^{b'} \hat{U}_{z_{2}}^{\dagger \eta} + T^{b} T^{a} \hat{U}_{z_{1}}^{\eta} [T^{b'}, T^{a'}] \hat{U}_{z_{2}}^{\dagger \eta} \} (\hat{U}_{z_{3}}^{\eta})^{aa'} (\hat{U}_{z_{4}}^{\eta} - \hat{U}_{z_{3}}^{\eta})^{bb'} \end{split}$$

NLO kernel = Non-conformal term + Conformal term.

Non-conformal term is due to the non-invariant cutoff $\alpha < \sigma = e^{2\eta}$ in the rapidity of Wilson lines.

Evolution equation for color dipoles in $\mathcal{N} = 4$

(I. Balitsky and G.A.C. 2009)

$$\begin{split} &\frac{d}{d\eta} \mathrm{Tr} \{ \hat{U}_{z_{1}}^{\eta} \hat{U}_{z_{2}}^{\dagger \eta} \} \\ &= \frac{\alpha_{s}}{\pi^{2}} \int d^{2} z_{3} \frac{z_{12}^{2}}{z_{13}^{2} z_{23}^{2}} \left\{ 1 - \frac{\alpha_{s} N_{c}}{4\pi} \left[\frac{\pi^{2}}{3} + 2 \ln \frac{z_{13}^{2}}{z_{12}^{2}} \ln \frac{z_{23}^{2}}{z_{12}^{2}} \right] \right\} \\ &\times [\mathrm{Tr} \{ T^{a} \hat{U}_{z_{1}}^{\eta} \hat{U}_{z_{3}}^{\dagger \eta} T^{a} \hat{U}_{z_{3}}^{\eta} \hat{U}_{z_{2}}^{\dagger \eta} \} - N_{c} \mathrm{Tr} \{ \hat{U}_{z_{1}}^{\eta} \hat{U}_{z_{2}}^{\dagger \eta} \}] \\ &- \frac{\alpha_{s}^{2}}{4\pi^{4}} \int \frac{d^{2} z_{3} d^{2} z_{4}}{z_{34}^{4}} \frac{z_{12}^{2} z_{34}^{2}}{z_{13}^{2} z_{24}^{2}} \left[1 + \frac{z_{12}^{2} z_{34}^{2}}{z_{13}^{2} z_{24}^{2} - z_{23}^{2} z_{14}^{2}} \right] \ln \frac{z_{13}^{2} z_{24}^{2}}{z_{14}^{2} z_{23}^{2}} \\ &\times \mathrm{Tr} \{ [T^{a}, T^{b}] \hat{U}_{z_{1}}^{\eta} T^{a'} T^{b'} \hat{U}_{z_{2}}^{\dagger \eta} + T^{b} T^{a} \hat{U}_{z_{1}}^{\eta} [T^{b'}, T^{a'}] \hat{U}_{z_{2}}^{\dagger \eta} \} (\hat{U}_{z_{3}}^{\eta})^{aa'} (\hat{U}_{z_{4}}^{\eta} - \hat{U}_{z_{3}}^{\eta})^{bb'} \end{split}$$

NLO kernel = Non-conformal term + Conformal term.

Non-conformal term is due to the non-invariant cutoff $\alpha < \sigma = e^{2\eta}$ in the rapidity of Wilson lines.

For the conformal composite dipole the result is Möbius invariant

$$\begin{aligned} \left[\mathrm{Tr} \{ \hat{U}_{z_1}^{\eta} \hat{U}_{z_2}^{\dagger \eta} \} \right]^{\mathrm{conf}} &= \mathrm{Tr} \{ \hat{U}_{z_1}^{\eta} \hat{U}_{z_2}^{\dagger \eta} \} \\ &+ \frac{\alpha_s}{4\pi} \int d^2 z_3 \, \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \left[\frac{1}{N_c} \mathrm{tr} \{ \hat{U}_{z_1}^{\eta} \hat{U}_{z_3}^{\dagger \eta} \} \mathrm{tr} \{ \hat{U}_{z_3}^{\eta} \hat{U}_{z_2}^{\dagger \eta} \} - \mathrm{Tr} \{ \hat{U}_{z_1}^{\eta} \hat{U}_{z_2}^{\dagger \eta} \} \right] \ln \frac{a z_{12}^2}{z_{13}^2 z_{23}^2} + O(\alpha_s^2) \end{aligned}$$

$$\begin{split} &\frac{d}{d\eta} \Big[\mathrm{Tr} \{ \hat{U}_{z_1}^{\eta} \hat{U}_{z_2}^{\dagger \eta} \} \Big]^{\mathrm{conf}} \\ &= \frac{\alpha_s}{\pi^2} \int d^2 z_3 \, \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \Big[1 - \frac{\alpha_s N_c}{4\pi} \frac{\pi^2}{3} \Big] \Big[\mathrm{Tr} \{ T^a \hat{U}_{z_1}^{\eta} \hat{U}_{z_3}^{\dagger \eta} T^a \hat{U}_{z_3} \hat{U}_{z_2}^{\dagger \eta} \} - N_c \mathrm{Tr} \{ \hat{U}_{z_1}^{\eta} \hat{U}_{z_2}^{\dagger \eta} \} \Big]^{\mathrm{conf}} \\ &- \frac{\alpha_s^2}{4\pi^4} \int d^2 z_3 d^2 z_4 \frac{z_{12}^2}{z_{13}^2 z_{24}^2 z_{34}^2} \Big\{ 2 \ln \frac{z_{12}^2 z_{34}^2}{z_{14}^2 z_{23}^2} + \Big[1 + \frac{z_{12}^2 z_{34}^2}{z_{13}^2 z_{24}^2 - z_{14}^2 z_{23}^2} \Big] \ln \frac{z_{13}^2 z_{24}^2}{z_{14}^2 z_{23}^2} \Big\} \\ &\times \mathrm{Tr} \{ [T^a, T^b] \hat{U}_{z_1}^{\eta} T^{a'} T^{b'} \hat{U}_{z_1}^{\dagger \eta} + T^b T^a \hat{U}_{z_1}^{\eta} [T^{b'}, T^{a'}] \hat{U}_{z_2}^{\dagger \eta} \} [(\hat{U}_{z_3}^{\eta})^{aa'} (\hat{U}_{z_4}^{\eta})^{bb'} - (z_4 \to z_3)] \end{split}$$

Now Möbius invariant!

NLO evolution of composite "conformal" dipoles in QCD

$$\begin{split} & \frac{d}{d\eta} [\operatorname{tr} \{ \hat{U}_{z_1} U_{z_2}^{\dagger} \}]^{\operatorname{conf}} = \frac{\alpha_s}{2\pi^2} \int d^2 z_3 \left([\operatorname{tr} \{ \hat{U}_{z_1} \hat{U}_{z_3}^{\dagger} \} \operatorname{tr} \{ \hat{U}_{z_3} \hat{U}_{z_2}^{\dagger} \} - N_c \operatorname{tr} \{ \hat{U}_{z_1} \hat{U}_{z_2}^{\dagger} \}]^{\operatorname{conf}} \right. \\ & \times \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \Big[1 + \frac{\alpha_s N_c}{4\pi} \left(b \ln z_{12}^2 \mu^2 + b \frac{z_{13}^2 - z_{23}^2}{z_{13}^2 z_{23}^2} \ln \frac{z_{13}^2}{z_{23}^2} + \frac{67}{9} - \frac{\pi^2}{3} \right) \Big] \\ & + \frac{\alpha_s}{4\pi^2} \int \frac{d^2 z_4}{z_{34}^4} \left\{ \Big[-2 + \frac{z_{14}^2 z_{23}^2 + z_{24}^2 z_{13}^2 - 4 z_{12}^2 z_{34}^2}{2(z_{14}^2 z_{23}^2 - z_{24}^2 z_{13}^2)} \ln \frac{z_{14}^2 z_{23}^2}{z_{24}^2 z_{13}^2} \right] \\ & \times \left[\operatorname{tr} \{ \hat{U}_{z_1} \hat{U}_{z_3}^{\dagger} \} \operatorname{tr} \{ \hat{U}_{z_3} \hat{U}_{z_4}^{\dagger} \} \{ \hat{U}_{z_4} \hat{U}_{z_2}^{\dagger} \} - \operatorname{tr} \{ \hat{U}_{z_1} \hat{U}_{z_3}^{\dagger} \hat{U}_{z_4} \hat{U}_{z_3}^{\dagger} \hat{U}_{z_4}^{\dagger} \} - (z_4 \to z_3) \right] \\ & + \frac{z_{12}^2 z_{34}^2}{z_{13}^2 z_{24}^2} \Big[2 \ln \frac{z_{12}^2 z_{34}^2}{z_{14}^2 z_{23}^2} + \left(1 + \frac{z_{12}^2 z_{34}^2}{z_{13}^2 z_{24}^2 - z_{14}^2 z_{23}^2} \right) \ln \frac{z_{13}^2 z_{24}^2}{z_{14}^2 z_{23}^2} \Big] \\ & \times \left[\operatorname{tr} \{ \hat{U}_{z_1} \hat{U}_{z_3}^{\dagger} \} \operatorname{tr} \{ \hat{U}_{z_3} \hat{U}_{z_4}^{\dagger} \} \operatorname{tr} \{ \hat{U}_{z_4} \hat{U}_{z_2}^{\dagger} \} - \operatorname{tr} \{ \hat{U}_{z_1} \hat{U}_{z_4}^{\dagger} \hat{U}_{z_3} \hat{U}_{z_4}^{\dagger} \hat{U}_{z_4} \hat{U}_{z_3}^{\dagger} \} - (z_4 \to z_3) \right] \Big\} \end{split}$$

$$b = \frac{11}{3}N_c - \frac{2}{3}n_f$$
 I. Balitsky and G.A.C

 $K_{NLO BK}$ = Running coupling part + Conformal "non-analytic" (in j) part + Conformal analytic (N = 4) part

Linearized $K_{NLO BK}$ reproduces the known result for the forward NLO BFKL kernel Fadin and Lipatov (1998).

G. A. Chirilli (LBL)

The triple Pomeron vertex: Fan Diagrams

$$\frac{d}{d\eta}\hat{\mathcal{U}}(x,y) = \frac{\alpha_s N_c}{2\pi^2} \int \frac{d^2 z \ (x-y)^2}{(x-z)^2 (y-z)^2} \Big\{ \hat{\mathcal{U}}(x,z) + \hat{\mathcal{U}}(z,y) - \hat{\mathcal{U}}(x,y) - \frac{\hat{\mathcal{U}}(x,z)\hat{\mathcal{U}}(z,y)}{(x-z)^2 (y-z)^2} \Big\}$$

The Balitsky equation becomes the BK equation when

 $\langle \hat{\mathcal{U}}(x,z)\hat{\mathcal{U}}(z,y)\rangle \rightarrow \langle \hat{\mathcal{U}}(x,z)\rangle \langle \hat{\mathcal{U}}(z,y)\rangle$

which is the planar (leading in N_c) contribution to the triple Pomeron vertex

The triple Pomeron vertex: Fan Diagrams

$$\frac{d}{d\eta}\hat{\mathcal{U}}(x,y) = \frac{\alpha_s N_c}{2\pi^2} \int \frac{d^2 z \ (x-y)^2}{(x-z)^2 (y-z)^2} \Big\{ \hat{\mathcal{U}}(x,z) + \hat{\mathcal{U}}(z,y) - \hat{\mathcal{U}}(x,y) - \frac{\hat{\mathcal{U}}(x,z)\hat{\mathcal{U}}(z,y)}{(x,z)\hat{\mathcal{U}}(z,y)} \Big\}$$

The Balitsky equation becomes the BK equation when

 $\langle \hat{\mathcal{U}}(x,z)\hat{\mathcal{U}}(z,y)\rangle \to \langle \hat{\mathcal{U}}(x,z)\rangle\langle \hat{\mathcal{U}}(z,y)\rangle$

which is the planar (leading in N_c) contribution to the triple Pomeron vertex

We extract the non planar (next-to-leading in N_c) contribution from $\langle \hat{\mathcal{U}}(x,z)\hat{\mathcal{U}}(z,y)\rangle$ for diffractive processes and for "fan" diagrams.

G.A.C, L.Szymanowski and S.Wallon 2010

$$\begin{split} &\int d^2 \rho_a d^2 \rho_b \; \mathbf{16} \; h_\alpha(h_\alpha - 1) \bar{h}_\alpha(\bar{h}_\alpha - 1) E_{h_\alpha \bar{h}_\alpha}(\rho_{a\alpha}, \rho_{b\alpha}) \Bigg[\int d^2 \rho_c \; \frac{1}{|\rho_{ab}|^2 |\rho_{ac}|^2 |\rho_{bc}|^2} E_{h_\beta \bar{h}_\beta}(\rho_{a\beta}, \rho_{c\beta}) E_{h_\gamma \bar{h}_\gamma}(\rho_{b\gamma}, \rho_{c\gamma}) \\ &- \frac{2\pi}{N_c^2} \frac{1}{|\rho_{ab}|^4} \mathbf{Re} \{ \psi(1) + \psi(h_\alpha) - \psi(h_\beta) - \psi(h_\gamma) \} E_{h_\beta \bar{h}_\beta}(\rho_{a\beta}, \rho_{b\beta}) E_{h_\gamma \bar{h}_\gamma}(\rho_{b\gamma}, \rho_{c\gamma}) \Bigg] \end{split}$$

agrees with Bartels and Wusthoff (1995)

G. A. Chirilli (LBL)
$$\langle \operatorname{tr}\{U_{x_1}U_{x_2}^{\dagger}U_{x_3}U_{x_4}^{\dagger}\}\rangle = \mathcal{F}(\langle \operatorname{tr}\{U_iU_j^{\dagger}\}\rangle\langle \operatorname{tr}\{U_iU_j^{\dagger}\}\rangle) + \mathcal{O}\left(\frac{1}{N_c}\right)$$

with $i, j, k, l = x_1, x_2, x_3, x_4$ and $i \neq j$ and $k \neq l$.

 $\langle \operatorname{tr} \{ U_{x_1} U_{x_2}^{\dagger} U_{x_3} U_{x_4}^{\dagger} U_{x_5} U_{x_6}^{\dagger} \} \rangle = \mathcal{G}(\langle \operatorname{tr} \{ U_i U_j^{\dagger} \} \rangle \langle \operatorname{tr} \{ U_k U_l^{\dagger} \} \rangle \langle \operatorname{tr} \{ U_m U_n^{\dagger} \} \rangle) + \mathcal{O}\left(\frac{1}{N_c}\right)$ with *i*, *j*, *k*, *l*, *m*, *n* = *x*₁, *x*₂, *x*₃, *x*₄ and *i* ≠ *j*, *k* ≠ *l m* ≠ *n*

Any trace of Wilson lines or product of any trace of Wilson lines can be re-written in terms of dipoles.

- High-energy operator expansion in color dipoles works at the NLO level.
- The analytic NLO photon impact factor in coordinate space has been calculated: the result is conformal.
- The NLO BK kernel in QCD and $\mathcal{N} = 4$ SYM agrees with NLO BFKL eigenvalues.
- The NLO BK kernel in QCD is a sum of the running-coupling part and conformal part.
- The planar (leading N_c) and non-planar (next-to-leading N_c) contribution to the triple Pomeron vertex has been derived through the Wilson line formalism.
- Truncation of the Balitsky-hierarchy.

- Fourier transform of the NLO Photon Impact Factor.
- $\blacksquare \ 1\mathbb{P} o 3\mathbb{P}$, $n\mathbb{P} o m\mathbb{P}$
- Composite conformal dipole from conformal Ward identity.