Transverse Momentum

 Distributions from Effective Field TheorySonny Mantry

University of Wisconsin at Madison
NPAC Theory Group
In Collaboration with Frank Petriello arXiv:0911.4135, Phys.Rev.D81:093007, 2010 arXiv:1007.3773, Phys.Rev.D83:053007, 2011 arXiv:1011.0757

QCD Evolution Workshop: from Collinear to Non-collinear Case JLAB, April 9th, 201I

Outline

- Introduction
- Effective field theory Approach
- Numerical Results and Comparison with Data
- Non-perturbative transverse momentum region
- Conclusions

Transverse Momentum Spectrum

Motivations

- Higgs Boson searches
- W-mass measurement
- Tests of pQCD
- Transverse nucleon structure
- Observable of interest

CDF Data
for Z-production

Low pT Region

- The schematic perturbative series for the $\mathrm{p} T$ distribution for $p p \rightarrow h+X$

$$
\begin{gathered}
\frac{1}{\sigma} \frac{d \sigma}{d p_{T}^{2}} \simeq \frac{1}{p_{T}^{2}}\left[A_{1} \alpha_{S} \ln \frac{M^{2}}{p_{T}^{2}}+A_{2} \alpha_{S}^{2} \ln ^{3} \frac{M^{2}}{p_{T}^{2}}+\ldots+A_{n} \alpha_{S}^{n} \ln 2 n-1 \frac{M^{2}}{p_{T}^{2}}+\ldots\right] \\
\downarrow \\
\begin{array}{c}
\text { Large Logarithms spoil } \\
\text { perturbative convergence }
\end{array}
\end{gathered}
$$

- Resummation has been studied in great detail in the Collins-Soper-Sterman formalism.
(Davies, Stirling;Arnold, Kauffman; Berger, Qiu; Ellis,Veseli, Ross,Webber; Brock, Ladinsky Landry, Nadolsky;Yuan; Fai, Zhang; Catani, Emilio,Trentadue; Hinchliffe, Novae; Florian, Grazzini, Cherdnikov, Stefanis; Belitsky, Ji,....)
- Resummation has also been studied recently using the EFT approach.

Low pT Region

$$
A\left(P_{A}\right)+B\left(P_{B}\right) \rightarrow C(Q)+X, \quad C=\gamma^{*}, W^{ \pm}, Z, h
$$

- The transverse momentum distribution in the CSS formalism is schematically given by:

$$
\frac{d \sigma_{A B \rightarrow C X}}{d Q^{2} d y d Q_{T}^{2}}=\frac{d \sigma_{A B \rightarrow C X}^{(\text {resum })}}{d Q^{2} d y d Q_{T}^{2}}+\frac{d \sigma_{A B \rightarrow C X}^{(\mathrm{Y})}}{d Q^{2} d y d Q_{T}^{2}}
$$

Low pT Region

- Singular as at least Q_{T}^{-2} as $Q_{T} \rightarrow 0$

$$
\frac{d \sigma_{A B \rightarrow C X}^{(\mathrm{Y})}}{d Q^{2} d y d Q_{T}^{2}}=\frac{d \sigma_{A B \rightarrow C X}^{(\text {pert })}}{d Q^{2} d y d Q_{T}^{2}}-\frac{d \sigma_{A B \rightarrow C X}^{(\text {asym })}}{d Q^{2} d y d Q_{T}^{2}}
$$

- Important in region of small Q_{T}.
- Treated with resummation.
- Obtained from fixed order calculation.
- Less Singular terms.
- Important in region of large Q_{T}.

EFT Framework

EFT framework

- Low pT region dominated by soft and collinear emissions from initial state:

- Soft and Collinear emissions dominate the low pT distribution:

$$
\left.\begin{array}{c}
p_{n} \sim m_{h}\left(\eta^{2}, 1, \eta\right), \quad p_{\bar{n}} \sim m_{h}\left(1, \eta^{2}, \eta\right), \quad p_{s} \sim m_{h}(\eta, \eta, \eta), \\
\eta
\end{array}\right) \frac{p_{T}}{m_{h}}, ~ l
$$

- Hierarchy of scales suggests EFT approach with well defined power counting.

$$
m_{h} \gg p_{T} \gg \Lambda_{Q C D}, \quad p_{T} \sim \Lambda_{Q C D}
$$

EFT framework

- Low pT region dominated by soft and collinear emissions from initial state:

finite p^{\top}

finite p^{T}
- Colliding parton is part of initial state pT radiation beam jet:

\longleftarrow Initial State jet of $\mathrm{p} T$ radiation
- Gives rise to impact-parameter Beam Functions (iBFs). (SM,Petriello) Analogous beam functions arise in other processes:
(Stewart, Tackmann, Waalewijin; Fleming, Leibovich, Mehen)
- Soft recoil radiation is restricted. Gives rise to a soft function.

EFT framework

$$
\mathrm{QCD}\left(n_{f}=6\right) \rightarrow \mathrm{QCD}\left(n_{f}=5\right) \rightarrow \mathrm{SCET}_{p_{T}} \rightarrow \mathrm{SCET}_{\Lambda_{Q C D}}
$$

Top quark integrated out.

Matched onto SCET.

Soft-collinear factorization.

Matching onto PDFs.
$\frac{d^{2} \sigma}{d p_{T}^{2} d Y} \sim H \otimes \mathcal{G}^{i j} \otimes f_{i} \otimes f_{j}$

Newly defined objects describing soft and collinear p^{\top} emissions

Integrating out the top

- Effective Higgs production operator

$$
\mathcal{L}_{m_{t}}=C_{G G h} \frac{h}{v} G_{\mu \nu}^{a} G_{a}^{\mu \nu}, \quad C_{G G h}=\frac{\alpha_{s}}{12 \pi}\left\{1+\frac{11}{4} \frac{\alpha_{s}}{\pi}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right\}
$$

Two loop result for Wilson coefficient.
(Chetyrkin, Kniehl, Kuhn, Schroder, Steinhauser, Sturm)

Matching onto SCET

- Matching equation:
$O_{Q C D}=\int d \omega_{1} \int d \omega_{2} C\left(\omega_{1}, \omega_{2}\right) \mathcal{O}\left(\omega_{1}, \omega_{2}\right)$

Tree level matching

Soft and Collinear emissions
build into Wilson lines
determined by soft and collinear gauge invariance of SCET.

- Effective SCET operator:

$$
\mathcal{O}\left(\omega_{1}, \omega_{2}\right)=g_{\mu \nu} h T\left\{\operatorname{Tr}\left[S_{n}\left(g B_{n \perp}^{\mu}\right)_{\omega_{1}} S_{n}^{\dagger} S_{\bar{n}}\left(g B_{\bar{n} \perp}^{\nu}\right)_{\omega_{2}} S_{\bar{n}}^{\dagger}\right]\right\}
$$

- SCET differential cross-section:

$$
\begin{aligned}
\frac{d^{2} \sigma}{d u d t} & =\frac{1}{2 Q^{2}}\left[\frac{1}{4}\right] \int \frac{d^{2} p_{h_{\perp}}}{(2 \pi)^{2}} \int \frac{d n \cdot p_{h} d \bar{n} \cdot p_{h}}{2(2 \pi)^{2}}(2 \pi) \theta\left(n \cdot p_{h}+\bar{n} \cdot p_{h}\right) \delta\left(n \cdot p_{h} \bar{n} \cdot p_{h}-\vec{p}_{h_{\perp}}^{2}-m_{h}^{2}\right) \\
& \times\left.\delta\left(u-\left(p_{2}-p_{h}\right)^{2} \delta \delta\left(t-\left(p_{1}-p_{h}\right)^{2}\right) \sum_{\text {initial pols. }} \sum_{X}\left|C\left(\omega_{1}, \omega_{2}\right) \otimes\left\langle h X_{n} X_{\bar{n}} X_{s}\right| \mathcal{O}\left(\omega_{1}, \omega_{2}\right)\right| p p\right\rangle\right|^{2} \\
& \times(2 \pi)^{4} \delta^{(4)}\left(p_{1}+p_{2}-P_{X_{n}}-P_{X_{\bar{n}}}-P_{X_{s}}-p_{h}\right),
\end{aligned}
$$

- Schematic form of SCET cross-section:

Lemen Cross-Section

- Formula in detail:

$$
\begin{aligned}
\frac{d^{2} \sigma}{d u d t} & =\frac{(2 \pi)}{\left(N_{c}^{2}-1\right)^{2} 8 Q^{2}} \int d p_{h}^{+} d p_{h}^{-} \int d^{2} k_{h}^{\perp} \int \frac{d^{2} b_{\perp}}{(2 \pi)^{2}} e^{-i \vec{k}_{h}^{\perp} \cdot \vec{b}_{\perp}} \\
& \times \delta\left[u-m_{h}^{2}+Q p_{h}^{-}\right] \delta\left[t-m_{h}^{2}+Q p_{h}^{+}\right] \delta\left[p_{h}^{+} p_{h}^{-}-\vec{k}_{h \perp}^{2}-m_{h}^{2}\right] \int d \omega_{1} d \omega_{2}\left|C\left(\omega_{1}, \omega_{2}, \mu\right)\right|^{2} \\
& \times \int d k_{n}^{+} d k_{\bar{n}}^{-} B_{n}^{\alpha \beta}\left(\omega_{1}, k_{n}^{+}, b_{\perp}, \mu\right) B_{\bar{n} \alpha \beta}\left(\omega_{2}, k_{\bar{n}}^{-}, b_{\perp}, \mu\right) \mathcal{S}\left(\omega_{1}-p_{h}^{-}-k_{\bar{n}}^{-}, \omega_{2}-p_{h}^{+}-k_{n}^{+}, b_{\perp}, \mu\right)
\end{aligned}
$$

bn-collinear
iBF

Soft

- iBFs and soft functions field theoretically defined as the fourier transform of:

$$
\begin{aligned}
J_{n}^{\alpha \beta}\left(\omega_{1}, x^{-}, x_{\perp}, \mu\right) & =\sum_{\text {initial pols. }}\left\langle p_{1}\right|\left[g B_{1 n \perp \beta}^{A}\left(x^{-}, x_{\perp}\right) \delta\left(\overline{\mathcal{P}}-\omega_{1}\right) g B_{1 n \perp \alpha}^{A}(0)\right]\left|p_{1}\right\rangle \\
J_{\bar{n}}^{\alpha \beta}\left(\omega_{1}, y^{+}, y_{\perp}, \mu\right) & =\sum_{\text {initial pols. }}\left\langle p_{2}\right|\left[g B_{1 n \perp \beta}^{A}\left(y^{+}, y_{\perp}\right) \delta\left(\overline{\mathcal{P}}-\omega_{2}\right) g B_{1 n \perp \alpha}^{A}(0)\right]\left|p_{2}\right\rangle \\
S(z, \mu) & =\langle 0| \bar{T}\left[\operatorname{Tr}\left(S_{\bar{n}} T^{D} S_{\bar{n}}^{\dagger} S_{n} T^{C} S_{n}^{\dagger}\right)(z)\right] T\left[\operatorname{Tr}\left(S_{n} T^{C} S_{n}^{\dagger} S_{\bar{n}} T^{D} S_{\bar{n}}^{\dagger}\right)(0)\right]|0\rangle .
\end{aligned}
$$

Equivalence of Zero-Bin \& Soft Subtractions

- Zero-bin iBF reproduces soft graphs. This is the equivalence of zero-bin and soft subtractions in SCET. (Stewart, Hoang Lee, Sterman; ldilib, Mehen; Chiu, Fuhrer,Kelly, Hoang, Manohar;...)

Zero-bin Subtraction in order to avoid double counting the soft region.

$$
\begin{array}{cc}
B_{n, \bar{n}}^{\alpha \beta}\left(\omega, k^{ \pm}, b_{\perp}, \mu\right)= & \tilde{B}_{n, \bar{n}}^{\alpha \beta}\left(\omega, k^{ \pm}, b_{\perp}, \mu\right)-B_{\{n 0, \bar{n} 0\}}^{\alpha \beta}\left(\omega, k^{ \pm}, b_{\perp}, \mu\right) \\
\text { Purely Collinear iBF } & \uparrow
\end{array}
$$

- iBFs and iSF are regulated by kinematics of the process and free of rapidity divergences.
- iBFs are fully unintegrated nucleon distributions instead of TMD pdfs.
(see talks by M.Aybat, I. Cherednikov, J.C. Collins)
- In singular gauges, transverse gauge links can be added
(Garcia-Echevarria, Idilbi, Scimemi; Belitsky, Ji, Yuan)

Perturbative $\mathrm{p} \top$

Integrating Out the pT Scale

- The iBFs are matched onto PDFs to separate the perturbative and non-perturbative scales:

- iBF is matched onto the PDF with matching coefficient defined as:

$$
\tilde{B}_{n}^{\alpha \beta}\left(z, t_{n}^{+}, b_{\perp}, \mu\right)=-\frac{1}{z} \sum_{i=g, q, \bar{q}} \int_{z}^{1} \frac{d z^{\prime}}{z^{\prime}} \mathcal{I}_{n ; g, i}^{\alpha \beta}\left(\frac{z}{z^{\prime}}, t_{n}^{+}, b_{\perp}, \mu\right) f_{i / P}\left(z^{\prime}, \mu\right)
$$

> Proton fragments into

- Tree level matching
pT radiation beam jet

- Finite part of iBF in dim-reg gives matching coefficient at higher orders.

Factorization Formula

- Factorization formula in full detail:

$$
\begin{aligned}
& \frac{d^{2} \sigma}{d \mathrm{p}_{T}^{2} d Y}= \frac{\pi^{2}}{4\left(N_{c}^{2}-1\right)^{2} Q^{2}} \int_{0}^{1} \frac{d x_{1}}{x_{1}} \int_{0}^{1} \frac{d x_{2}}{x_{2}} \int_{x_{1}}^{1} \frac{d x_{1}^{\prime}}{x_{1}^{\prime}} \int_{x_{2}}^{1} \frac{d x_{2}^{\prime}}{x_{2}^{\prime}} \\
& \times H\left(x_{1}, x_{2}, \mu_{Q} ; \mu_{T}\right) \mathcal{G}^{i j}\left(x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}, p_{T}, Y, \mu_{T}\right) f_{i / P}\left(x_{1}^{\prime}, \mu_{T}\right) f_{j / P}\left(x_{2}^{\prime}, \mu_{T}\right) \\
& \downarrow \downarrow \\
& \begin{array}{l}
\text { Hard function. }
\end{array} \\
& \begin{array}{l}
\text { Transverse momentum } \\
\text { function. }
\end{array}
\end{aligned}
$$

- The transverse momentum function is a convolution of the iBF matching coefficients and the soft function:
$\mathcal{G}^{i j}\left(x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}, p_{T}, Y, \mu_{T}\right)=\int d t_{n}^{+} \int d t_{\bar{n}}^{-} \int \frac{d^{2} b_{\perp}}{(2 \pi)^{2}} J_{0}\left(\left|\vec{b}_{\perp}\right| p_{T}\right)$
Collinear pT emissions $\longrightarrow \times \mathcal{I}_{n ; g, i}^{\beta \alpha}\left(\frac{x_{1}}{x_{1}^{\prime}}, t_{n}^{+}, b_{\perp}, \mu_{T}\right) \mathcal{I}_{n ; j, j}^{\beta \alpha}\left(\frac{x_{2}}{x_{2}^{\prime}}, t_{\bar{n}}^{-}, b_{\perp}, \mu_{T}\right)$
Soft pT emissions $\longrightarrow \times \mathcal{S}^{-1}\left(x_{1} Q-e^{Y} \sqrt{\mathrm{p}_{T}^{2}+m_{h}^{2}}-\frac{t_{\bar{n}}^{-}}{Q}, x_{2} Q-e^{-Y} \sqrt{\mathrm{p}_{T}^{2}+m_{h}^{2}}-\frac{t_{n}^{+}}{Q}, b_{\perp}, \mu_{T}\right)$

Factorization Formula

$$
\begin{aligned}
\frac{d^{2} \sigma}{d \mathrm{p}_{T}^{2} d Y} & =\frac{\pi^{2}}{4\left(N_{c}^{2}-1\right)^{2} Q^{2}} \int_{0}^{1} \frac{d x_{1}}{x_{1}} \int_{0}^{1} \frac{d x_{2}}{x_{2}} \int_{x_{1}}^{1} \frac{d x_{1}^{\prime}}{x_{1}^{\prime}} \int_{x_{2}}^{1} \frac{d x_{2}^{\prime}}{x_{2}^{\prime}} \\
& \times H\left(x_{1}, x_{2}, \mu_{Q} ; \mu_{T}\right) \mathcal{G}^{i j}\left(x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}, p_{T}, Y, \mu_{T}\right) f_{i / P}\left(x_{1}^{\prime}, \mu_{T}\right) f_{j / P}\left(x_{2}^{\prime}, \mu_{T}\right)
\end{aligned}
$$

- One can express the formula entirely in momentum space:

$$
\begin{aligned}
\mathcal{G}^{i j}\left(x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}, p_{T}, Y, \mu_{T}\right) & =\frac{1}{2 \pi} \int d t_{n}^{+} \int d t_{\bar{n}}^{-} \int d^{2} k_{n}^{\perp} \int d^{2} k_{\bar{n}}^{\perp} \int d^{2} k_{s}^{\perp} \frac{\delta\left(p_{T}-\left|\vec{k}_{n}^{\perp}+\vec{k}_{\bar{n}}^{\perp}+\vec{k}_{s}^{\perp}\right|\right)}{p_{T}} \\
& \times \mathcal{I}_{n ; g, i}^{\beta \alpha}\left(\frac{x_{1}}{x_{1}^{\prime}}, t_{n}^{+}, k_{n}^{\perp}, \mu_{T}\right) \mathcal{I}_{\bar{n} ;, g, j}^{\beta \alpha}\left(\frac{x_{2}}{x_{2}^{\prime}}, t_{\bar{n}}^{-}, k_{\bar{n}}^{\perp}, \mu_{T}\right) \\
& \times \mathcal{S}^{-1}\left(x_{1} Q-e^{Y} \sqrt{\mathrm{p}_{T}^{2}+m_{h}^{2}}-\frac{t_{\bar{n}}^{-}}{Q}, x_{2} Q-e^{-Y} \sqrt{\mathrm{p}_{T}^{2}+m_{h}^{2}}-\frac{t_{n}^{+}}{Q}, k_{s}^{\perp}, \mu_{T}\right)
\end{aligned}
$$

Fixed order and Matching Calculations

One loop Matching onto SCET

$$
O_{Q C D}=\int d \omega_{1} \int d \omega_{2} C\left(\omega_{1}, \omega_{2}\right) \mathcal{O}\left(\omega_{1}, \omega_{2}\right)
$$

One loop SCET graphs

All graphs scaless and vanish in dimensional regularization.

- Wilson Coefficient obtained from finite part in dimensional regularization of the QCD result for gg->h. At one loop we have:

$$
C\left(\bar{n} \cdot \hat{p}_{1} n \cdot \hat{p}_{2}, \mu\right)=\frac{c \bar{n} \cdot \hat{p}_{1} n \cdot \hat{p}_{2}}{v}\left\{1+\frac{\alpha_{s}}{4 \pi} C_{A}\left[\frac{11}{2}+\frac{\pi^{2}}{6}-\ln ^{2}\left(-\frac{\bar{n} \cdot \hat{p}_{1} n \cdot \hat{p}_{2}}{\mu^{2}}\right)\right]\right\}
$$

(Ahrens, Becher, Neubert, Yang; Harlander,Kilgore;Anastasiou,Melnikov;Ravindran,Smith,Van Neerven)

iBFs

Soft function

- Soft function definition:

$$
S(z)=\langle 0| \operatorname{Tr}\left(\bar{T}\left\{S_{\bar{n}} T^{D} S_{\bar{n}}^{\dagger} S_{n} T^{C} S_{n}^{\dagger}\right\}\right)(z) \operatorname{Tr}\left(T\left\{S_{n} T^{C} S_{n}^{\dagger} S_{\bar{n}} T^{D} S_{\bar{n}}^{\dagger}\right\}\right)(0)|0\rangle
$$

One loop graphs

Running

Running

- Factorization formula:

$$
\frac{d^{2} \sigma}{d p_{T}^{2} d Y} \sim H \otimes \mathcal{G}^{i j} \otimes f_{i} \otimes f_{j}
$$

- Schematic picture of running:

Running

- Factorization formula:

$$
\frac{d^{2} \sigma}{d p_{T}^{2} d Y} \sim H \otimes \mathcal{G}^{i j} \otimes f_{i} \otimes f_{j}
$$

- Schematic picture of running:

Numerical Results

Higgs pT Distribution

- Prediction for Higgs boson pT distribution.

Z-production: Comparison with Data

- Good agreement with data.
- Theory curve determined completely by perturbative functions and standard PDFs.

Non-Perturbative pT Region

Non-Perturbative pT Region

- Non-perturbative region of pT:

- iBFs and iSF are non-perturbative:

$$
\frac{d^{2} \sigma}{d p_{T}^{2} d Y} \sim H \otimes \tilde{B}_{n} \otimes \tilde{B}_{\bar{n}} \otimes S^{-1}
$$

Non-Perturbative pT Region

- Non-perturbative region of pT :

Distribution sensitive to transverse momentum dynamics in nucleon

- iBFs and iSF are non-perturbative:

- Soft factor can be absorbed into iBFs. Plays an important role in TMD formalism.
(See talk by M.Aybat, I. Cherednikov, J.C.Collins)

Non-Perturbative pT Region

- Non-perturbative region of pT :

- In order to smoothly connect non-perturbative and perturbative regions, we still write

$$
\tilde{B}_{n}=\underset{\substack{\text { n } \\ \text { non- } \\ \text { perturbative }}}{\mathcal{I}_{n, i} \otimes f_{i},} \quad \tilde{B}_{\bar{n}}=\mathcal{I}_{\bar{n}, j} \downarrow \underset{\substack{\downarrow \\ \text { non- } \\ \text { perturbative }}}{ } \otimes f_{j}
$$

Non-Perturbative pT Region

- Transverse momentum function (TMF) is now non-perturbative

Can make nonperturbative model

Scale dependence and running known

Model for Non-Perturbative TMF

$$
\begin{aligned}
\frac{d^{2} \sigma}{d p_{T}^{2} d Y} & \sim H \bigotimes \mathcal{G}^{i j} \otimes f_{i} \otimes f_{j} \\
\mathcal{G}^{q r s}\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}, p_{T}, Y, \mu_{T}\right) & =\int_{0}^{\infty} d p_{T}^{\prime} \mathcal{G}_{\mathrm{part}}^{\text {qrs }}\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}, p_{T} \sqrt{1+\left(p_{T}^{\prime} / p_{T}\right)^{2}}, Y, \mu_{T}\right) \\
& \times G_{m o d}\left(p_{T}^{\prime}, a, b, \Lambda\right), \\
\text { Model function } & \text { (Hoang, Ligeti, Stewart, Tackmann) }
\end{aligned}
$$

- Model function:

$$
G_{\text {mod }}\left(p_{T}^{\prime}, a, b, \Lambda\right)=\frac{N}{\Lambda^{2}}\left(\frac{p_{T}^{\prime 2}}{\Lambda^{2}}\right)^{a-1} \exp \left[-\frac{\left(p_{T}^{\prime}-b\right)^{2}}{2 \Lambda^{2}}\right], \quad \int_{0}^{\infty} d p_{T}^{\prime} G_{m o d}\left(p_{T}^{\prime}, a, b, \Lambda\right)=1
$$

- Model reduces to the perturbative result for large pT :

$$
\left.\mathcal{G}^{q r s}\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}, p_{T}, Y, \mu_{T}\right)\right|_{p_{T} \gg \Lambda_{Q C D}}=\mathcal{G}_{\text {part. }}^{\text {qrs }}\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}, p_{T}, Y, \mu_{T}\right)+\mathcal{O}\left(\frac{\Lambda_{Q C D}}{p_{T}}\right) .
$$

- Similar to analysis done in CSS with "bmax".

Including the Non-Perturbative Region

- pT spectrum including the non-perturbative region

- Model dependence restricted only to non-perturbative region as expected.

Summary

- Factorization formula:

$$
\frac{d^{2} \sigma}{d p_{T}^{2} d Y} \sim H \otimes \mathcal{G}^{i j} \otimes f_{i} \otimes f_{j}
$$

- Perturbative pT distribution given in terms of perturbatively calculable functions and the standard PDFs.
- Non-perturbative pT region determined by unintegrated nucleon distributions (iBFs) and inverse soft function (iSF).
- Smooth transition for spectrum from non-perturbative pT to perturbative pT and large pT .
- Performed NLL resummation and found good agreement with data.

Backup Slides

$$
\frac{d^{2} \sigma_{Z, q \bar{q}}}{d p_{T}^{2} d Y}=\frac{4 \pi^{2}}{3} \frac{\alpha}{\sin ^{2} \theta_{W}} e_{q \bar{q}}^{2} \frac{1}{s p_{T}^{2}} \sum_{m, n}\left(\frac{\alpha_{s}\left(\mu_{R}\right)}{2 \pi}\right)^{n}{ }_{n} D_{m} \ln ^{m} \frac{M_{Z}^{2}}{p_{T}^{2}}
$$

> leading logarithmic : $\alpha_{s}^{n} L^{2 n-1}$, next-to-leading logarithmic : $\alpha_{s}^{n} 2^{2 n-2}$, next-to-next-to-leading logarithmic : $\alpha_{s}^{n} L^{2 n-3}$.

$$
\begin{aligned}
{ }_{1} D_{1}= & A^{(1)} f_{A} f_{B}, \\
{ }_{1} D_{0}= & B^{(1)} f_{A} f_{B}+f_{B}\left(P_{q q} \otimes f\right)_{A}+f_{A}\left(P_{q q} \otimes f\right)_{B}, \\
{ }_{2} D_{3}= & -\frac{1}{2}\left[A^{(1)}\right]^{2} f_{A} f_{B}, \\
{ }_{2} D_{2}= & -\frac{3}{2} A^{(1)}\left[f_{B}\left(P_{q q} \otimes f\right)_{A}+f_{A}\left(P_{q q} \otimes f\right)_{B}\right]-\left[\frac{3}{2} A^{(1)} B^{(1)}-\beta_{0} A^{(1)}\right] f_{A} f_{B}, \\
{ }_{2} D_{1}= & \left\{-A^{(1)} f_{B}\left(P_{q q} \otimes f\right)_{A} \ln \frac{\mu_{F}^{2}}{M_{Z}^{2}}-2 B^{(1)} f_{B}\left(P_{q q} \otimes f\right)_{A}-\frac{1}{2}\left[B^{(1)}\right]^{2} f_{A} f_{B}\right. \\
& +\frac{\beta_{0}}{2} A^{(1)} f_{A} f_{B} \ln \frac{\mu_{R}^{2}}{M_{Z}^{2}}+\frac{\beta_{0}}{2} B^{(1)} f_{A} f_{B}-\left(P_{q q} \otimes f\right)_{A}\left(P_{q q} \otimes f\right)_{B} \\
& \left.-f_{B}\left(P_{q q} \otimes P_{q q} \otimes f\right)_{A}+\beta_{0} f_{B}\left(P_{q q} \otimes f\right)_{A}\right\}+[A \leftrightarrow B] .
\end{aligned}
$$

$$
\begin{gathered}
\frac{d^{2} \sigma}{d u d t}=\sum_{q i j K L} \frac{\pi F^{K L ; q}}{4 Q^{4} N_{c}^{2}} \int d^{2} k_{\perp} \int \frac{d^{2} b_{\perp}}{(2 \pi)^{2}} e^{i \vec{b}_{\perp} \cdot \vec{k}_{\perp}} \delta\left[\omega_{u} \omega_{t}-\vec{k}_{\perp}^{2}-M_{z}^{2}\right] H_{Z}^{K L ; i j q}\left(\omega_{u}, \omega_{t}, \mu_{Q} ; \mu_{T}\right) \\
\times J_{n}^{q}\left(\omega_{u}, 0, b_{\perp}, \mu_{T}\right) J_{\overline{\tilde{n}}}^{\overline{\tilde{n}}}\left(\omega_{t}, 0, b_{\perp}, \mu_{T}\right) S_{q q}\left(0,0, b_{\perp}, \mu_{T}\right)
\end{gathered}
$$

