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• We use general properties of scattering amplitudes in QCD to study 
support properties of parton correlation functions in particular gluonic 
pole matrix elements 

• Assuming analyticity and unitarity to hold for forward offshell-parton 
hadron scattering we uncover the singularity structure which 
determines support properties for PDFs and PFFs

• We show that single & mutiple gluon pole matrix elements vanish in the 
limit when the momentum of these gluons go to zero for fragmentation

• These techniques applied 

• Quark quark correlation  (collinear) Landshoff Polkinghorne Short NPB 71, PRpts. 72 ...

• Multi-parton correlators (collinear) Jaffe NPB 83

• GPDs collinear correlators Diehl Gousset PLB 98, Belitsky & Radyushkin PRpts. 2005, Goldstein & 
Liuti arXive hep/ph 2010 ...

Pre-Summary (Pre-DIS)Outline 
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•Importance of “Transverse Structure”of 
Hadrons is accounted for in terms of quark and 
gluon correlators which are sensitive to 
•Observables are built from these correlations
•e.g. TSSAs & AAs
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TSSAs in SIDIS

Structure functions that are 
extracted
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Factorization & Sensitivity to                     TMDsPT ∼ k⊥

Tree level-Factorization Ralson & Soper NPB 1979-Drell Yan, 
Mulders Tangerman NPB 1996-SIDIS
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B. Transverse momentum dependent distributions at tree level

Based on QCD factorization arguments for the reaction at large momentum transfer Q ! ΛQCD at tree level
(zeroth order in αS) [4, 6], the hadronic tensor appearing in the cross section can be further decomposed into a hard
reaction and soft parts. The latter include the transverse momentum dependent parton distribution functions (TMDs),
here generically denoted f , and transverse momentum dependent fragmentation functions, generically denoted D. At
leading order in αs, the structure functions FF

XY can then be written as convolutions of distribution and fragmentation
functions [6]:

C
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where ea is the electric charge of quark flavor a, where w is an appropriate weighting function, and whereKT ≡ −kT z.
For example,

F sin(φh−φS)
UT,T = C

[
−(ĥ·pT /M)f⊥

1T D1

]
× (1 +O(αs)) , (7)

with ĥ ≡ P h⊥/|P h⊥|. Here the TMD f⊥
1T is the Sivers function and the D1 is the unpolarized fragmentation function.

C. The soft factor

The formalism becomes more complicated once diagrams beyond leading order in αs are taken into account. Various
strategies have been proposed to address extra divergences that appear at one loop level and higher order [16–18].
Improvement of these frameworks for transverse momentum dependent factorization and establishment of the complete
proofs of the corresponding factorization theorems, is still an active field of research, see, e.g. [19]. The proposed
strategies require the introduction of new variables that act as regularization scales, and, most importantly for this
work, modify the convolution integral Eq. (6) by introducing a so called soft factor S coming from soft-gluon radiation.
In the following, we are going to show that this soft factor cancels in certain weighted asymmetries. We will show that
this cancellation happens quite generally, independent of the particular formalism used1. However, for definiteness,
we choose here the “JMY” framework of Refs. [18, 22], which is essentially based on the ideas of Collins and Soper
for the factorization of e+e− scattering [16]. The convolution Eq. (6) becomes in this framework

C
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]
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T , µ
2, ζ̂/z, ρ), (8)

Here µ is a UV renormalization scale, and ζ, ζ̂ and ρ are rapidity cutoff parameters that are described in more detail
in Ref. [22] and section III below.

Our example Eq. (7) now reads 2

F sin(φh−φS)
UT,T = C

[
Hsin(φh−φS)

UT,T ; −(ĥ·pT /M) f⊥
1T S+D1

]
. (9)

where S+ is the soft factor for SIDIS, see Ref. [22] and section III below. At leading order in αs one has [22]

S+(%2T , µ
2, ρ) = 1, Hsin(φh−φS)

UT,T (Q2, µ2, ρ) = 1, and we recover Eq. 6. The above description applies in the kinematic

region |P h⊥|/z % Q2. In general, at large |P h⊥|/z ∼ Q a term (generically called Y ) should be added that takes care

1 In the b-space formulation beyond leading order, the cancellation of the soft factor is accompanied by a similar cancellation of the
Sudakov factor [20, 21], which is introduced to resum large logarithms and which may include parts of the soft factor depending on the
choice of factorization scale.

2 F
sin(φh−φS)
UT,T corresponds to F

(1)
UT in Eq. (15) of Ref. [22] up to a factor xB . Note that the Sivers function f⊥

1T is denoted qT in that
reference, and the unpolarized fragmentation function D1 is called q̂. Our pT corresponds to their kT and our KT corresponds to their
pT .
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The projections leading in 1/Q areleading

PDFs(x,pT )

Φ[γ
+](x,pT ) ≡ f1(x,p

2
T ) +

εijT pT iSTj
M

f⊥1T (x,p
2
T )

=
∫
[dσdτ δ( )]

{

[A2 + xA3] +
εijT pT iSTj
M

[−A12]
}

, (3.38)

Φ[γ
+γ5](x,pT ) ≡ λ g1L(x,p

2
T ) +

pT ·ST
M

g1T (x,p
2
T )

=
∫
[dσdτ δ( )]

{

λ

[

−A6 −
(
σ − 2xM2
2M2

)

(A7 + xA8)

]

+
pT ·ST
M

(A7 + xA8)

}

, (3.39)

Φ[iσ
i+γ5](x,pT ) ≡ SiT h1T (x,p

2
T ) +

piT
M

(

λ h⊥1L(x,p
2
T ) +

pT ·ST
M

h⊥1T (x,p
2
T )

)

+
εijT p

j
T

M
h⊥1 (x,p

2
T )

=
∫
[dσdτ δ( )]

{

−SiT (A9 + xA10) +
εijT p

j
T

M
[−A4] (3.40)

+
λ piT
M

[

A10 −
(
σ − 2xM2
2M2

)

A11

]

+
piT
M

pT ·ST
M

A11

}

.

The probabilistic interpretation of the leading transverse momentum depen-
dent PDFs is schematically shown in Fig. 3.10. There are two groups of additional
PDFs possible because of the presence of a non-vanishing transverse quark mo-
mentum. The functions g1T (x,p2T ), h

⊥
1L(x,p

2
T ), and h

⊥
1T (x,p

2
T ) are non-vanishing,

if there is a correlation between longitudinal quark polarisation (helicity) and
transverse hadron polarisation, or vice versa. This possibilities, surprising at
first glance, do exist because of the extra distinction of a direction by the trans-
verse quark momentum components; otherwise they would be forbidden simply
by rotational invariance. Note that the existence of two transverse directions x
and y is reflected in the number of independent chiral-odd functions. The sec-
ond group of additional functions consists of the (naive) time-reversal odd PDFs
f⊥1T (x,p

2
T ) (the so-called Sivers function [19]) and h

⊥
1 (x,p

2
T ) correlating transverse

quark momentum to transverse hadron spin, or transverse quark momentum to
transverse quark spin, respectively. 2

A symmetric integration over pT relates the transverse momentum dependent
PDFs with their integrated counterparts

f(x) =
∫
d2pT f(x,p

2
T ) (3.41)

for a generic PDF f(x,p2T ). Note that a symmetric integration of Φ
[iσi+γ5](x,pT )

over pT receives two non-vanishing contributions resulting in the identification
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(
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T ) +
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2
T )

)
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2A discussion on the possible existence of non-vanishing time-reversal odd PDFs is given in
comparison with time-reversal odd PFFs in the next subsection 3.2.3.
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PDFs with their integrated counterparts
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∫
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2A discussion on the possible existence of non-vanishing time-reversal odd PDFs is given in
comparison with time-reversal odd PFFs in the next subsection 3.2.3.
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2A discussion on the possible existence of non-vanishing time-reversal odd PDFs is given in
comparison with time-reversal odd PFFs in the next subsection 3.2.3.
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2A discussion on the possible existence of non-vanishing time-reversal odd PDFs is given in
comparison with time-reversal odd PFFs in the next subsection 3.2.3.

8 Leading Twist TMDs: Correlation Matrix Dirac space



Collins Soper NPB 1981, Collins Metz PRL 2004, Ji, Ma, Yuan PRD 2005,  also Bacchetta Boer Diehl Mulders JHEP 2008
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C
[
H;wfSD

]
≡ xBH(Q2, µ2, ρ)

∑
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•Extra divergences at one loop and higher
•Various strategies to address them at one loop/higher
•Extra variables needed to regulate divergences 
•Modifies convolution integral by introduction soft factor
•Will show cancels in certain weighted asymmetries

More systematically beyond leading 
order (“tree level”)

CS NPB 81, Collins Hautman PLB 00, Ji Ma Yuan PRD 05 
see also Cherednikov Karanikas Stefanis  NPB 10

See talks of Cherednikov, 
Collins and Abyat  

soft gluon radiation 



Sensitivity to pT ∼ k⊥ << Q2 TSSAs thru “T -Odd”TMD

• Sivers PRD: 1990 TSSA is associated w/ correlation transverse spin and
momenta in initial state hadron

∆σpp↑→πX ∼ D ⊗ f⊗∆f⊥⊗σ̂Born ⇒ iST · (P × k⊥) → f⊥
1T (x, k⊥)

• Collins NPB: 1993 TSSA is associated with transverse spin of fragmenting
quark and transverse momentum of final state hadron

∆σep↑→eπX ∼ ∆D⊥ ⊗ δf ⊗ σ̂Born ⇒ isT · (P × p⊥) → H⊥
1 (x, p⊥)

9
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∆f⊥(x, k⊥) = iST · (P × k⊥)

Observable Effects
TSSAs thru “T-odd” non-pertb. spin-orbit correlations....

pT ∼ kT <<
√

Q2Sensitivity to 
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√

Q2 TSSAs thru “T -Odd”TMD

• Sivers PRD: 1990 TSSA is associated w/ correlation transverse spin and
momenta in initial state hadron

P −
ST

k⊥ k⊥

ST

P

x

∆σpp↑→πX ∼ D ⊗ f⊗∆f⊥⊗σ̂Born ⇒ iST · (P × k⊥) → f⊥
1T (x, k⊥)

• Collins NPB: 1993 TSSA is associated with transverse spin of fragmenting
quark and transverse momentum of final state hadron

k −k⊥ k⊥k

Pπ Pπ

x

sT

sT

Explanation, pT ∼ k⊥ << Q2 TSSAs thru “T -Odd”TMD

• Sivers PRD: 1990 TSSA is “T -odd” correlation transverse spin and
momenta

∆σpp↑→πX ∼ D ⊗ f⊗∆f⊥⊗σ̂Born ⇒ iST · (P × k⊥) → f⊥
1T (x, k⊥)

• Collins NPB: 1993

∆σep↑→eπX ∼ ∆D⊥ ⊗ f ⊗ σ̂Born ⇒ isT · (P × p⊥) → H⊥
1 (x, p⊥)

8

Explanation, pT ∼ k⊥ << Q2 TSSAs thru “T -Odd”TMD

• Sivers PRD: 1990 TSSA is “T -odd” correlation transverse spin and
momenta

∆σpp↑→πX ∼ D ⊗ f⊗∆f⊥⊗σ̂Born ⇒ iST · (P × k⊥) → f⊥
1T (x, k⊥)

• Collins NPB: 1993

∆σep↑→eπX ∼ ∆D⊥ ⊗ f ⊗ σ̂Born ⇒ isT · (P × p⊥) → H⊥
1 (x, p⊥)

8

∆D⊥(x, p⊥) = isT · (P × p⊥)

.... Fragmentation...



Source of T-Odd Contributions to TSSA and AA in SIDIS

• “T-odd” distribution-fragmentation functions enter transverse
momentum dependent correlators at leading twist Boer, Mulders: PRD 1998

Φ(x, pT )=
1

2

n
f1(x, pT) /P + ih⊥

1 (x, pT)
[ /pT , /P ]

2M
− f⊥

1T (x, pT )
εij

T pTiSTj

M
/P · · ·

o

∆(z, kT )=
1

4

n
zD1(z, kT) /Ph + izH⊥

1 (z, kT )
[kT , /Ph]

2Mh
− zD⊥

1T(z, kT)
εij

T kTiSTj

Mh
/Ph + · · ·

o

dσ"N→"πX
{λ,Λ} ∝ f1 ⊗ dσ̂"q→"q ⊗ D1

+ h⊥
1 ⊗ dσ̂"q→"q ⊗ H⊥

1 · cos 2φ

+ |ST | · h1 ⊗ dσ̂"q→"q ⊗ H⊥
1 · sin(φ + φS) Collins

+ |ST | · f⊥
1T ⊗ dσ̂"q→"q ⊗ D1 · sin(φ − φS) Sivers
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FIG. 1: Definition of the azimuthal angles of the two hadrons.
In each case, φi is the angle between the plane spanned by the
lepton momenta and the thrust axis n̂, and the plane spanned
by n̂ and the hadron transverse momentum Phi⊥.

culations using reconstructed and generated tracks shows
an average angular deviation between the two of 75 mrad,
with a spread with root mean square of 74 mrad. This
smearing of the reconstructed axis leads to a reduction in
the measured azimuthal asymmetry, as discussed below.

Two experimental methods are used to measure az-
imuthal asymmetries. The first method (M12) gives rise
to the cos(φ1 + φ2) modulation in the di-hadron yields.
The yield is recorded as a function of the hadron angle
sum φ1+φ2, N12 = N12(φ1+φ2), and divided by the aver-
age yield to obtain the normalized rate R12 := N12(φ1 +
φ2)/〈N12〉, parametrized by R12 = a12 cos(φ1 +φ2)+ b12.

Here, a12 is a function of the first moment (H⊥q,[1]
1 ) of

the Collins function [10]

a12(θ, z1, z2) =
sin2 θ

1 + cos2 θ

H⊥q,[1]
1 (z1)H

⊥q,[1]
1 (z2)

Dq
1(z1)D

q

1(z2)
, (2)

where θ is the angle between the incoming lepton axis
and the thrust axis. An alternative method (M0) does
not rely on knowledge of the thrust axis: yields are mea-
sured as a function of φ0, the angle between the plane
spanned by the momentum vector of the first hadron and
the lepton momenta, and the plane defined by the two
hadron momenta. The corresponding normalized rate
R0 = N0(2φ0)/〈N0〉 is a function of cos(2φ0), and (fol-
lowing [11]) can be parametrized as a0 cos(2φ0)+ b0 with

a0(θ2, z1, z2) =
sin2 θ2

1 + cos2 θ2

f
(

H⊥q
1 (z1)H

⊥q

1 (z2)/M1M2

)

Dq
1(z1)D

q

1(z2)
.

(3)
f denotes convolution over the transverse hadron mo-
menta. M1 and M2 are the masses of the two hadrons, z1

and z2 are their fractional energies and θ2 is the angle be-
tween the beam axis and the second hadron momentum.
The sin θ2 dependence reflects the probability of finding
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FIG. 2: Top: Unlike(U)-sign and like(L)-sign pion pair nor-
malized rate R0 vs. 2φ0 in the bin z1(z2) ∈ [0.5, 0.7], z2(z1) ∈
[0.3, 0.5]. Bottom: Pion pair double ratio RU

0 /RL
0 vs. 2φ0 in

the same bin. The solid and slashed lines show the results of
the fit described in the text.

the two initial quarks with transverse spin. D
q

1(z) and

H
⊥q

1 denote fragmentation functions for anti-quarks.

To reduce hard gluon radiation, a two-jet-like topology
is enforced by requiring a thrust value T > 0.8, calcu-
lated from all charged and neutral particles with momen-
tum exceeding 0.1 GeV/c. The following selection criteria
were imposed on the charged pions used in the analysis
methods M12 and M0: (1) Tracks are required to origi-
nate from the collision vertex, and to lie in a fiducial re-
gion −0.6 < cos(θlab) < 0.9, where θlab is the polar angle
in the laboratory frame. (2) A likelihood ratio is used to
separate pions from kaons [5]: L(π)/[L(K)+L(π)] > 0.7.
MC studies show that less than 10% of pairs have at least
one particle misidentified. (3) We require z1, z2 > 0.2, to
reduce decay contributions to the pion yields. In ad-
dition we require the visible energy in the detector to
exceed 7 GeV. (4a) The tracks must lie in opposite jet-
hemispheres: (Ph1 ·n̂)(Ph2 ·n̂) < 0. (4b) QT is the trans-
verse momentum of the virtual photon from the e+e− an-
nihilation in the rest frame of the hadron pair [11]. We
require QT < 3.5 GeV/c, which removes contributions
from hadrons assigned to the wrong hemisphere.

The analysis is performed in (z1, z2) bins with bound-
aries at zi = 0.2, 0.3, 0.5, 0.7 and 1.0, where complemen-
tary off-diagonal bins (z1, z2) and (z2, z1) are combined.
In each (z1, z2) bin, normalized rates R12 and R0 are eval-
uated in 8 bins of constant width in the angles φ1 + φ2

and 2φ0 respectively, and fitted with the functional form
introduced above. Results in the lowest (z1, z2) bin are
shown in Fig. 2. In both methods the constant term (b12

or b0) is found to be consistent with unity for all bins.

In addition to their sensitivity to the Collins effect, R12

and R0 have contributions from instrumental effects and
QCD radiative processes: these are charge independent,

Ralf Seidl EIC Workshop, 
Hampton, VA May 08

Belle KEKB measurement of the Collins 
Frag. Function  PRL 2006 & arXiv:0805.2975

From talk of Ralf Seidl

Reliability of Transversity Extraction Universality of Collins Fragmentation Function 



paper for h?1 to estimate the azimuthal asymmetry Acos2!
UU

[cf. Eq. (41)], where

Acos2!
UU !

R
d! cos2!d"R

d!d"
(45)

and d! is shorthand notation for the phase space integra-

tion. In Fig. 6 we display the Acos2!
UU ðPTÞ in the range of

future JLab kinematics [73] (0:08< x< 0:7, 0:2< y<
0:9, 0:3< z < 0:8, Q2 > 1 GeV=c, and 1<E# <
9 GeV) and HERMES kinematics [1] (0:23< x< 0:4,
0:1< y < 0:85, 0:2< z < 0:7, with Q2 > 1 GeV=c and
4:5<E# < 13:5 GeV). In Fig. 7 we display the x and z
dependence in the range 0:5<PT < 1:5 GeV=c. It should
be noted that this asymmetry was measured at HERA by
ZEUS, but at very low x and very highQ2 [35], where other
QCD effects dominate. It was also measured at CERN by
EMC [74], but with low precision. Those data were ap-
proximated by Barone, Lu, and Ma [75] in a u-quark
dominating model for h?1 , with a Gaussian, algebraic
form and a Gaussian ansatz for the Collins function. Our
dynamical approach leads to different predictions for the
forthcoming JLab data.

B. Single-spin asymmetry Asinð2!Þ
UL in SIDIS

Since we have calculated the chiral-odd but T-even
parton distribution h?1L [cf. Eqs (12) and (13)], we use
this result together with the result of Ref. [71] for the
Collins function to give a prediction for the sinð2!Þ mo-
ment of the single-spin asymmetry AUL for a longitudinally
polarized target. In particular, we are able to take into
account the flavor dependence of the asymmetry. We adopt
a similar procedure for the azimuthal cosð2!Þ asymmetry

for treating the leading twist observable Asinð2!Þ
UL .

A decomposition into structure functions of the cross
section of semi-inclusive DIS for a longitudinally polar-
ized target reads (see e.g. [31])

d"UL

dxdydzd!hdP
2
h?

$ 2#$2

xyQ2 Sk½ð1& yÞ sinð2!hÞFsinð2!Þ
UL

þ ð2& yÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1& y

p
sinð!hÞFsin!

UL (;
(46)

where Sk is the projection of the spin vector on the direc-
tion of the virtual photon. In a partonic picture the structure

function Fsinð2!Þ
UL is a leading twist object (while Fsin!

UL is
subleading), and it is given by a convolution of the TMD
h?1L and the Collins function (cf. [31])

Fsinð2!Þ
UL ¼ C

"
& 2ĥ * kTĥ * pT & kT * pT

MMh
h?1LH

?
1

#
; (47)

where the explicit form of the convolution is given in
Eq. (42).
We insert our result for h?1L [Eqs. (12) and (13)] and the

result of Ref. [71] into Eq. (47) to compute the single-spin
asymmetry. This is the first calculation of this observable in

the spectator framework, whereas the part of Fsinð!Þ
UL de-

scribed by higher twist T-odd PDFs has been analyzed in
the diquark model in Refs. [25,26,28]. Similar phenome-

nology for Fsinð2!Þ
UL and Fsinð!Þ

UL has been performed in
Refs. [76,77] using the framework of the chiral quark
soliton model.
We display the results for the single-spin asymmetry

Asinð2!Þ
UL in Fig. 8 using the kinematics of the upcoming
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FIG. 6 (color online). Left panel: The cos2! asymmetry for #þ and #& as a function of PT at JLab 12 GeV kinematics. Right
panel: The cos2! asymmetry for #þ and #& as a function of PT for HERMES kinematics.
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Fig. 6. The Sivers distribution functions for u, d and s flavours,
at the scale Q2 = 2.4 (GeV/c)2, as determined by our simul-
taneous fit of HERMES and COMPASS data (see text for de-
tails). On the left panel, the first moment x ∆Nf (1)(x), eq. (17),
is shown as a function of x for each flavour, as indicated. Simi-
larly, on the right panel, the Sivers distribution x ∆Nf(x, k⊥) is
shown as a function of k⊥ at a fixed value of x for each flavour,
as indicated. The highest and lowest dashed lines show the
positivity limits |∆Nf | = 2f .

Sivers distribution. In particular, we definitely find

∆Nfs̄/p↑ > 0 (18)

and confirm the previous findings for valence
flavours [2,7–9],

∆Nfu/p↑ > 0, ∆Nfd/p↑ < 0. (19)

There are simple reasons for the above results. The
Sivers distribution function for s̄ quarks turns out to
be definitely positive, due to the large positive value

of Asin(φh−φS)
UT for K+; notice that the value of Ns̄ sat-

urates the positivity bound |Nq| ≤ 1. Similarly, the
positive sign of ∆Nfu/p↑ is, essentially, driven by the
positive π+ and K+ SSAs and the opposite sign of
∆Nfd/p↑ by the small SSA measured by COMPASS
on a deuteron target. The u and d Sivers functions are
also predicted to be opposite in the large-Nc limit [29]
and in chiral models [30].
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Fig. 7. The Sivers distribution functions for u and d flavours,
at the scale Q2 = 2.4 (GeV/c)2, as determined by our present
fit (solid lines), are compared with those of our previous fit [2]
of SIDIS data (dashed lines), where π0 and kaon productions
were not considered and only valence quark contributions were
taken into account. This plot clearly shows that the Sivers func-
tions previously found are consistent, within the statistical un-
certainty bands, with the Sivers functions presently obtained.

– The Sivers functions for ū, d̄ and s quarks, instead,
turn out to have much larger uncertainties; even the
sign of the ū and s Sivers functions is not fixed by avail-
able data, while ∆Nfd̄/p↑ appears to be negative. This
could be consistent with a positive contribution from u
quarks, necessary to explain the large K+ asymmetry,
which is decreased, for π+, by a negative d̄ contribu-
tion. One might expect correlated Sivers functions for
s and s̄ quarks: we have actually checked that choosing
∆Nfs/p↑ = ±∆Nfs̄/p↑ slightly worsens the χ2

dof (from
1 up to about 1.1), but still leads to a reasonable fit.

– We notice that the Burkardt sum rule [31]

∑

a

∫

dxd2k⊥ k⊥ fa/p↑(x,k⊥) ≡
∑

a

〈ka
⊥〉 = 0, (20)

where, from eqs. (2) and (17),

〈ka
⊥〉 =

[

π

2

∫ 1

0
dx

∫ ∞

0
dk⊥ k2

⊥ ∆Nfa/p↑(x, k⊥)

]

(S×P̂ ) =

mp

∫ 1

0
dx ∆Nf (1)

q/p↑(x) (S×P̂ )≡〈ka
⊥〉 (S×P̂ ), (21)

is almost saturated by u and d quarks alone at Q2 =
2.4 (GeV/c)2:

〈ku
⊥〉 + 〈kd

⊥〉 = −17+37
−55 (MeV/c),

〈kū
⊥〉 + 〈kd̄

⊥〉 + 〈ks
⊥〉 + 〈ks̄

⊥〉 = −14+43
−66 (MeV/c).

(22)

The individual contributions for quarks are:

〈ku
⊥〉=96+60

−28 (MeV/c), 〈kd
⊥〉=−113+45

−51 (MeV/c),

〈kū
⊥〉=2+24

−11 (MeV/c), 〈kd̄
⊥〉=−28+20

−60 (MeV/c), (23)

〈ks
⊥〉=−4+11

−15 (MeV/c), 〈ks̄
⊥〉=17+30

−8 (MeV/c),

Gamberg, Goldstein,Schlegel PRD 77, 2008
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They are F.T. of forward ME of non-local quark and gluon ops. btwn 
hadrons states.

Explore this in Correlator

ΦU [C]

ij (x, kT ) =
∫

dξ− d2ξT

(2π)3
eik·ξ〈P |ψj(0)U [C]

[0;ξ] ψi(ξ) |P 〉
⌋

ξ+=0=LF

2.5. correlators and distribution functions 19

PSfrag replacements
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Figure 2.7: The hadron tensor in semi-inclusive deep-inelastic scattering (SIDIS).

Bjorken limit the structure functions are given by

F2 = 2xB F1 =
∑

q
xB e2

q
Tr
[
Φ(xB) /n

]

2P·n . (2.33)

This proportionality between the two unpolarized structure functions is the Callan-Gross
relation [51]. Inserting these expressions for the structure functions in the cross sec-
tion (2.16) it is seen that this equals the parton model cross section (2.1) if one identifies
the projection Tr

[
Φ(xB) /n

]
/2P·n with the quark probability distribution φq/H(xB). This

identification is further supported by noting that the projection is a combination of the
‘good’ fields only Tr

[
Φ /n
]∝〈ψ†+ ψ+〉. In the lightcone gauge Aa·n≡0 the good fields

ψ+≡ 1
2 /n+ /nψ are the dynamical variables, while the bad fields ψ−≡ 1

2 /n /n+ ψ are not inde-
pendent variables and can be expressed in terms of the good fields, see e.g. [52, 53].
Therefore, one can make a Fourier expansion (at ξ·n=0) of the good fields in terms of
plane wave solutions of the Dirac equation

ψ+(ξ) =
1

(2π)3

∞∫

0

dp+

2p+

∫
d2pT

∑

λ

{
uλ+(p)e−ip·ξ bλ(p) + !λ+(p)eip·ξ d†λ(p)

}
. (2.34)

Using this expansion and the restriction xB!0 the projection can be written as (see, e.g.,
refs. [54,55])

Tr
[
Φ(xB) /n

]

2P·n ∝
∫

d2pT

(2π)2

∑
λ
〈P,S |b†λ(xB,pT )bλ(xB,pT ) |P,S 〉 , (2.35)

which is the expectation value of the number operator in the proton state for unpolarized
quarks with momentum fraction xB.

Having associated the projection of the quark correlator with the unpolarized quark
probability distribution, the parametrization of the quark correlator is expected to be of
the form Φ(x)= 1

2φq/H(x) /P+ · · · . As the collinear quark probability functions φq/H(x)
only depend on the momentum fraction, it is seen from the relation (2.33) that in the
Bjorken limit the structure functions are functions of the Bjorken variable xB only and do
not depend on the hard scale Q [56]. This property is called scaling. As for the vector pro-
jection considered here, it can be shown that the pseudo-vector projection Tr

[
Φ(x) /nγ5

]

is proportional to the helicity distribution (distribution of longitudinally polarized quarks
in a longitudinally polarized hadron) and that Tr

[
Φ(x) [ /n,γi]γ5

]
is proportional to the

∆[U ]
ij (z, kT ) =

∑

X

∫
dξ+ d2ξT

(2π)3
ei k·ξ〈0|U[0,ξ]ψi(ξ)|P,X〉〈P,X|ψ̄j(0)|0〉|LF

For          dependent quantities 
non-locality restricted to the light 
front 

kT

ξ+ = 0

Wµν =
∫

d4pd4kδ4(p + q − k)Tr
[
ΦU [C]

[∞;ξ](p)H†
µ(p, k)∆(k)Hν(p, k)

]



Gauge link determined by summing leading gluon interactions
Efremov,Radyushkin Theor. Math. Phys. 1980, Belitsky, Ji, Yuan NPB 2003,
Boer, Bomhof, Mulders Pijlman, et al.  2003 - 2008- NPB, PLB, PRD 
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Gauge link ensures Color Gauge Inv.

Some models ...
Belitsky, Ji, Yuan NPB 2002,
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and the other one is that the Sivers functions is assumed to be universal and equal to those in SIDIS process,
∆Nfa/A(xa, kaT ) = ∆NfSIDIS

a/A (xa, kaT ). In this paper, we will still work within the framework of the GPM approach,
in other words, we will assume the TMD factorization is a reasonable phenomenological starting point. However, at
the same time, we will take into account the initial- and final-state interactions. Since both ISIs and FSIs contribute
for single inclusive particle production, in principle the Sivers functions in inclusive particle production in hadronic
collisions should be different from those probed in SIDIS process. We thus need to carefully analyze these ISIs and
FSIs for all the partonic scattering processes relevant to single inclusive particle production to determine the proper
Sivers functions to be used in the formalism. In other words, this new formalism will be

Eh
d∆σ

d3Ph
=

α2
s

S

∑

a,b,c

∫
dxa

xa
d2kaT ∆Nfab→c

a/A (xa, kaT )
1
2
SA · (P̂A × k̂aT )

∫
dxb

xb
d2kbT fb/B(xb, kbT )

×
∫

dzc

z2
c

Dh/c(zc)HU
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (5)

in which a process-dependent Sivers function denoted as ∆Nfab→c
a/A (xa, kaT ) is used rather than that from SIDIS

∆NfSIDIS
a/A (xa, kaT ) as in the conventional GPM approach.

B. Initial- and final-state interactions

In this subsection, we will discuss how to formulate the initial- and final-state interactions. The crucial point is
that the existence of the Sivers function in the polarized nucleon relies on the initial- and final-state interactions
between the struck parton and the spectators from the polarized nucleon through the gluon exchange. Thus by
analyzing these interactions, one can determine the proper Sivers function ∆Nfab→c

a/A (xa, kaT ) to be used for the
corresponding partonic scattering ab → cd. We start with the classic examples: the final-state interaction in SIDIS,
and the initial-state interaction for DY process. To the leading order (one-gluon exchange), they are shown in Fig. 1.
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FIG. 1: Final-state interaction in SIDIS (left) and initial-state interaction in DY (right) processes.

For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to

ū(pc)(−ig)γ−T a i(p/c − k/)
(pc − k)2 + iε

≈ ū(pc)
[

g

−k+ + iε
T a

]
, (6)

where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.
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FIG. 2: Sivers function in SIDIS process in the first non-trivial order (one-gluon exchange).
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in which a process-dependent Sivers function denoted as ∆Nfab→c
a/A (xa, kaT ) is used rather than that from SIDIS

∆NfSIDIS
a/A (xa, kaT ) as in the conventional GPM approach.

B. Initial- and final-state interactions

In this subsection, we will discuss how to formulate the initial- and final-state interactions. The crucial point is
that the existence of the Sivers function in the polarized nucleon relies on the initial- and final-state interactions
between the struck parton and the spectators from the polarized nucleon through the gluon exchange. Thus by
analyzing these interactions, one can determine the proper Sivers function ∆Nfab→c

a/A (xa, kaT ) to be used for the
corresponding partonic scattering ab → cd. We start with the classic examples: the final-state interaction in SIDIS,
and the initial-state interaction for DY process. To the leading order (one-gluon exchange), they are shown in Fig. 1.

!

"
!

#$%

&

'

()

*

+

*

,

'

!

#$%) (+

!
"

FIG. 1: Final-state interaction in SIDIS (left) and initial-state interaction in DY (right) processes.
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4

On the other hand, for DY process, the initial-state interaction (as in Fig. 1(right)) leads to

v̄(pb)(−ig)γ−T a −i(p/b + k/)
(pb + k)2 + iε

≈ v̄(pb)
[

g

−k+ − iε
T a

]
, (7)

which has the same real part and opposite imaginary part compared to SIDIS process. This leads to the fact that the
spin-averaged TMD PDFs are the same, while the Sivers function will be opposite in SIDIS and DY processes. This
conclusion can be generalized to all order, and has been proven to be true using parity and time-reversal invariant
arguments [6, 8].
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FIG. 3: Initial- and final-state interactions in qq′ → qq′: (a) initial-state interaction, (b) final-state interaction, (c) and (d) the
final-state interactions for the unobserved particle.

Now let us turn to the case for inclusive single particle production in hadronic collisions, in which 2 → 2 partonic
scattering is the leading order contribution, where both initial- and final-state interactions contribute. We will
start with a simple example: qq′ → qq′. Here the initial-quark q is from the polarized nucleon, and the final-quark q
fragments to the final-state hadron. The one-gluon exchange approximation for the initial- and final-state interactions
are shown in Fig. 3. Under the eikonal approximation, for initial-state interaction Fig. 3(a),

i(p/b + k/)
(pb + k)2 + iε

(−ig)γ−T aū(pb) =
[

−g

−k+ − iε
T a

]
ū(pb), (8)

Likewise, for the final-state interaction Fig. 3(b), we have
[

g

−k+ + iε
T a

]
. (9)

Thus both interactions contribute to the phase −iπδ(k+), which is the same as in the SIDIS process as in Eq. (6).
However, they will have different color flow. To extract the extra color factors for Fig. 3(a) and (b) as compared to
the usual qq′ → qq′ without gluon attachments, we resort to the method developed in [14, 15, 25]. We obtain the
color factors CI (CFc) for initial (final)-state interaction

CI = − 1
2N2

c

, CFc = − 1
4N2

c

, (10)

while the color factors for unpolarized cross section is given by

Cu =
N2

c − 1
4N2

c
. (11)

In other words, the Sivers function in qq′ → qq′ should be the one as shown in Fig. 4, which comes from the sum of the
ISIs and FSIs with the corresponding color factors CI and CFc respectively. Thus by comparing the imaginary part
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FIG. 1: Final-state interaction in SIDIS (left) and initial-state interaction in DY (right) processes.

For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to
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In this subsection, we will discuss how to formulate the initial- and final-state interactions. The crucial point is
that the existence of the Sivers function in the polarized nucleon relies on the initial- and final-state interactions
between the struck parton and the spectators from the polarized nucleon through the gluon exchange. Thus by
analyzing these interactions, one can determine the proper Sivers function ∆Nfab→c

a/A (xa, kaT ) to be used for the
corresponding partonic scattering ab → cd. We start with the classic examples: the final-state interaction in SIDIS,
and the initial-state interaction for DY process. To the leading order (one-gluon exchange), they are shown in Fig. 1.
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For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to

ū(pc)(−ig)γ−T a i(p/c − k/)
(pc − k)2 + iε

≈ ū(pc)
[

g

−k+ + iε
T a

]
, (6)

where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.
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corresponding partonic scattering ab → cd. We start with the classic examples: the final-state interaction in SIDIS,
and the initial-state interaction for DY process. To the leading order (one-gluon exchange), they are shown in Fig. 1.
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where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
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On the other hand, for DY process, the initial-state interaction (as in Fig. 1(right)) leads to

v̄(pb)(−ig)γ−T a −i(p/b + k/)
(pb + k)2 + iε

≈ v̄(pb)
[

g

−k+ − iε
T a

]
, (7)

which has the same real part and opposite imaginary part compared to SIDIS process. This leads to the fact that the
spin-averaged TMD PDFs are the same, while the Sivers function will be opposite in SIDIS and DY processes. This
conclusion can be generalized to all order, and has been proven to be true using parity and time-reversal invariant
arguments [6, 8].
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FIG. 3: Initial- and final-state interactions in qq′ → qq′: (a) initial-state interaction, (b) final-state interaction, (c) and (d) the
final-state interactions for the unobserved particle.

Now let us turn to the case for inclusive single particle production in hadronic collisions, in which 2 → 2 partonic
scattering is the leading order contribution, where both initial- and final-state interactions contribute. We will
start with a simple example: qq′ → qq′. Here the initial-quark q is from the polarized nucleon, and the final-quark q
fragments to the final-state hadron. The one-gluon exchange approximation for the initial- and final-state interactions
are shown in Fig. 3. Under the eikonal approximation, for initial-state interaction Fig. 3(a),

i(p/b + k/)
(pb + k)2 + iε

(−ig)γ−T aū(pb) =
[

−g

−k+ − iε
T a

]
ū(pb), (8)

Likewise, for the final-state interaction Fig. 3(b), we have
[

g

−k+ + iε
T a

]
. (9)

Thus both interactions contribute to the phase −iπδ(k+), which is the same as in the SIDIS process as in Eq. (6).
However, they will have different color flow. To extract the extra color factors for Fig. 3(a) and (b) as compared to
the usual qq′ → qq′ without gluon attachments, we resort to the method developed in [14, 15, 25]. We obtain the
color factors CI (CFc) for initial (final)-state interaction

CI = − 1
2N2

c

, CFc = − 1
4N2

c

, (10)

while the color factors for unpolarized cross section is given by

Cu =
N2

c − 1
4N2

c
. (11)

In other words, the Sivers function in qq′ → qq′ should be the one as shown in Fig. 4, which comes from the sum of the
ISIs and FSIs with the corresponding color factors CI and CFc respectively. Thus by comparing the imaginary part
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Now let us turn to the case for inclusive single particle production in hadronic collisions, in which 2 → 2 partonic
scattering is the leading order contribution, where both initial- and final-state interactions contribute. We will
start with a simple example: qq′ → qq′. Here the initial-quark q is from the polarized nucleon, and the final-quark q
fragments to the final-state hadron. The one-gluon exchange approximation for the initial- and final-state interactions
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Thus both interactions contribute to the phase −iπδ(k+), which is the same as in the SIDIS process as in Eq. (6).
However, they will have different color flow. To extract the extra color factors for Fig. 3(a) and (b) as compared to
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In other words, the Sivers function in qq′ → qq′ should be the one as shown in Fig. 4, which comes from the sum of the
ISIs and FSIs with the corresponding color factors CI and CFc respectively. Thus by comparing the imaginary part
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FIG. 4: Sivers function in qq′ → qq′ from ISIs and FSIs, with the corresponding color factors CI and CFc respectively.

of the eikonal propagators in Eq. (6) for SIDIS and those in Eqs. (8) and (9) for initial- and final-state interaction for
qq′ → qq′, we immediately find the Sivers function probed in qq′ → qq′ process is related to those in SIDIS as follows

∆Nf qq′→qq′

a/A =
CI + CFc

Cu
∆NfSIDIS

a/A . (12)

Thus in the GPM model, using the correct Sivers function, one should replace

∆NfSIDIS
a/A HU

qq′→qq′ ≡ ∆NfSIDIS
a/A [Cuhqq′→qq′ ] , (13)

by the following form

∆Nf qq′→qq′

a/A HU
qq′→qq′ =

CI + CFc

Cu
∆NfSIDIS

a/A HU
qq′→qq′ = ∆NfSIDIS

a/A [CIhqq′→qq′ + CFchqq′→qq′ ] , (14)

where hqq′→qq′ is the partonic cross section without color factors included. For qq′ → qq′, one has

hqq′→qq′ = 2
ŝ2 + û2

t̂2
. (15)

This example tells us that if one uses ∆NfSIDIS
a/A for the single inclusive particle production, while accounting for the

process-dependence of the Sivers function, one should move the process-dependence to the hard parts. In other words,
instead of using HU

qq′→qq′ in Eq. (3) for the spin-dependent cross section, one should use

HInc
qq′→qq′ ≡ HInc−I

qq′→qq′ + HInc−F
qq′→qq′ , (16)

where

HInc−I
qq′→qq′ = CIhqq′→qq′ , HInc−F

qq′→qq′ = CFchqq′→qq′ , (17)

are the corresponding hard parts related to initial- and final-state interactions, respectively.
There are many other partonic processes contributing to the single inclusive particle production. Similar to the

analysis in qq′ → qq′, one needs to analyze each individual Feynman diagram accordingly, carefully moving the extra
factors (process-dependence) from the corresponding Sivers function to the hard parts, thus obtaining HInc−I

ab→cd and
HInc−F

ab→cd for every channel. The modfied formalism will be given in the next subsection.
There are some cautions to our results presented here, especially in Fig. 4. It looks like Figs. 3(a), (b) can be

factorized into a convolution of Sivers function and a hard part function as shown in Fig. 4. However, this is not a
TMD factorization in the strict sense. Currently TMD factorization theorems have been established for both SIDIS
and DY processes [23, 24]. To the order we are studying, this means, the one-gluon exchange diagram for SIDIS in
Fig. 1 can be factorized into a convolution of a Sivers function ∆NfSIDIS

a/A (x, kaT ) and a hard part function H(Q),
as shown in Fig. 2. Here all the soft physics (those depending on kaT ) has been absorbed into the Sivers function
∆NfSIDIS

a/A (x, kaT ), and the hard part function H(Q) only depends on the hard scale Q, not kaT . On the other hand,
for qq′ → qq′, we write the corresponding diagram Fig. 3(a) into a similar form: a product of a Sivers function
∆Nf qq′→qq′

a/A (xa, kaT ) and a hard part function Hqq′→qq′ (ŝ, t̂, û), as shown in Fig. 4. But as we will comment later,
besides the kaT dependence in the Sivers function, one will also need to keep the kaT dependence in the hard part
functions Hqq′→qq′ , without which the SSAs will vanish in both the GPM and this modified GPM formalism. Even
though this is not a TMD factorization, one hopes this formalism is a reasonable approximation. There are two
reasons to suggest this might be the case. First of all, from phenomenological point of view, this formalism had some
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are the corresponding hard parts related to initial- and final-state interactions, respectively.
There are many other partonic processes contributing to the single inclusive particle production. Similar to the

analysis in qq′ → qq′, one needs to analyze each individual Feynman diagram accordingly, carefully moving the extra
factors (process-dependence) from the corresponding Sivers function to the hard parts, thus obtaining HInc−I

ab→cd and
HInc−F

ab→cd for every channel. The modfied formalism will be given in the next subsection.
There are some cautions to our results presented here, especially in Fig. 4. It looks like Figs. 3(a), (b) can be

factorized into a convolution of Sivers function and a hard part function as shown in Fig. 4. However, this is not a
TMD factorization in the strict sense. Currently TMD factorization theorems have been established for both SIDIS
and DY processes [23, 24]. To the order we are studying, this means, the one-gluon exchange diagram for SIDIS in
Fig. 1 can be factorized into a convolution of a Sivers function ∆NfSIDIS

a/A (x, kaT ) and a hard part function H(Q),
as shown in Fig. 2. Here all the soft physics (those depending on kaT ) has been absorbed into the Sivers function
∆NfSIDIS

a/A (x, kaT ), and the hard part function H(Q) only depends on the hard scale Q, not kaT . On the other hand,
for qq′ → qq′, we write the corresponding diagram Fig. 3(a) into a similar form: a product of a Sivers function
∆Nf qq′→qq′

a/A (xa, kaT ) and a hard part function Hqq′→qq′ (ŝ, t̂, û), as shown in Fig. 4. But as we will comment later,
besides the kaT dependence in the Sivers function, one will also need to keep the kaT dependence in the hard part
functions Hqq′→qq′ , without which the SSAs will vanish in both the GPM and this modified GPM formalism. Even
though this is not a TMD factorization, one hopes this formalism is a reasonable approximation. There are two
reasons to suggest this might be the case. First of all, from phenomenological point of view, this formalism had some

Comparing imag. pt of eikonal propagators for subprocess in 
SIDIS and inclusive single particle production 

3

and the other one is that the Sivers functions is assumed to be universal and equal to those in SIDIS process,
∆Nfa/A(xa, kaT ) = ∆NfSIDIS

a/A (xa, kaT ). In this paper, we will still work within the framework of the GPM approach,
in other words, we will assume the TMD factorization is a reasonable phenomenological starting point. However, at
the same time, we will take into account the initial- and final-state interactions. Since both ISIs and FSIs contribute
for single inclusive particle production, in principle the Sivers functions in inclusive particle production in hadronic
collisions should be different from those probed in SIDIS process. We thus need to carefully analyze these ISIs and
FSIs for all the partonic scattering processes relevant to single inclusive particle production to determine the proper
Sivers functions to be used in the formalism. In other words, this new formalism will be

Eh
d∆σ

d3Ph
=

α2
s

S

∑

a,b,c

∫
dxa

xa
d2kaT ∆Nfab→c

a/A (xa, kaT )
1
2
SA · (P̂A × k̂aT )

∫
dxb

xb
d2kbT fb/B(xb, kbT )

×
∫

dzc

z2
c

Dh/c(zc)HU
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (5)

in which a process-dependent Sivers function denoted as ∆Nfab→c
a/A (xa, kaT ) is used rather than that from SIDIS

∆NfSIDIS
a/A (xa, kaT ) as in the conventional GPM approach.

B. Initial- and final-state interactions

In this subsection, we will discuss how to formulate the initial- and final-state interactions. The crucial point is
that the existence of the Sivers function in the polarized nucleon relies on the initial- and final-state interactions
between the struck parton and the spectators from the polarized nucleon through the gluon exchange. Thus by
analyzing these interactions, one can determine the proper Sivers function ∆Nfab→c

a/A (xa, kaT ) to be used for the
corresponding partonic scattering ab → cd. We start with the classic examples: the final-state interaction in SIDIS,
and the initial-state interaction for DY process. To the leading order (one-gluon exchange), they are shown in Fig. 1.
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FIG. 1: Final-state interaction in SIDIS (left) and initial-state interaction in DY (right) processes.

For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to

ū(pc)(−ig)γ−T a i(p/c − k/)
(pc − k)2 + iε

≈ ū(pc)
[

g

−k+ + iε
T a

]
, (6)

where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.
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FIG. 2: Sivers function in SIDIS process in the first non-trivial order (one-gluon exchange).
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• Process dependence or gluonic pole factors arise in 
azimuthal asymmetries  

• In particular in weighted asymmetries

Process dependence in TMDs Prediction of Factorization

!!½U"
@ ðxÞ ¼
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d2kTk

!
T!

½U"ðx; kTÞ:

4. SIVERS EFFECT IN SIDIS: FIRST INSIGHTS

The first information on the Sivers function from SIDIS was obtained in [39] from a

study of preliminary HERMES data [64] on the ’weighted’ SSA defined as

A
Ph⊥/MN sin(!−!S)
UT (x) ≡

1

ST

"i

〈

Ph⊥,i
MN

N
↑
i −

Ph⊥,i
MN

N
↓
i

〉

"i

〈

1
2
(N↑

i +N
↓
i )

〉 (12)

where N
↑(↓)
i are sums over event counts for the respective transverse target polarization,

and 〈. . .〉 denotes averaging — here over z and Ph⊥. The advantage of ’weighted SSAs’
is that the integrals in the structure function (11) can be solved exactly [24] yielding

A
Ph⊥/MN sin(!−!S)
UT (x,z) =

2
∫

d!P2h⊥
Ph⊥
MN
F
sin(!−!S)
UT (x,z,Ph⊥)

∫

d!P2h⊥FUU (x,z,Ph⊥)
=

(−2) "a e2a x f
⊥(1)a
1T (x)Da1(z)

"a e
2
a x f

a
1 (x)Da1(z)

(13)

where f
⊥(1)a
1T (x) ≡

∫

d2!pT
!p2T
2M2

N

f⊥a1T (x,!p2T ).

While the weighting is preferable from a theory point of view, it makes data analysis

harder. It is difficult to control acceptance effects, and the HERMES Collaboration does

not recommend the use of the preliminary data [64]. In ’unweighted SSAs’ defined as

A
sin(!−!S)
UT (x) ≡

1

ST

"i

〈

N
↑
i −N

↓
i

〉

"i

〈

1
2
(N↑
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↓
i )

〉 (14)

acceptance effects largely cancel. Therefore such data have been finalized first, and one

even is not discouraged to use preliminary data of this type [7, 9, 10]. However, the prize

to pay is that now the convolution integrals in (11) can be solved only by resorting to

models for the transverse momentum dependence. Here we assume the distributions of

transverse parton and hadron momenta in distribution and fragmentation functions to be

Gaussian with the corresponding Gaussian widths, p2Siv and K
2
D1
, taken to be x- or z- and

flavor-independent. The Sivers SSA (14) as measured in [5, 6] is then given by [42]

A
sin(!−!S)
UT =

aG (−2)"a e2a x f
⊥(1)a
1T (x)Da1(z)

"a e
2
a x f

a
1 (x)D

a
1(z)

with aG =

√
#

2

MN
√

p2Siv+K2D1/z
2

. (15)

In view of the sizeable error bars of the first data it was necessary to minimize the number

of fit parameters. For that in [42] effects of sea quarks were neglected. In addition, the

prediction from the limit of a large number of colors Nc in QCD [65], namely

f⊥u1T (x,!p2T ) = − f⊥d1T (x,!p2T ) modulo 1/Nc corrections, (16)

was imposed as an exact constraint. Analog relations holds also for antiquarks, and all

are valid for x of the order xNc = O(N0c ) [65]. The following Ansatz was made and
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In azimuthal asymm. one uses transv. moments of the correlator
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FIG. 4: The graphical representation of the quark-quark-gluon correlator ∆G in the case of fragmentation including besides
the parton a gluon with momentum k1 and the possible intermediate states (a) and (b) in a spectator model description.

As the effects of the component k− will appear suppressed by two powers of the hard scale as compared to the
collinear term, it is integrated over and one considers quark-quark correlators on the light-front (LF: ξ · n = 0)

Φ[U ]
ij (x,kT ) =

∫

d(ξ·P ) d2ξT

(2π)3
eik·ξ 〈P |ψj(0)U[0;ξ] ψi(ξ) |P 〉

⌋

LF
. (5)

The Wilson line or gauge link U[η;ξ] = Pexp
[

−ig
∫

C
ds·Aa(s) ta

]

is a path-ordered exponential along the integration
path C with endpoints at η and ξ. Its presence in the hadronic matrix element is required by gauge-invariance. In the
TMD correlator (5) the integration path C in the gauge link is process-dependent. In the diagrammatic approach the
Wilson lines arise by resumming all gluon interactions between the soft and the hard partonic parts of the hadronic
process [11, 20–22].

Collinear quark distribution functions are obtained from the TMD correlator after integration over pT ,

Φ(x) =

∫

d2kT Φ[U ](x,kT ) =

∫

d(ξ·P )

2π
ei x ξ·P 〈P |ψ(0)Un

[0;ξ] ψ(ξ) |P 〉
⌋

LC
. (6)

The nonlocality is restricted to the light-cone (LC: ξ ·n = ξT = 0) and the gauge link is unique, being the straight-line
path along n. In azimuthal asymmetries one needs the transverse moments contained in the correlator

Φα [U ]
∂ (x) =

∫

d2kT kα
T

Φ[U ](x,kT ) . (7)

The TMD correlator, expanded in distribution functions depending on x and k2
T

contains T-even and T-odd functions,
since the correlator is not T-invariant, which is attributed to the gauge link that depending on the process, accounts
for specific initial and/or final state interactions depending on the color flow in the process. For the collinear case,
the link structure becomes unique in the case of integration over kT (Eq. 6). For spin 0 and spin 1/2 the quark and
gluon correlators that appear at leading order in high energy processes contain only T-even operator combinations.
Evaluated between plane waves one only finds T-even functions depending on x in the parametrization.

For the collinear weighted case, the transverse moments in Eq. (7) one retains a nontrivial link-dependence that
prohibits the use of T-invariance as a constraint. It is possible, however, to decompose the weighted quark (and also
gluon) correlators as

Φα [U ]
∂ (x) = Φ̃α

∂ (x) + C [U ]
G πΦα

G(x, x), (8)

with calculable process-dependent gluonic pole factors C [U ]
G and process (link) independent correlators Φ̃∂ and ΦG.

The correlator Φ̃∂ contains the T-even operator combination, while ΦG contains the T-odd operator combination.
The latter is precisely the soft limit x1 → 0 of a quark-gluon correlator ΦG(x, x1) of the type

T-even T-odd

Weighted Cross Sections contain ETQS Functions  LINK BTW  TWO Pictures!

Decomposes

Process Dependence. . . & Qiu Sterman Mech. from Gauge Links

• For the weighted cross sections the process dependence is in gluonic
pole factors Bomhof, Pijlman, Mulders 2004-2008 JHEP,NPB. . .
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T dσ > ∼ Φ̃α[ !C]
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• For more complicated processes one gets gluonic pole factors “[C]”
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• Universality violated from gluonic pole matrix elements Sivers asymmetry
Collins Qui, Collins PRD 2007,2008 H H → h h X at high PT
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Weighted Cross Sections contain ETQS Functions  LINK BTW  
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Relations between GPDs and TMDsRelations between GPDs and TMDs
Non-trivial relations for “T-odd” parton distributions:
M. Burkardt [Nucl.Phys. A735, 185],  [PRD66, 114005]

 Average transverse momentum of unpolarized partons in a 
            transversely polarized nucleon:

coll. “soft gluon pole” matrix element

Manipulation of Gauge Links + Impact parameter representation

Impact parameter representation for GPD E

Marc Schlegel, Theory Group Seminar, BNL, Dec 19
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Gauge Links and Transverse Momentum-Spin Correlations

εij
T ki

⊥Sj
Tf⊥(1)

1T (x, k2
⊥) ∼

Thus one way to study process dependence 
through the first moment of the correlator

πΦα
G(x, x;P ) =

1
2
M

(
ih⊥(1)

1 (x)
1
2
[ /P, γα] + εαβ

T Sβ
T /Pf⊥(1)

1T (x)
)

Factorization and Pheno: Qiu, Sterman 1991,1999...,  Koike et al, 2000, ... 2010,  Ji, Qiu, Vogelsang, Yuan, 2005 ... 2008 ..???,   
Yuan, Zhou 2008, 2009, Kang, Qiu, 2008, 2009 ...   
Kouvaris Ji,  Qiu,Vogelsang! 2006,  Vogelsang and Yuan 2007, Bacchetta et al. 2007

Phases in soft poles propagators-hard subprocesses Efremov & Teryaev  Yad. Fiz & PLB  1984-1985



• In fragmentation the discussion slightly more complicated, since the gauge-links are not the 
only potential source of T-odd effects.  As pointed out by Collins NPB93, also the internal final 
state interactions of the observed outgoing hadron with its accompanying jet, in matrix 
elements appearing as the one-particle inclusive out-state                  can produce T-odd 
effects

• Thus due to the explicit appearance of outstates, time-reversal symmetry does not constrain 
the parametrization of the fragmentation correlators (as does for pdfs)

• Hence  T-odd fragmentation effects could arise from both FSI and gauge-links
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Fig. 1. Schematic depiction of the Sivers distribution function. The spin vector ST points out of and into the page, respectively.

Fig. 2. The Sivers or “polarizing” fragmentation function.

(a) (b)

Fig. 3. Two possible mechanisms to generate single spin asymmetries in the fragmentation process: (a) through final-state interactions within the out-state composed
of the outgoing hadron and the rest of the jet; (b) through soft gluonic interactions between the jet and the hard part.

It is well known that transverse momentum dependent distribution and fragmentation functions, nowadays commonly referred to
as TMDs, can have a nontrivial spin dependence and that the so-called “T -odd” TMDs can lead to single spin asymmetries [5–8].
They are also often referred to as “naively T -odd”, because the appearance of these functions does not imply a violation of time-
reversal invariance. The Sivers distribution function f ⊥

1T , schematically depicted in Fig. 1, is the oldest example of such functions. It
describes the difference between the momentum distributions of quarks inside protons transversely polarized in opposite directions.
The Sivers effect was put forward [5,7] as a possible explanation for the large single spin asymmetries observed in p↑p → πX

experiments [9]. Furthermore, it generates single spin asymmetries in semi-inclusive DIS [8,10], which have also been measured to
be nonzero [11], and it results, e.g., in asymmetric di-jet correlations in p↑p → jet jetX [12,13], which however are not yet visible
in the data analyzed [14].

The fragmentation analogue of the Sivers distribution function is called D⊥
1T [15]. It describes the distribution of transversely

polarized spin-1/2 hadrons, such as Λ’s, inside the jet of a fragmenting unpolarized quark, cf. Fig. 2. For this reason it has been
referred to as “polarizing fragmentation function” in Ref. [16]. It is an odd function of the transverse momentum of the observed
hadron w.r.t. the quark direction, or equivalently, the jet direction. Despite the similarity between the definitions of D⊥

1T and f ⊥
1T ,

there are some important differences. Nonvanishing T -odd distribution functions require soft gluonic interactions between the
target remnants and the active partons [10]. These interactions can be resummed into Wilson lines (gauge links), ensuring the gauge
invariance of the operator definitions of the distribution functions [17–20]. On the other hand, there are two mechanisms to generate
T -odd effects in the fragmentation process: through final-state interactions within the jet, e.g., between the observed outgoing
hadron and the rest of the jet [6], or through soft gluonic interactions between the jet and the hard scattering part (sometimes also
referred to as final-state interactions), see Figs. 3(a) and 3(b), respectively. As for the distribution functions, the latter interactions
give rise to Wilson lines. Both effects can be expressed in terms of a TMD fragmentation function. The Λ polarization observable
that is the subject of this Letter in principle allows for a differentiation between these two effects. There is considerable interest in
this issue, as it could shed light on the color flow dependence of single spin asymmetries and the (non)universality of transverse
momentum dependent fragmentation functions.

In recent years it has become apparent that T -odd TMDs enter in different ways in different processes, depending on the color
flow in the partonic subprocesses.2 The sign relation between the Sivers function appearing in semi-inclusive DIS and in Drell–Yan
scattering was the first example of such process dependence [17,21]. More complicated relations were discussed soon afterwards
for hadron production processes in hadronic collisions [22–25]. Process dependence may seem at odds with factorization [26], but
since the color flow dependence can be explicitly taken into account through the determination of the Wilson line structure, the
process dependence is explicitly calculable and hence, predictive power may be retained albeit in a less straightforward manner.

2 Although the possibility of such effects for T -even TMDs are not excluded, they will not be considered here.

∣∣∣Ph X
〉

“T-odd Effects” Fragmentation
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in the data analyzed [14].

The fragmentation analogue of the Sivers distribution function is called D⊥
1T [15]. It describes the distribution of transversely

polarized spin-1/2 hadrons, such as Λ’s, inside the jet of a fragmenting unpolarized quark, cf. Fig. 2. For this reason it has been
referred to as “polarizing fragmentation function” in Ref. [16]. It is an odd function of the transverse momentum of the observed
hadron w.r.t. the quark direction, or equivalently, the jet direction. Despite the similarity between the definitions of D⊥

1T and f ⊥
1T ,

there are some important differences. Nonvanishing T -odd distribution functions require soft gluonic interactions between the
target remnants and the active partons [10]. These interactions can be resummed into Wilson lines (gauge links), ensuring the gauge
invariance of the operator definitions of the distribution functions [17–20]. On the other hand, there are two mechanisms to generate
T -odd effects in the fragmentation process: through final-state interactions within the jet, e.g., between the observed outgoing
hadron and the rest of the jet [6], or through soft gluonic interactions between the jet and the hard scattering part (sometimes also
referred to as final-state interactions), see Figs. 3(a) and 3(b), respectively. As for the distribution functions, the latter interactions
give rise to Wilson lines. Both effects can be expressed in terms of a TMD fragmentation function. The Λ polarization observable
that is the subject of this Letter in principle allows for a differentiation between these two effects. There is considerable interest in
this issue, as it could shed light on the color flow dependence of single spin asymmetries and the (non)universality of transverse
momentum dependent fragmentation functions.

In recent years it has become apparent that T -odd TMDs enter in different ways in different processes, depending on the color
flow in the partonic subprocesses.2 The sign relation between the Sivers function appearing in semi-inclusive DIS and in Drell–Yan
scattering was the first example of such process dependence [17,21]. More complicated relations were discussed soon afterwards
for hadron production processes in hadronic collisions [22–25]. Process dependence may seem at odds with factorization [26], but
since the color flow dependence can be explicitly taken into account through the determination of the Wilson line structure, the
process dependence is explicitly calculable and hence, predictive power may be retained albeit in a less straightforward manner.

2 Although the possibility of such effects for T -even TMDs are not excluded, they will not be considered here.



• In BPM NPB 03  it was shown that the first moment of the quark fragmentation 
correlator with future (e+e−) and past (SIDIS) pointing Wilson lines can be decomposed

• Due to the presence of out states                in                both contain T-even and T-odd 
fragmentation functions                  

• The parametrization of both these matrix elements contain, for instance, a Collins-effect-
like fragmentation function

∆[±]α(
1
z
,
1
z
) = ∆̃α

∂ (
1
z
)±π∆α

G(
1
z
,
1
z
)

∆̃α
∂ π∆α

G

H⊥(1)
1 − H̃⊥(1)

1 ↔ SIDIS

H⊥(1)
1 + H̃⊥(1)

1 ↔ e+e−annihilation



• In other processes one may again encounter fragmentation correlators with 
more complicated gaugelinks than the simple future or past pointing Wilson 
lines. In those cases one can also make a decomposition such as described 
above, but with different factors in front of the gluonic pole matrix element

∆[U ]α(
1
z
,
1
z
) = ∆̃α

∂ (
1
z
) + C [U ]π∆α

G(
1
z
,
1
z
)

More complicated Processes
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(a) (b) (c)

Fig. 2. Unpolarized fragmentation function zD1(z) vs. z for the fragmentation (a) u → π+, (b) u → K+ , (c) s̄ → K+ in the spectator model (solid line), with
parameters fixed from a fit to the parametrization of [29] (dashed line).

+ + + + H.c.

(a) (b) (c) (d)

Fig. 3. Single gluon-loop corrections to the fragmentation of a quark into a pion contributing to the Collins function in the eikonal approximation. “H.c.” stands for
the Hermitian conjugate diagrams which are not shown.

Q0 = 0.4 GeV2. The resulting values for the parameters are

(20)gqπ = 4.78, λ = 3.33 GeV, α = 0.5 (fixed), β = 0 (fixed),

which are common to both pion and kaon fragmentation functions. The only parameters that change according to the type of
fragmentation function are

(21)u → π+: ms = 0.792 GeV, m = 0.3 GeV (fixed),

(22)u → K+: ms = 1.12 GeV, m = 0.3 GeV (fixed),

(23)s̄ → K+: ms = 0.559 GeV, m = 0.5 GeV (fixed).

Obviously, also the mass of the hadron changes: we take mh = 0.135 GeV for the pions and mh = 0.494 GeV for the kaons. We
remark that it is not possible to estimate the errors in the parameters in a meaningful way because the fragmentation functions in
Ref. [29] have no error bands. It could be in principle possible to use the recent parametrizations with error bands [30], but the
lowest scale they reach is 1 GeV2, which we consider to be too high to compare to our model.

Fig. 2 show the plots of the unpolarized fragmentation function D1(z) multiplied by z for u → π+, u → K+, and s̄ → K+. The
parametrization of [29] (NLO set, Q0 = 0.4 GeV2) is also shown for comparison.

3. Model calculation of the Collins fragmentation function

We use the following definition of the Collins function [12]1

(24)
ε
ij
T kTj

Mh
H⊥

1
(
z, k2

T

)
= 1

2
Tr

[
&(z, kT )iσ i−γ5

]
.

As is well known [12], using the tree-level calculation of the correlator function is not sufficient to produce a non-vanishing Collins
function, due to the lack of imaginary parts in the scattering amplitude. In order to obtain the necessary imaginary part, we take
into account gluon loops. In fact, gluon exchange is essential to ensure color gauge invariance of the fragmentation functions.
Contributions come from the four diagrams in Fig. 3. Diagrams (a) and (b) represent the quark self-energy and vertex diagrams,
respectively. Diagrams (c) and (d) can be called hard-vertex and box diagrams, respectively. For the calculation of the diagrams

1 The factor 1/2 is due to a slightly different definition of the correlator in Eq. (2) with respect to Ref. [12].

Reliability of Transversity Extraction Universality of Collins Fragmentation Function 
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Fig. 1. Tree-level diagram for quark to meson fragmentation process.

from gluons. We do not want to promote the specific elements of the model as the “truth”. In fact, it is not unreasonable to expect
that the dynamical mechanism of gluon final-state interactions can be applied also in other models, leading to results similar to
ours. In the future, calculations based on such mechanism might be made more rigorous within a QCD framework.

We also present, for the first time, the Collins function for the fragmentation of quarks into kaons. This calculation is relevant
for the interpretation of recent kaon measurements done at HERMES [16] as well as COMPASS [17] and for future measurements
at BELLE and JLab.

2. Model calculation of the unpolarized fragmentation function

In the fragmentation process, the probability to produce hadron h from a transversely polarized quark q , in, e.g., the qq̄ rest
frame if the fragmentation takes place in e+e− annihilation, is given by (see, e.g., [18])

(1)Dh/q↑
(
z,K2

T

)
= D

q
1

(
z,K2

T

)
+ H

⊥q
1

(
z,K2

T

) (k̂ × KT ) · sq

zMh
,

where Mh the hadron mass, k is the momentum of the quark, sq its spin vector, z is the light-cone momentum fraction of the hadron
with respect to the fragmenting quark, and KT the component of the hadron’s momentum transverse to k. D

q
1 is the unintegrated

unpolarized fragmentation function, while H
⊥q
1 is the Collins function. Therefore, H

⊥q
1 > 0 corresponds to a preference of the

hadron to move to the left if the quark is moving away from the observer and the quark spin is pointing upwards.
In accordance with factorization, fragmentation functions can be calculated from the correlation function [19]

(2)!(z, kT ) = 1
2z

∫
dk+ !(k,Ph) = 1

2z

∑

X

∫
dξ+ d2ξT

(2π)3 eik·ξ 〈0|Un+
(+∞,ξ)ψ(ξ)|h,X〉〈h,X|ψ̄(0)Un+

(0,+∞)|0〉
∣∣
ξ−=0,

with k− = P −
h /z. A discussion on the structure of the Wilson lines, U , can be found in Ref. [19]. Here, we limit ourselves to

recalling that in Refs. [20,21] it was shown that the fragmentation correlators are the same in both semi-inclusive DIS and e+e−

annihilation, as was also observed earlier in the context of a specific model calculation [20] similar to the one under consideration
here. In the rest of the article we shall utilize the Feynman gauge, in which transverse gauge links at infinity give no contribution
and can be neglected [22–24].

The tree-level diagram describing the fragmentation of a virtual (timelike) quark into a pion/kaon is shown in Fig. 1. In the
model used here, the final state |h,X〉 is described by the detected pion/kaon and an on-shell spectator, with the quantum numbers
of a quark and with mass ms . We take a pseudoscalar pion–quark coupling of the form gqπγ5τi , where τi are the generators of
the SU(3) flavor group. Our model is similar to the ones used in, e.g., Refs. [25–28]. The most important difference from previous
calculations that included also the Collins function, i.e., those in Refs. [8–12], is that the mass of the spectator ms is not constrained
to be equal to the mass of the fragmenting quark.

The fragmentation correlator at tree level, for the case u → π+, is

(3)!(0)(k,p) = −
2g2

qπ

(2π)4

(/k + m)

k2 − m2 γ5(/k − /P h + ms)γ5
(/k + m)

k2 − m2 2πδ
(
(k − Ph)

2 − m2
s

)

and, using the δ-function to perform the k+ integration,

(4)!(0)(z, kT ) =
2g2

qπ

32π3

(/k + m)(/k − /P h − ms)(/k + m)

(1 − z)P −
h (k2 − m2)2

,

where k2 is related to k2
T through the relation

(5)k2 = zk2
T /(1 − z) + m2

s /(1 − z) + M2
h/z,

which follows from the on-mass-shell condition of the spectator quark of mass ms . We take m to be the same for u and d quarks,
but different for s quarks. Isospin and charge-conjugation relations imply

(6)Du→π+
1 = Dd̄→π+

1 = Dd→π−
1 = Dū→π−

1 ,

Sensitivity to pT ∼ k⊥ << Q2 TSSAs thru “T -Odd”TMD

• Sivers PRD: 1990 TSSA is associated w/ correlation transverse spin and
momenta in initial state hadron

∆σpp↑→πX ∼ D ⊗ f⊗∆f⊥⊗σ̂Born ⇒ iST · (P × k⊥) → f⊥
1T (x, k⊥)

• Collins NPB: 1993 TSSA is associated with transverse spin of fragmenting
quark and transverse momentum of final state hadron

∆σep↑→eπX ∼ ∆D⊥ ⊗ δf ⊗ σ̂Born ⇒ isT · (P × p⊥) → H⊥
1 (x, p⊥)

9

Revisit Gluonic Poles contributions-Fragmentation & Universality

(Gamberg, Mukherjee, Mulders PRD-2008)

• By contrast to one and two loop calcs. studying cuts we explore parton
correlator with one additional gluon taking the zero k±

1 → 0 limit; gluonic
pole matrix element/Efremov-Terayev-Qiu Sterman Matrix elements

• Gluonic Poles Identify the T-odd sources and possible non-universal or
process dependent contributions in PDFs and FFs
Boer, Pijlman, Mulders NPB 03, Bacchetta, Bomhof, Mulder, Pijlman PRD 05, Bomhof Mulders 07,
08, Bomhof, Mulders, Vogelsang, Yuan PRD 07.
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• In doing so we investigated the “reciprocity” btwn distrb. and frag. functions x → 1/z

h
⊥(1)
1 and H

⊥(1)
1 for example

Sensitivity to pT ∼ k⊥ <<
√

Q2 TSSAs thru “T -Odd”TMD

• Sivers PRD: 1990 TSSA is associated w/ correlation transverse spin and
momenta in initial state hadron

P −
ST

k⊥ k⊥

ST

P

x

∆σpp↑→πX ∼ D ⊗ f⊗∆f⊥⊗σ̂Born ⇒ iST · (P × k⊥) → f⊥
1T (x, k⊥)

• Collins NPB: 1993 TSSA is associated with transverse spin of fragmenting
quark and transverse momentum of final state hadron
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Gluonic Pole Matrix elements
“Model independent”analysis  of  GPME L.G.  A. Mukherjee & P. Mulders PRD 2011
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11k!k k kThe steps in these considerations:

1) The         integrations in  the multi-parton correlators lead to light-front correlators, for which           
time-ordering is irrelevant 

2) Then correlators can be expressed as matrix elements of time-ordered products of operators 
then using LSZ formalism can study analytic structure poles and cuts  
GPDs Diehl-Gousset-1998, Radyushkin and Belitsky  Phys. Rep. 2005 
Jaffe-NPB 1984, quark-quark and multi-parton correlators collinear correlators 

k−

Consider correlator multi-particle scattering amplitudes 

Φα
G(x, x − x1) =

∫
dξ−

2π

dη−

2π
eix1η·P ei(x−x1)ξ·P 〈P | ψ(0)Un

[0;η] gGnα(η) Un
[η;ξ] ψ(ξ) |P 〉

⌋
LC



!G 1 (k,k!k )

P P

11k!k k k

The steps in these considerations:
..... 
3) These pictures become just hadron-parton amplitudes, e.g. the quark-quark correlator is 
related to the forward and non-forward antiquark-hadron scattering amplitude.  Depending on 
the precise structure these are un-truncated Greens functions or time ordered products. Can use 
LSZ formalism to study analytic/singluarity structure 

Goal to study support properties 
in limit  x1 → 0



P P
! (k;P,S)

k k hK Kh

h h!(k;K  ,S )

k k

 Consider scattering amp of an off shell  anti-quark and an onshell proton

 

Note                              is not truncated in off shell parton legs

Analysis based on covariant parton model or quark-
target amplitude 

Landshoff, Polkinghorne, and Short 1971 NPB 

Apply to TMDs

N(P ) + q̄(−k)→ N(P ) + q̄(−k)

A(k2; s, u) =
∫

d2ξeikξ〈P |T
(
ψ̄(0)Γψ(ξ)

)
|P 〉

s = (P − k)2 , u = (P + k)2 , s + u = 2k2 + 2M2

•Make the standard assumption that it is possible to use analyticity for QCD-amplitudes 

•Cuts for non-negative 

•Singularites for non-negative 

Re s , Re u

Re k2

A(k2; s, u)
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Factorization

• Diagrammatic factorization Politzer NPB 80, Ellis et al. NPB 82

• Restricts hadrons well sep. in momentum phase-space P · K ∼ p · k ∼ Q2

• While parton momenta with associate hadron e.g. P · p ∼ K · k sin ∼ P 2 = M2

Each parton involved in hard scattering described by “Sudakov” decomposition P and
n such that

p = xP µ + pµ
T + σnµ

∼ Q ∼ M ∼ M2/Q

k =
1

z
Kµ + kµ

T + σhnµ
h

where n2 = 0 is a null vector and

• P · n = 1 Ph · nh = 1
• x = p · n z−1 = k · nh

• σ ∼ M2 σh ∼ M2
h

. . .

. . .

k

p

P

K

• SIDIS factorized into distribution Φ future pointing [+]
fragmentation ∆ correlators past pointing [−]

Partons involved in hard scattering described “Sudakov” decomposition P and n

Factorization

• Diagrammatic factorization Politzer NPB 80, Ellis et al. NPB 82

• Restricts hadrons well sep. in momentum phase-space P · K ∼ p · k ∼ Q2

• While parton momenta with associate hadron e.g. P · p ∼ K · k ∼ P 2 = M2

Partons involved in hard scattering described “Sudakov” decomposition P and n

p = xP µ + pµ
T + σnµ

∼ Q ∼ M ∼ M2/Q

k =
1

z
Kµ + kµ

T + σhnµ
h

n2 = 0 is a null vector s.t.
• P · n = 1 Ph · nh = 1
• x = p · n z−1 = k · nh

• σ ∼ M2 σh ∼ M2
h

. . .

. . .

k

p

P

K

Φ

∆

• SIDIS factorized into distribution Φ future pointing [+]
fragmentation ∆ correlators past pointing [−]

Uη
[ξ,∞] = UT

[ξT ,∞]U
η
[ξ−,∞]

, where U [C]
[ξ,∞] = Pexp(−ig

∫ ∞
ξ dη · A)

Factorization and TMD Correlator

• Diagramatic factorization Politzer NPB 80, Ellis et al. NPB 82

• Restricts hadrons well sep. in momentum phase-space P · K ∼ p · k ∼ Q2

• Inside correlator momenta are soft P · p ∼ P 2 = M2

• Partons involved decomposed according to “Sudakov” P and n vectors

p = xP µ + pµ
T + σnµ

∼ Q ∼ M ∼ M2/Q

k =
1

z
Kµ + kµ

T + σhnµ
h

n2 = 0, P · n = 1, Ph · nh = 1, σ = p · P ∼ M2, σh ∼ M2
h . . .

. . .

. . .

k

p

P

K

Φ

∆

Integrate over P · p

Φ[U[C]](x, pT ) =
∫

d(p · P )Φ(p, P )

n2 = 0, P · n = 1, K · nh = 1, σ = p · P ∼ M2, σh ∼ M2
h . . .

Sudakov Kinematics



• To see analyticity properties in       plane we 
express      thru invariants s, u and  k2  

k− =
s + k2

T + iε

2(x− 1)
+ P−

k− =
u + k2

T + iε

2(x + 1)
− P−

k− =
k2 + k2

T + iε

2x

k−

k−

k

k

P P
u

s



• Consider the scattering amp. projected on 
DIS kinematics                   and integrate       
over        taking into account singularity 
structure

• singularities  located in       complex 

k+ = xP+

k−

k−

Singularities move in 
c o m p l e x p l a n e 
depending on value of    

k− =
s + k2

T + iε

2(x− 1)
+ P−

k− =
u + k2

T + iε

2(x + 1)
− P−

k− =
k2 + k2

T + iε

2x

−1 ≤ x ≤ 1

Impose DIS kinematics

!k  < x < 0 1

0k  >2
0)s < (0u >       

0 )u < (0s >      



Φα(x, k2
T ) =

∫
dk−Aα(s + iε, k2 + iε, u + iε)

∣∣∣
LF

=
∫

dk−1 Aα(k−1 + iεfa(x))
∣∣∣
LF

TMDs 
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!k

!1 < x < 0
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P P
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!(k+P) k!P
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Thus Support in  x  region PDFs

Φ(x) = θ(x) θ(1− x) Disc[s]A+ θ(−x) θ(1 + x) Disc[u]A

Integration contours         wrapped around the s and u cuts for 
positive and negative values of x iff                        yield quark 
and anti-quark distribution functions 

Must assume convergence in the variable      or use subtracted
relations                     

 

k−

!k  < x < 0 1

0k  >2
0)s < (0u >       

0 )u < (0s >      

!k !1 < x < 0

0)s < (0u >       

0 )u < (0s >      
0k  >2

−1 ≤ x ≤ 1

k−



•Integrating parton correlators over         connects  them 
to the  anti-parton -hadron scattering four-point function  

•Depending on the value of x, the imaginary part of 
                      represents the (anti)-parton distribution or 
fragmentation correlators.

x < !1

P P

!k u !k
x > 1

s

P P

kk

0 < x < 1
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P P
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!1 < x < 0

k = xP

k

k

P P
u

s

!(k+P) k!P

P!kP+k

k−

A(k2; s, u)

                         Scattering AmplitudesA(k2; s, u)



Support in  x =1/z  region Fragmentation

 The case for fragmentation is different since the parton 
propagator has positive     , thus  contours in x and z not 
connected by analytic continuation Landshoff and Polkinghorn Phys. Rep. 1972

k2

∆(x) = θ(x− 1) Disc[s]A+ θ(−1− x) Disc[u]A

= θ(z)θ(1− z) Disc[s]A+ θ(−z)θ(1 + z) Disc[u]A



Extend analyticity study to multi-parton distribution and 
fragmentation function

A(k2; s, u; s1, u1; k2
1, (k − k1)2)

Studying contours of additional integrations

A(k2; s, u; s1, u1; k2
1, k

′2) =
∫

d4ξd4ηeik′·ξeik1·η〈0|T (Fnα(η)ψ(ξ)) |P,X〉

=
i
√

Zq (/k′ + m)
k′2 − m2

q + iε

i
√

Zg Tnα

k1
2 − m2

q + iε
G̃α(k′, k1;P, PX)

Again use LSZ formalism for off shell 
partonic lines...



Extend analyticity study to multi-parton distribution and 
fragmentation function

s

u k!k

k
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1 1
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1

1 1

1

P+k

s-channel u-channel

A(k2; s, u; s1, u1; k2
1, (k − k1)2)

•The additional invariants for the  amplitude 

•Relevant for gluonic pole matrix elements for 
  case            and  for the case    

A(k2; s, u; s1, u1; k2
1, (k − k1)2)

u1 > 0s1 > 0

•Studying contours of additional integrations



The additional invariants for the  amplitude 

relevant for gluonic pole matrix elements,  for the 
case s > 0 and  for the case u > 0.

A(k2; s, u; s1, u1; k2
1, (k − k1)2)

s1 = (P ∓ k ± k1)2 and u1 = (P ∓ k1)2

k−1 =
u1 + k2

1T + iε

2(x1 ∓ 1)
+ P−

k−1 =
(k − k1)2 + (kT − k1T )2 + iε

2(x1 − x)
+ k−

k−1 =
k2
1 + k2

1T + iε

2x1

k−1 =
s + (kT − k1T )2 + iε

2(x1 − (x∓ 1))
− (P− − k−)

Here parton virtualities 
become very important



• Depending on the value of          the integration contour in        bypasses the 
singularities encountered in the complex plane in a unique way, which dictates the 
support properties of the quark-gluon-quark correlation functions

• The denominators in the expressions relating        to       and        tell us that only 
when                      (for positive x) or                                (for negative  x) the 
singularities in         and          are relevant

Comments

k−1

x1

u1

s1

k−1

x1 ∈ [−1, x + 1]x1 ∈ [x− 1, 1]
s1

u1

•  Study case of s-channel (           )
•  Look at the gluonic poles
•              is in the interval 

s > 0
x1 → 0

0 < x < 1

x1 → 0 0 < x < 1

k−1 =
s1 + iε

2(x1 − (x∓ 1))
+ k− k−1 =

u1 + iε

2(x1 ∓ 1)

k−1 =
(k − k1)2 + iε

2(x1 − x)
+ k− k−1 =

k2
1 + iε

2x1



!k x > 1

2 0(k!k )  >1

0k  >2
1

1

ΦG(x, x− x1)

∆G(x, x− x1)

For the case              the          integration  can be wrapped around the           
cut          which smoothly  vanishes  for                describes the by the 
arrow inside branch cut  indicates that it harmlessly recedes to infinity          

x > 1 k−1
k2
1 x1 → 0

Agrees with earlier model analysis Collins,  Metz PRL 2004
Agrees with earlier model analysis LG,  A. Mukherjee, P. Mulders PRD 2008
Agrees with model independent spectral  analysis A. Metz,  S. Meissner PRL 2009
Agrees with 1 and 2 gluon exchange calculation from GL in hadron inside jet F. Yuan PRD 2009
Recent ppr. by Boer,Kang,Vogelsang,Yuan-predictions on Lambda polarization in SIDIS & 

∆G(x, x− x1)

lim
x1→0 = ∆G(x, x)→ 0

2 0(k!k )  >1

0 < x < 1!k1

0k  >2
1

1 0u < )(

1 0s < )(0u > 1

0s > 1

k−1 =
k2
1 + k2

1T + iε

2x1

e+ e−



• Generalize: we show that our arguments for vanishing 
gluonic pole matrix elements hold for general multi-gluonic 
and even multi-partonic pole matrix elements.

• Considering the analytic properties of general multi-gluonic 
pole matrix elements we can proceed inductively

• For two gluons one simply extends the nesting  of momenta

• adds to the set                         ,                    without changing 
the behavior of the others

• Since higher pole ME appear in higher       moments of 
correlator                    we conclude based on general 
assumptions of analyticity for QCD scattering amplitudes 
that this TMD correlator is universal
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Comments

In wrapping the integration around the s- or u-cut must 
assume convergence in the variable       or use        
subtracted relations
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Fig. 1. Schematic depiction of the Sivers distribution function. The spin vector ST points out of and into the page, respectively.

Fig. 2. The Sivers or “polarizing” fragmentation function.

(a) (b)

Fig. 3. Two possible mechanisms to generate single spin asymmetries in the fragmentation process: (a) through final-state interactions within the out-state composed
of the outgoing hadron and the rest of the jet; (b) through soft gluonic interactions between the jet and the hard part.

It is well known that transverse momentum dependent distribution and fragmentation functions, nowadays commonly referred to
as TMDs, can have a nontrivial spin dependence and that the so-called “T -odd” TMDs can lead to single spin asymmetries [5–8].
They are also often referred to as “naively T -odd”, because the appearance of these functions does not imply a violation of time-
reversal invariance. The Sivers distribution function f ⊥

1T , schematically depicted in Fig. 1, is the oldest example of such functions. It
describes the difference between the momentum distributions of quarks inside protons transversely polarized in opposite directions.
The Sivers effect was put forward [5,7] as a possible explanation for the large single spin asymmetries observed in p↑p → πX

experiments [9]. Furthermore, it generates single spin asymmetries in semi-inclusive DIS [8,10], which have also been measured to
be nonzero [11], and it results, e.g., in asymmetric di-jet correlations in p↑p → jet jetX [12,13], which however are not yet visible
in the data analyzed [14].

The fragmentation analogue of the Sivers distribution function is called D⊥
1T [15]. It describes the distribution of transversely

polarized spin-1/2 hadrons, such as Λ’s, inside the jet of a fragmenting unpolarized quark, cf. Fig. 2. For this reason it has been
referred to as “polarizing fragmentation function” in Ref. [16]. It is an odd function of the transverse momentum of the observed
hadron w.r.t. the quark direction, or equivalently, the jet direction. Despite the similarity between the definitions of D⊥

1T and f ⊥
1T ,

there are some important differences. Nonvanishing T -odd distribution functions require soft gluonic interactions between the
target remnants and the active partons [10]. These interactions can be resummed into Wilson lines (gauge links), ensuring the gauge
invariance of the operator definitions of the distribution functions [17–20]. On the other hand, there are two mechanisms to generate
T -odd effects in the fragmentation process: through final-state interactions within the jet, e.g., between the observed outgoing
hadron and the rest of the jet [6], or through soft gluonic interactions between the jet and the hard scattering part (sometimes also
referred to as final-state interactions), see Figs. 3(a) and 3(b), respectively. As for the distribution functions, the latter interactions
give rise to Wilson lines. Both effects can be expressed in terms of a TMD fragmentation function. The Λ polarization observable
that is the subject of this Letter in principle allows for a differentiation between these two effects. There is considerable interest in
this issue, as it could shed light on the color flow dependence of single spin asymmetries and the (non)universality of transverse
momentum dependent fragmentation functions.

In recent years it has become apparent that T -odd TMDs enter in different ways in different processes, depending on the color
flow in the partonic subprocesses.2 The sign relation between the Sivers function appearing in semi-inclusive DIS and in Drell–Yan
scattering was the first example of such process dependence [17,21]. More complicated relations were discussed soon afterwards
for hadron production processes in hadronic collisions [22–25]. Process dependence may seem at odds with factorization [26], but
since the color flow dependence can be explicitly taken into account through the determination of the Wilson line structure, the
process dependence is explicitly calculable and hence, predictive power may be retained albeit in a less straightforward manner.

2 Although the possibility of such effects for T -even TMDs are not excluded, they will not be considered here.
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Conclusions

•Study support of  multi-parton correlation functions        
through analytic structure of scattering amplitude 
•Gluonic pole contribution to fragmentation function 
vanishes--model independent result
•Implies universality of Collins function
•Consistent with  a number of past studies
•We extend to analysis to all parton insertions
•All insertions vanish when              for fragmentationxi → 0


