PQCD Analysis of Parton-Hadron Duality

Simonetta Liuti University of Virginia

PQCD Pre-DIS Workshop 2011 Jefferson Lab April 8th-9th, 2011 ``QCD nowadays has a split personality. It embodies 'hard' and 'soft' physics, both being hard subjects and the softer the harder.'' Y. Dokshitzer

<u>Outline</u>

- Introduction
- Review DGLAP evolution at large Bjorken (z-dependent scale)
- Describe interplay of TMCs, Large Bjorken x evolution, HigherTwists
- Extract $\alpha_s \rightarrow$ exploring interplay between perturbative and non perturbative effects (AdS/CFT ideas ?) in collaboration with J.P Chen and A. Deur
- Briefly mention nuclear corrections at large Bjorken x
- Conclusions/Outlook for the 12 GeV program and beyond...

Parton-Hadron Duality → an Important Element in Large x_{Bj} Studies

Practical Aspects:

Precise determination of PDFs at large x_{Bj} needed to extend the domain of validity of PDF global analyses (importance of large x gluons, ...)
 (Jlab + CTEQ studies, PRL 2011)

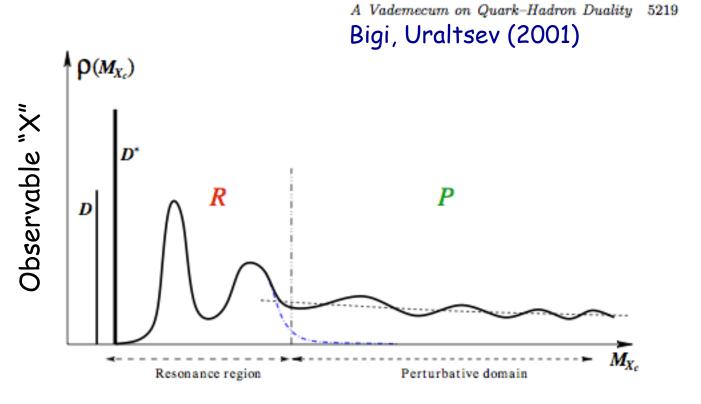
Tests of QCD predictions at x_{Bj}=1 (Ratio F₂ⁿ/F₂^p, W. Melnitchouk et al....)

Theoretical Aspects:

Monitoring the transition in QCD between the "perturbative" region, where factorization applies to the "non-perturbative" region: interpretation within factorization theorems in QCD?
 (J. Collins)

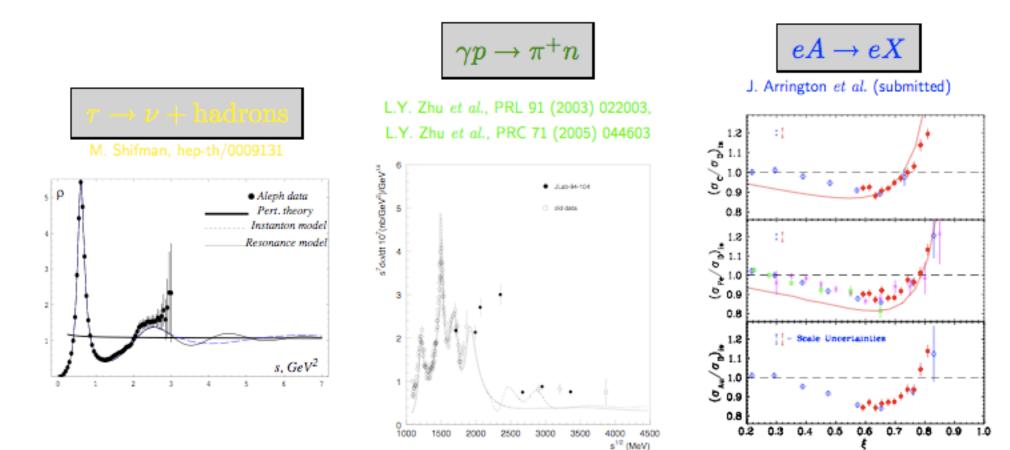
- Possibility of extracting α_s at low scale
 (GDH sum rule analyses by J.P. Chen, A. Deur)
- Understanding the mechanism of hadron formation

In a nutshell

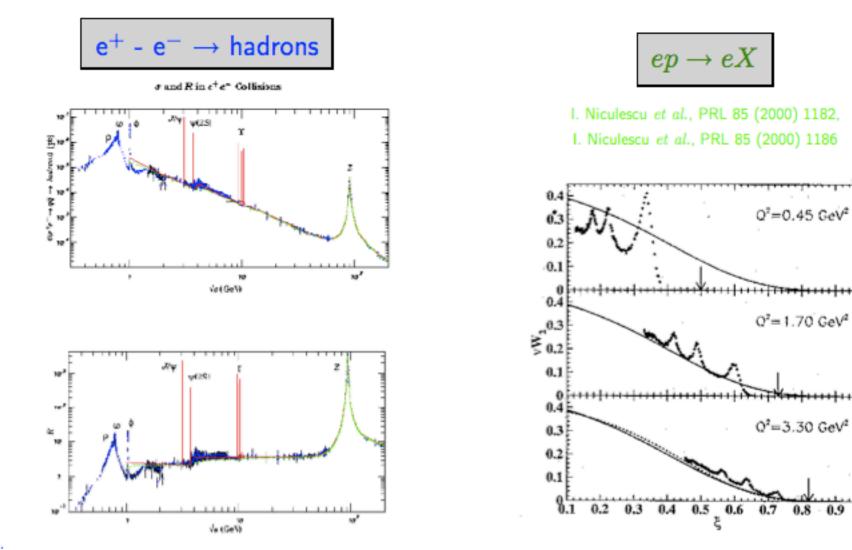


FS Invariant Mass

Duality is Ubiquitous (from A. Fantoni's talks) Data (1)



Data (2) _

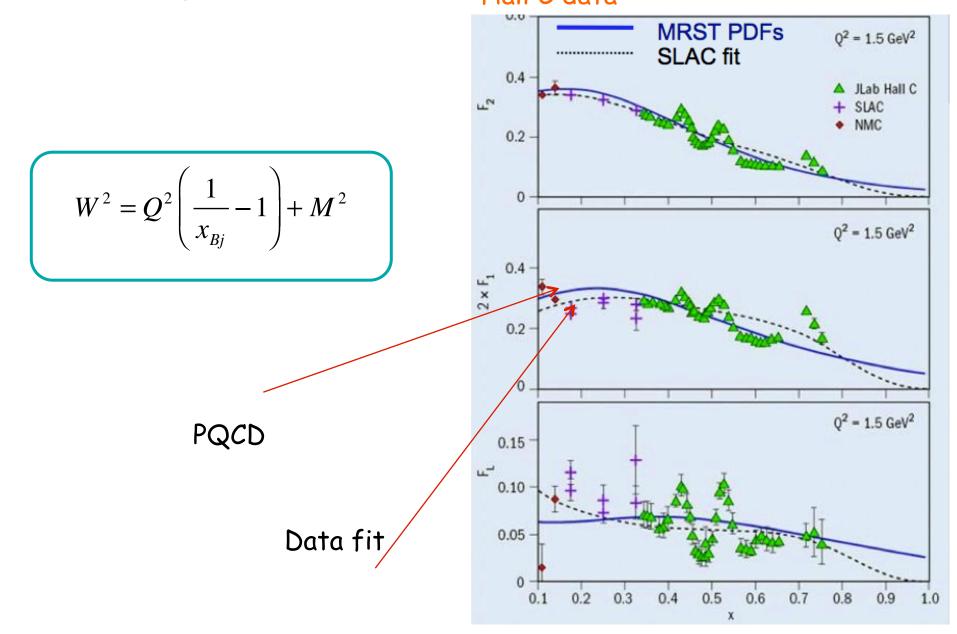


1

...

Focus on DIS: What defines the smooth curve that fits the data?

Large x_{Bj} at fixed Q² implies a <u>continuation</u> of the "PQCD curve" into the resonance region Hall C data



Two Complementary Approaches

Quantum Mechanics based Model of Resonances Excitation

Duality arises from Quantum Mechanical properties of quarks confined in "empirically inspired" linear potential: excitation of resonances of opposite parity interfere in all but the leading twist. (Close,Isgur, Melnitchouk,Jeschonnek,VanOrden...)

QCD-based phenomenological analyses

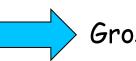
OPE-treatable reactions are two step processes:

(1) Hard dynamics scattering at large momentum/small distance scale $(1/Q^2)$.

(2) Soft dynamics process turns the partons into hadrons at much larger distance scales in $(1/\Lambda_{QCD})$.

First step

Second step



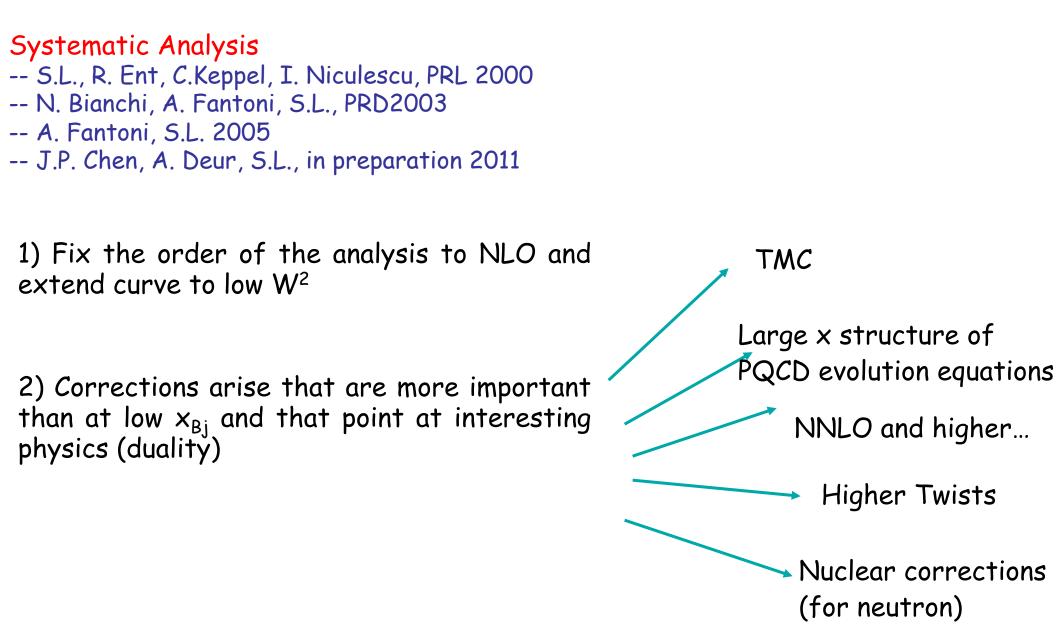
Gross features (total cross sections, jet directions, ...)

Detailed structure of the final state,

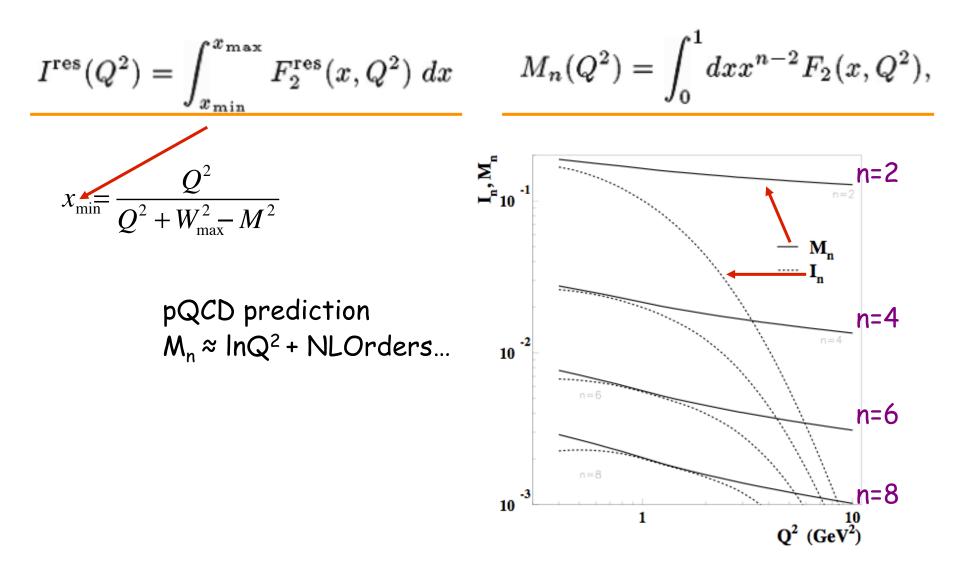
In a phenomenological context, duality studies how a number of properties defined from the beginning of the hard scattering process, are predetermined and persist in the nonperturbative stage.

Where does the separation start?

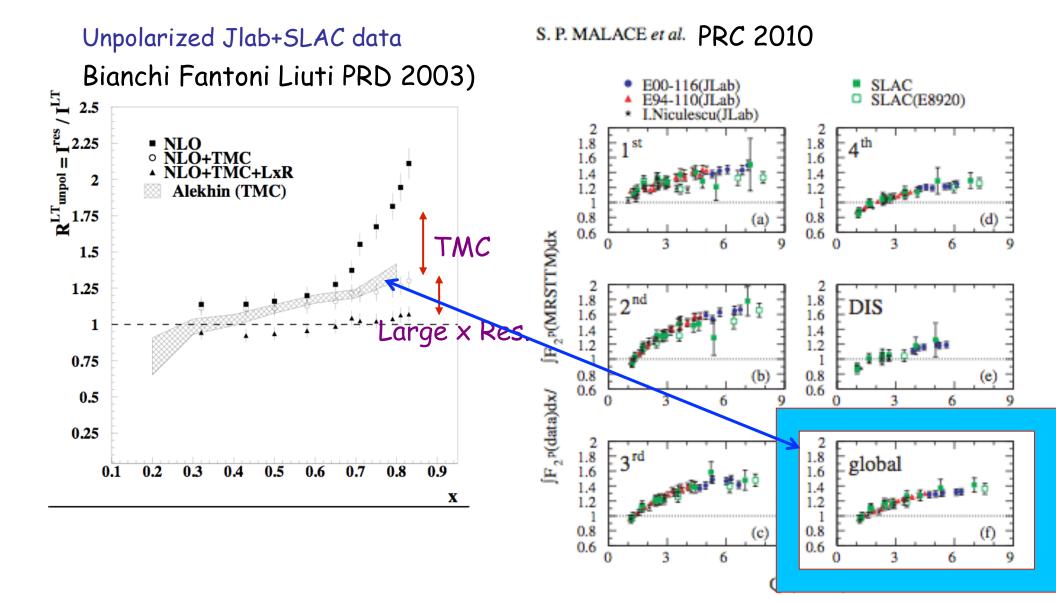
The separation and yet coexistence of long distance and short distance structure in QCD has become naturally accepted as part of a ``common wisdom framework'' underlying the interpretation of most experiments



All effects need to be taken into account simultaneuosly. Bianchi, Fantoni, S.L. (PRD, 2003) and Fantoni, S.L. (2006)

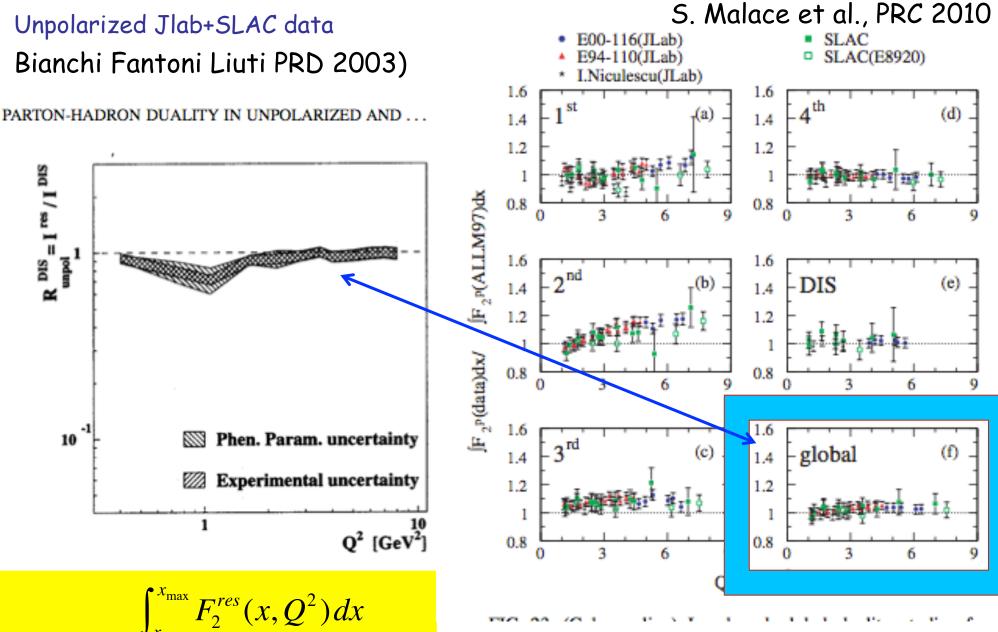


 I_n and M_n calculated using CTEQ



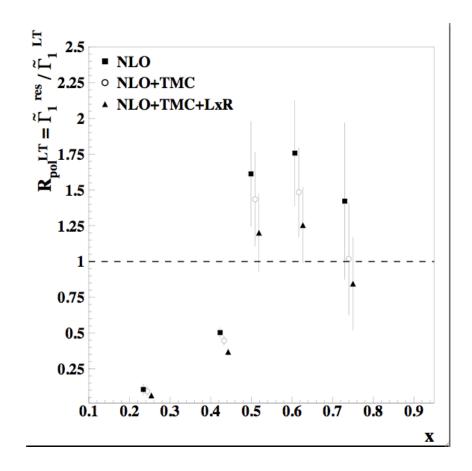
$$R = \frac{\int_{x_{\min}}^{x_{\max}} F_2^{res}(x, Q^2) dx}{\int_{x_{\min}}^{x_{\max}} F_2^{LT, param}(x, Q^2) dx}$$

Using ALLM \rightarrow extra NP Q² dependence

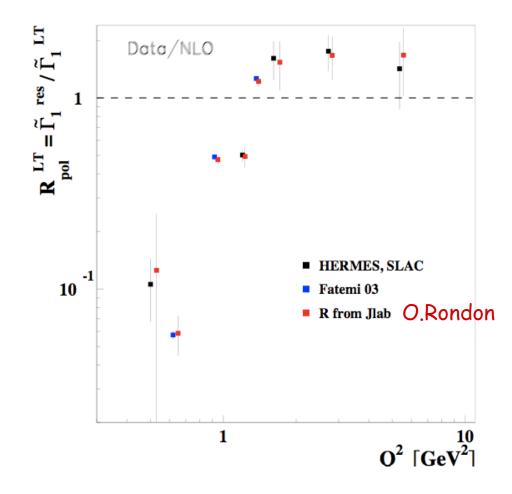


$$R = \frac{\int_{x_{\min}}^{x_{\min}} F_2^{LT, param}(x, Q^2) dx}{\int_{x_{\min}}^{x_{\max}} F_2^{LT, param}(x, Q^2) dx}$$

Polarized HERMES+Jlab+SLAC data

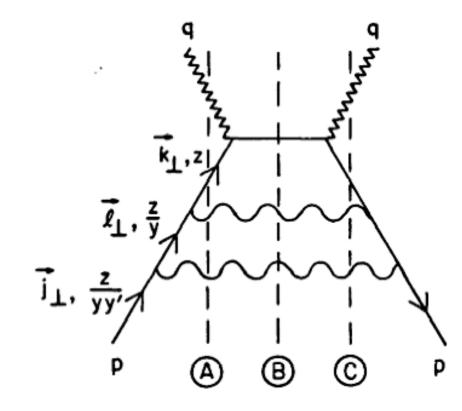


More recent polarized data (O. Rondon et al.)



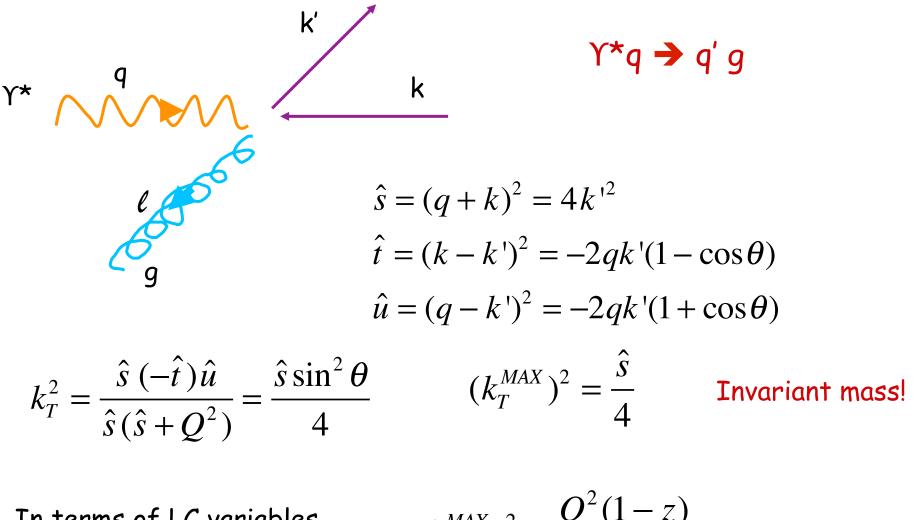
Large x_{Bj} evolution

(S. Brodsky, SLAC lectures (1979), D. Amati et al., NPB(1980), R. Roberts, "Structure of the Proton")



 $\alpha_{s} = \alpha_{s} (k^{2})$ at each vertex

 $rac{4\pi}{eta_0 \ln(Q^2/\Lambda_{QCD}^2)}$ $lpha_S(Q^2)$

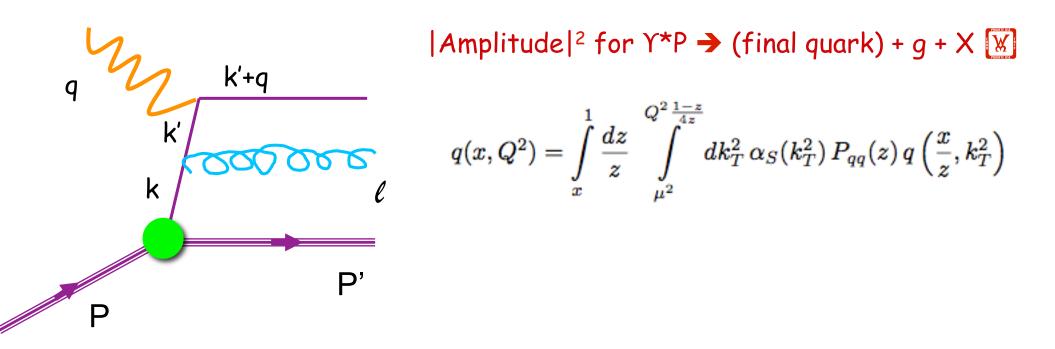


In terms of LC variables $k = (k^+ = zP^+, k^- = P^- \ell^-, k_T)$

 $z, k_1 \ll q_1$ $\frac{z}{v}, \ell_1 \ll k_1$

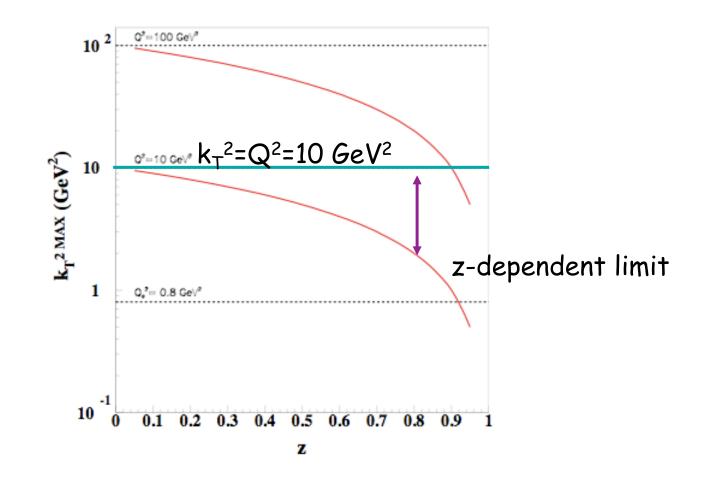
$$(k_T^{MAX})^2 = \frac{Q^2(1-z)}{4z}$$

Next, write amplitude for Ƴ*P → (final quark) + g + X



Disregarding z-dependence in k_{T} integration limit

$$rac{dq(x,Q^2)}{d\ln Q^2} = rac{lpha_S(Q^2)}{2\pi} \int\limits_x^1 rac{dz}{z} P_{qq}(z) q\left(rac{x}{z},Q^2
ight)$$



It matters at large x!

As a consequence...

$$lpha_S(Q^2)
ightarrow lpha_S[Q^2(1-z)] pprox lpha_S(Q^2) - rac{1}{2}eta_0 rac{\ln(1-z)}{2} \left(lpha_S(Q^2)
ight)^2$$

This takes care of the large log term in the Wilson coefficient f. (NLO, MS-bar)

$$F_2^{NS}(x,Q^2) = \frac{\alpha_s}{2\pi} \sum_q \int_x^1 dz \, C_{NS}(z) \, q_{NS}(x/z,Q^2),$$
(24)
$$C_{NS}(z) = \delta(1-z) + \left\{ C_F \left(\frac{1+z^2}{1-z}\right)_+ \left[\ln\left(\frac{1-z}{z}\right) - \frac{3}{2} \right] + \frac{1}{2} \left(9z+5\right) \right\}$$

The scale that allows one to annihilate the effect of the large ln(1-z) terms at large x at NLO is the invariant mass, W^2

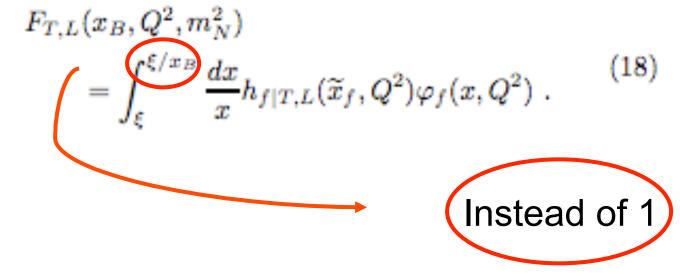
Equivalent to a resummation of these terms up to NLO

Target Mass Corrections (TMC)

$$F_{2}^{LT(TMC)}(x,Q^{2}) = \frac{x^{2}}{\xi^{2}\gamma^{3}}F_{2}^{\infty}(\xi,Q^{2})$$
$$+ 6\frac{x^{3}M^{2}}{Q^{2}\gamma^{4}}\int_{\xi}^{1}\frac{d\xi'}{{\xi'}^{2}}F_{2}^{\infty}(\xi',Q^{2}),$$

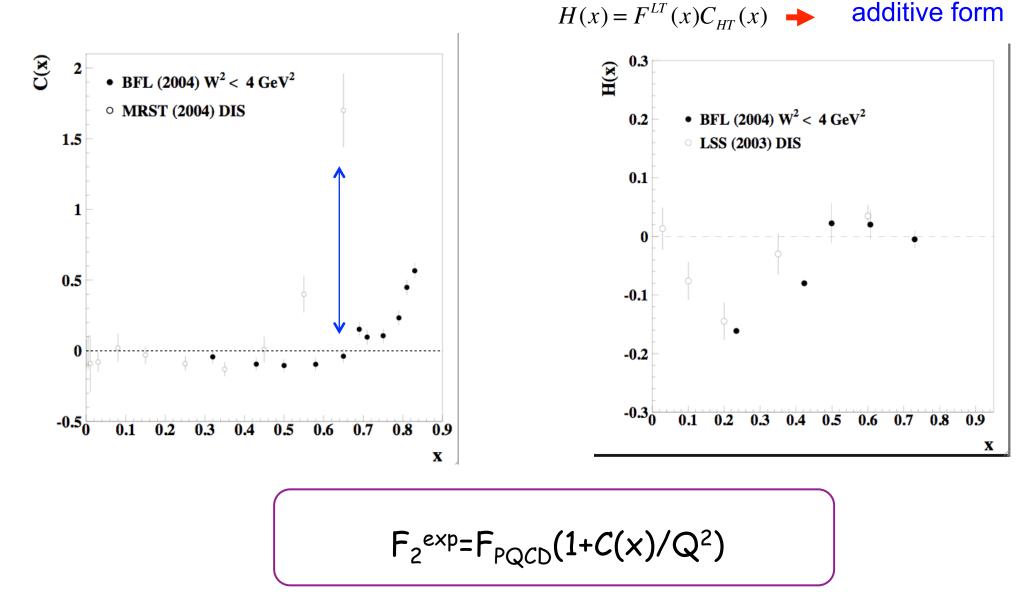
Target Mass Corrections (TMC)

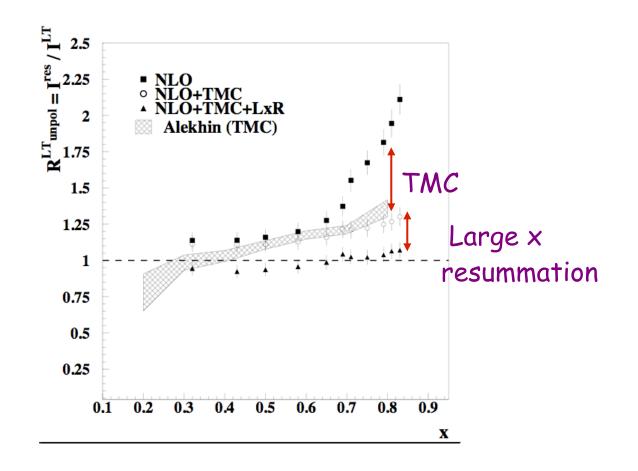
Work in progress based on recent analysis by A.Accardi, J.Qiu, JHEP (2008) that extends range of validity of TMCs approach without introducing mismatches between the x and ξ ranges



Joint large x evolution and new TMCs approach

All of these effects can be taken into account using "reasonable" Parameters → No need to introduce large HT component at Large x

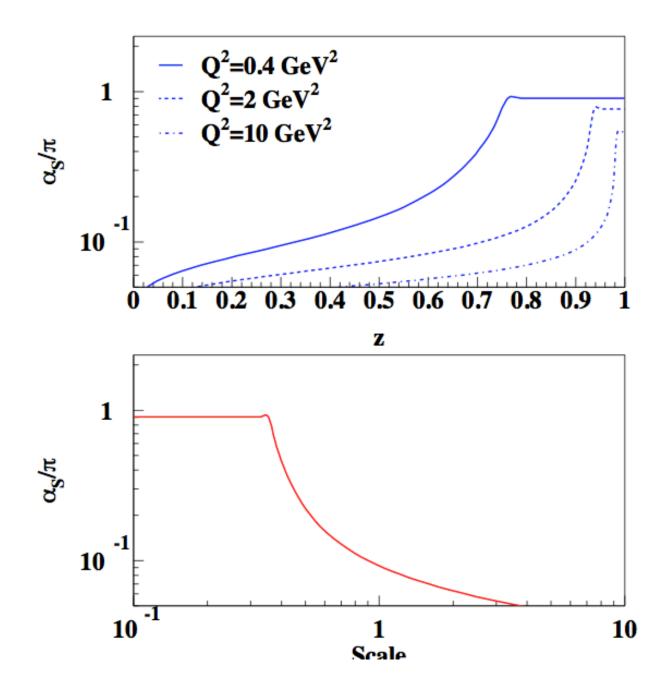




What is happening is that (part) of the HTs contributions have been absorbed in α_{S}

This is correlated with the fact that at large x, $\alpha_{\rm S}$ needs to be continued at very low Q^2

$$\alpha_{s}(Q^{2}) \rightarrow \alpha_{s}\left(Q^{2}\frac{1-z}{z}\right)^{\alpha_{s}} \begin{pmatrix} Q^{2}\frac{1-z}{z} \end{pmatrix}^{\alpha_{s}} \begin{pmatrix} Q^{2}\frac{1-z}{z} \end{pmatrix}^{\alpha_{s}}$$



What is the physics behind this?

Pioneering Work Pennington, Roberts, Ross 80's + far reaching extensions related to discussion at this W'shop

Extension of α_{S} in timelike region: going through the Landau pole

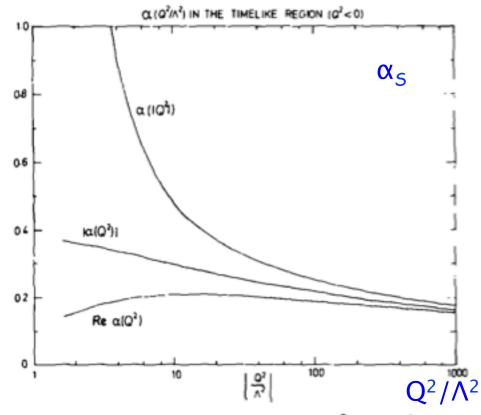


Fig. 1. The three expansion parameters $\alpha(|Q^2|), |\alpha(Q^2)|$ and Re $\alpha(Q^2)$ in the timelike region $(Q^2 < 0)$ are shown as functions of $|Q^2|/\Lambda^2$. $\alpha(Q^2)$ is defined by eq. (2) with β_0, β_1 evaluated for $n_f = 4$, but with all higher coefficients zero. $\alpha(|Q^2|)$ is given by its commonly used, next-to-leading order, expression

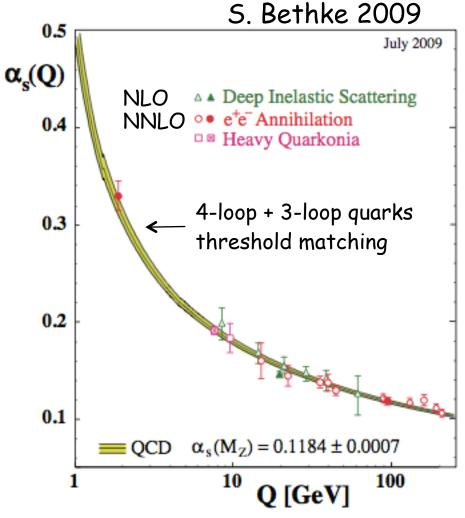
$$\frac{\alpha(|Q^2|)}{4\pi} = \frac{1}{\beta_0 \ln|Q^2/\Lambda^2|} - \frac{\beta_1 \ln \ln|Q^2/\Lambda^2|}{\beta_0^3 \ln^2|Q^2/\Lambda^2|}$$

Note, however, that, for $|Q^2/\Lambda^2| < 100$, representing $|\alpha(Q^2)|$, Re $\alpha(Q^2)$ by similar power series in $(\ln|Q^2/\Lambda^2|)^{-1}$ is very inaccurate, unless many terms are included. $|\alpha(Q^2)$, Re $\alpha(Q^2)$ have therefore been evaluated from eq. (2) by expressing $\ln Q^2$ as a series in α . The curves shown reflect terms up to $O(|\alpha|^6)$ in Im α , eq. (5), and so are accurate even at low $|Q^2|$.

Two Points of Interest for Jlab Community

1) The coupling's behavior as one approaches the Landau pole, matters for predictions at the LHC

Long known systematic difference between e+ e- (smaller α) and structure functions (larger α)



2) Study of the interplay between perturbative and non-perturbative effects is important: formulate it in a way where comparison with lattice results is easier and attack the question of process dependent α_s predictions

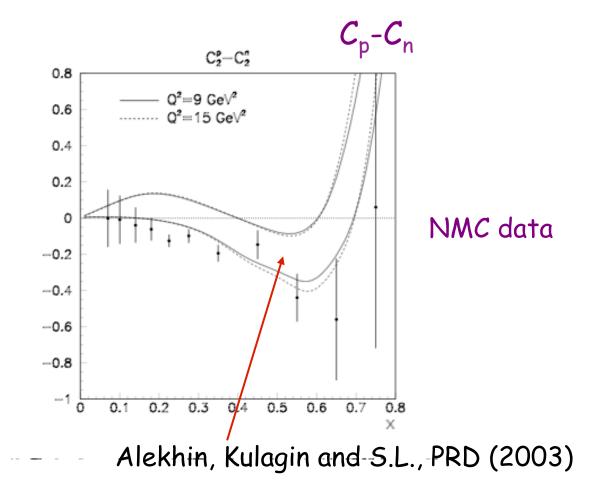
Outline of a Phenomenology Study

Start from the point that the Landau pole in α_S is unphysical

Introduce effective couplings/charges that can be extracted directly from data

Define scheme to connect and compare different extractions (commensurate scale relations, Brodsky, Deur, deTeramond)

Nuclei ✓ Are HTs isospin dependent? Deviations from PQCD effects



Towards the Jlab 12 GeV/EIC program....

The very large and accurate Jlab Hall C set of data has shown that parton hadron duality can be studied in detail: Q²,W² and longitudinal variables dependences have been analyzed thouroughly

→ Observation of similarity between "high" and "low" energy cross sections at the core of strong interaction theory: would love to see study of large x and larger W² to see how HTs behave

→ Theoretical background: starts from Finite Energy Sum Rules Dolen, Horn and Schmid, PR166(1968)

$$S_{n} \equiv \frac{1}{N^{n+1}} \int_{0}^{N} \nu^{n} \operatorname{Im} F d\nu = \sum \frac{\beta N^{\alpha}}{(\alpha+n+1)\Gamma(\alpha+1)}$$

$$\Rightarrow \text{ Is there an interpretation within QCD?}$$

$$Shifman (2005), Bigi and Uraltsev (2004)$$

Is there a more general implication from factorization theorems of QCD?
⇒ Interplay of ISI and FSI Frankfurt, Collins

Conclusions

PQCD analyis of highly precise large x_{Bj} Jefferson Lab data in resonance region is interesting for both studying the transition of partons into hadrons and for studies of α_s