Uses of Q^{2} evolution in GPD phenomenology
 Dieter Müller
 LBNL

- GPD definitions and one trivial remark on Q^{2} evolution
- Uses of conformal symmetry
- Modeling GPDs at the initial scale and their Q 2 evolution
- Is evolution needed to describe present and future hard exclusive photon and meson electroproduction data?
based on collaborations with
A. Belitsky (98-01)
K. Kumerički, K. Passek-Kumerički (05-...)
A. Schäfer, T. Lautenschlager, M. Meskauskas

Field theoretical GPD definition

GPDs are defined as matrix elements of renormalized light-ray operators:
$F\left(x, \eta, \Delta^{2}, \mu^{2}\right)=\int_{-\infty}^{\infty} d \kappa e^{i \kappa x n \cdot P}\left\langle P_{2}\right| \mathcal{R} T: \phi(-\kappa n)[(-\kappa n),(\kappa n)] \phi(\kappa n):\left|P_{1}\right\rangle, n^{2}=0$
momentum fraction x, skewness $\eta=\frac{n \cdot \Delta}{n \cdot P} \Delta=P_{2}-P_{1} P=P_{1}+P_{2} \Delta^{2} \equiv t$
For a nucleon target we have four chiral even twist-two GPDs:

$$
\begin{aligned}
\bar{\psi}_{i} \gamma_{+} \psi_{i} & \Rightarrow{ }^{i} q^{V}=\bar{U}\left(P_{2}, S_{2}\right) \gamma_{+} U\left(P_{1}, S_{1}\right) H_{i}+\bar{U}\left(P_{2}, S_{2}\right) \frac{i \sigma_{+\nu} \Delta^{\nu}}{2 M} U\left(P_{1}, S_{1}\right) E_{i} \\
\bar{\psi}_{i} \gamma_{+} \gamma_{5} \psi_{i} & \Rightarrow \quad{ }^{i} q^{A}=\bar{U}\left(P_{2}, S_{2}\right) \gamma_{+} \gamma_{5} U\left(P_{1}, S_{1}\right) \widetilde{H}_{i}+\bar{U}\left(P_{2}, S_{2}\right) \frac{\gamma_{5}}{2 M} U\left(P_{1}, S_{1}\right) \widetilde{E}_{i}
\end{aligned}
$$

shorthands:

chiral even GPDs: $F=\{H, E, \widetilde{H}, \widetilde{E}\}$
\& CFFs: $\quad \mathcal{F}=\{\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}}\}$
chiral odd GPDs: $\quad F_{T}=\left\{H_{T}, E_{T}, \widetilde{H}_{T}, \widetilde{E}_{T}\right\}$

$$
\mathcal{F}_{T}=\left\{\mathcal{H}_{T}, \mathcal{E}_{T}, \widetilde{\mathcal{H}}_{T}, \widetilde{\mathcal{E}}_{T}\right\}
$$

Q ${ }^{2}$ evolution

"two-body" operators posses apart from self-energy insertions no singularities (in a generic scalar theory)

$$
\mathcal{O}(x, y)=z_{\phi} T: \phi^{\mathrm{bar}}(y) \phi^{\mathrm{bar}}(x): \quad(x-y)^{2} \neq 0
$$

usually a minimal subtraction (MS) scheme is used, e.g.
$z_{\phi}=1+\frac{1}{\epsilon}\left(\frac{\alpha_{s}}{2 \pi} z_{\phi}^{1,(0))}+O\left(\alpha_{s}^{2}\right)\right)+\frac{1}{\epsilon^{2}} O\left(\alpha_{s}^{2}\right)+\cdots$
scale dependence is governed by anomalous dimensions

$$
\left[\mu \frac{\partial}{\partial \mu}+\beta \frac{\partial}{\partial g}\right] \mathcal{O}(x, y)=-2 \gamma_{\phi} \mathcal{O}(x, y), \quad \gamma_{\phi}=-\frac{1}{2} g \frac{\partial}{\partial g} z_{\phi}^{(1)}
$$

leading twist operators on the light cone possess logarithmic singularities

$$
\left[\mu \frac{\partial}{\partial \mu}+\beta \frac{\partial}{\partial g}\right] \mathcal{O}(n,-n)=-\int d \kappa_{1} \int d \kappa_{2} \gamma\left(\kappa_{1}, \kappa_{2}\right) \mathcal{O}\left(\kappa_{1} n, \kappa_{2} n\right), n^{2}=0
$$

LO anomalous dimensions are obtained from

Conformal operator basis

irreducible representations :

$$
\begin{gathered}
\Phi_{j, l}=\partial_{+}^{l} \Phi_{j}(0), \quad j=(d+s) / 2 \\
{\left[j_{1}\right] \otimes\left[j_{2}\right]=\bigoplus_{n \geq 0}\left[j_{n}\right], \quad j_{n}=j_{1}+j_{2}+n .} \\
\mathcal{O}_{n, l}^{j, j} \propto \partial_{+}^{n+l}\left[\Phi_{j} C_{n}^{(2 j-1)}\left(\frac{\vec{\partial}_{+}-\overleftarrow{\partial}_{+}}{\vec{\partial}_{+}+\overleftarrow{\partial}_{+}}\right) \Phi_{j}\right]
\end{gathered}
$$

\checkmark conformal symmetry is preserved at tree-level

- diagonal LO anomalous dimensions [Ohrndorf 82, DM 91]
! conformal symmetry is broken by the trace anomaly in $d=4-2 \varepsilon$ dimensions
- apart from β-proportional term it is also broken by the renormalization scheme
\checkmark conformal renormalization scheme exist so that the breaking appears only due to the β proportional trace anomaly in $\mathrm{d}=4$ dimensions [DM (97)]
$>$ anomalous dimensions and DVCS hard-scattering part @NLO [Belitsky,DM (98)]
> constructing all 12 twist-two NLO evolution kernels [Belitsky, DM, Freund (00)] (two explicit calculated NLO kernerls [Radyushkin et al (~85); Mikhailov, Vladimirov (09)1)

conformal PW expansion of DAs

conformal symmetry in LO pQCD suggest Gegenbauer expansion
$\phi_{M}\left(v, Q^{2}\right)=f_{M} \sum_{\substack{n=0 \\ \text { even }}}^{\infty} 6(1-v) v C_{n}^{3 / 2}(2 v-1) E_{n}\left(Q, Q_{0}\right) a_{n}\left(Q_{0}^{2}\right)$
(eigenfunction of the LO evolution operator)

- LO evolution equation is trivially solved
$E_{n}\left(Q, Q_{0}\right)=\left(\frac{\ln \left(Q^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)}{\ln \left(Q_{0}^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)}\right)^{-\gamma_{n}^{(0)} / \beta_{0}} \gamma_{n}^{(0)}=\frac{4}{3}\left(4 S_{n+1}-\frac{2}{(n+1)(n+2)}-3\right)$
- inverse moment enters in LO descriptions of form factors

$$
\mathcal{I}_{M}\left(Q^{2}\right)=\frac{1}{3 f_{M}} \int_{0}^{1} d u \frac{\phi_{M}\left(u, Q^{2}\right)}{u}=\sum_{\substack{n=0 \\ \text { even }}}^{\infty} E_{n}\left(Q, Q_{0}\right) a_{n}\left(Q_{0}^{2}\right)
$$

Effective model for DAs

three conformal moments, two free parameters $a_{0}=1$ (fixed by normalization), a_{2}, a_{4}, for $\mu^{2}=Q_{0}^{2}$
suppose we have a "measurement", there is still freedom left

$$
\begin{aligned}
& \mathcal{I}_{M}\left(Q^{2}=Q_{0}^{2}\right)=1+a_{2}+a_{4}, \text { fixed by data } \\
& \mathcal{I}_{M}\left(Q^{2} \rightarrow \infty\right)=1, \text { asymptotic limit is slowly reached }
\end{aligned}
$$

suppose $\mathcal{I}_{M}\left(Q^{2}=Q_{0}^{2}\right)=1$: Can one practically pin down such a model?

Conformal partial wave expansion of GPDs

$>$ a GPD can be expanded with respect to conformal partial waves of the collinear conformal group $\mathrm{SO}(2,1)$ (similar to $\mathrm{SO}(3)$ expansion)

- expansion in terms of discrete conformal spin j+2 for $\eta>1,|x / \eta| \leq 1$

$$
F(x, \eta, t)=\sum_{j=0}^{\infty}(-1)^{j} p_{j}(x, \eta) F_{j}(\eta, t)
$$

- conformal moments (partial wave amplitudes) are polynomials:

$$
F_{j}(x, \eta)=\frac{\Gamma(3 / 2) \Gamma(1+j)}{2^{j} \Gamma(3 / 2+j)} \int_{-1}^{1} d x \eta^{j+1} C_{j}^{3 / 2}\left(\frac{x}{\eta}\right) F(x, \eta, t)
$$

- conformal partial waves ensure the polynomiality condition:

$$
p_{j}(x, \eta)=\frac{\Gamma(5 / 2+j)}{j!\Gamma(1 / 2) \Gamma(2+j)} \frac{d^{j}}{d x^{j}} \int_{-1}^{1} d u\left(1-u^{2}\right)^{j+1} \delta(x-u \eta)
$$

\checkmark crossing symmetry allows for a more convenient representation (technicality, e.g., Sommerfeld-Watson transform, numerous failures in the literature)
\checkmark partial waves evolve autonomously \square trivial implementation of evolution

Summing up conformal PWs

- GPD support is a consequence of Poincaré invariance (polynomiality)

$$
H_{j}\left(\eta, t, \mu^{2}\right)=\int_{-1}^{1} d x c_{j}(x, \eta) H\left(x, \eta, t, \mu^{2}\right), \quad c_{j}(x, \eta)=\eta^{j} C_{j}^{3 / 2}(x / \eta)
$$

- conformal moments evolve autonomous (to LO and beyond in a special scheme)

$$
\mu \frac{d}{d \mu} H_{j}\left(\eta, t, \mu^{2}\right)=-\frac{\alpha_{s}(\mu)}{2 \pi} \gamma_{j}^{(0)} H_{j}\left(\eta, t, \mu^{2}\right)
$$

- inverse relation is given as series of mathematical distributions:

$$
H(x, \eta, t)=\sum_{j=0}^{\infty}(-1)^{j} p_{j}(x, \eta) H_{j}(\eta, t), p_{j}(x, \eta) \propto \theta(|x| \leq \eta) \frac{\eta^{2}-x^{2}}{\eta^{j+3}} C_{j}^{3 / 2}(-x / \eta)
$$

- various ways of resummation were proposed:
${ }^{\circ}$ smearing method [Radyushkin (97); Geyer, Belitsky, DM., Niedermeier, Schäfer (97/99)]
${ }^{\circ}$ mapping to a kind of forward PDFs [A. Shuvaev (99), J. Noritzsch (00)]
- dual parameterization [M. Polyakov, A. Shuvaev (02)]
- based on conformal light-ray operators [Balitsky, Braun (89); Kivel, Mankewicz (99)]
- Mellin-Barnes integral [DM, Schäfer (05); A. Manashov, M. Kirch, A. Schäfer (05)]

Sommerfeld-Watson transform

\checkmark rewrite sum as an integral around the real axis:

$$
F\left(x, \eta, \Delta^{2}\right)=\frac{1}{2 i} \oint_{(0)}^{(\infty)} d j \frac{1}{\sin (\pi j)} p_{j}(x, \eta) F_{j}\left(\eta, \Delta^{2}\right)
$$

\checkmark find appropriate analytic continuation of p_{j} and F_{j} (Carlson's theorem)

$$
\begin{aligned}
& p_{j}(x, \eta)=\theta(\eta-|x|) \eta^{-j-1} \mathcal{P}_{j}\left(\frac{x}{\eta}\right)+\theta(x-\eta) \eta^{-j-1} \mathcal{Q}_{j}\left(\frac{x}{\eta}\right) \\
& \mathcal{P}_{j}(x)=\frac{2^{j+1} \Gamma(5 / 2+j)}{\Gamma(1 / 2) \Gamma(1+j)}(1+x){ }_{2} F_{1}\left(\left.\begin{array}{c}
-j-1, j+2 \\
2
\end{array} \right\rvert\, \frac{1+x}{2}\right) \\
& \mathcal{Q}_{j}(x)=-\frac{\sin (\pi j)}{\pi} x^{-j-1}{ }_{2} F_{1}\left(\begin{array}{c}
(j+1) / 2,(j+2) / 2 \\
5 / 2+j
\end{array} \frac{1}{x^{2}}\right)
\end{aligned}
$$

\checkmark change integration path so that singularities remain on the I.h.s.

$$
F\left(x, \eta, \Delta^{2}\right)=\frac{i}{2} \int_{c-i \infty}^{c+i \infty} d j \frac{1}{\sin (\pi j)} p_{j}(x, \eta) F_{j}\left(\eta, \Delta^{2}\right)
$$

Advantages of the Mellin-Barnes integral

\checkmark another possibility to parameterize GPDs [similar to the dual parameterization] (basic properties are implemented, essential for flexible fitting routines)
\checkmark (LO) solution of the evolution equation is trivial implemented

$$
F\left(x, \eta, \Delta^{2}, \mathcal{Q}^{2}\right)=\frac{i}{2} \int_{c-i \infty}^{c+i \infty} d j \frac{p_{j}(x, \eta)}{\sin (\pi j)} \exp \left\{-\frac{\gamma_{j}^{(0)}}{2} \int_{\mathcal{Q}_{0}^{2}}^{\mathcal{Q}^{2}} \frac{d \sigma}{\sigma} \frac{\alpha_{s}(\sigma)}{2 \pi}\right\} F_{j}\left(\eta, \Delta^{2}, \mathcal{Q}_{0}^{2}\right)
$$

\checkmark fast and robust numerical evaluation
\checkmark simple representation of amplitudes

$$
\begin{aligned}
& \mathcal{F}\left(\xi, \Delta^{2}, \mathcal{Q}^{2}\right)=\int_{-1}^{1} d x\left[\frac{e^{2}}{\xi-x-i \epsilon} \mp \frac{e^{2}}{\xi+x-i \epsilon}\right] F\left(x, \xi, \Delta^{2}, \mathcal{Q}^{2}\right) \\
& \mathcal{F}=\frac{e^{2}}{2 i} \int_{c-i \infty}^{c+i \infty} d j \xi^{-j-1} \frac{2^{j+1} \Gamma(5 / 2+j)}{\Gamma(3 / 2) \Gamma(3+j)}\left(i-\frac{\cos (\pi j) \mp 1}{\sin (\pi j)}\right) F_{j}\left(\xi, \Delta^{2}, \mathcal{Q}^{2}\right)
\end{aligned}
$$

\checkmark MS factorization conventions can be implemented at NLO
\checkmark CS factorization conventions enable us to explore NNLO corrections

What is "dual" GPD parameterization?

- t-channel scattering angle and skewness parameter are related: $\cos \theta \approx-1 / \eta$
- labeling the conformal moments by the t-channel angular momentum J (conjugated variable to θ or in some sense to η)
[Polyakov (99)
Ji, Lebed (00)
Diehl (03),
KMP-K (07)]
$>$ primary `quantum numbers' are $j+2$ and the difference $v=j+1-J$
$>$ in "dual" parameterization $j+2$ is replaced by conjugate momentum fraction z

$$
F(x, \eta, t)=\sum_{\nu=0}^{\infty} \int_{0}^{1} d z K_{\nu}(x, \eta \mid z) Q_{\nu}(z, t) \quad\left[\begin{array}{l}
\text { [Polyakov, } \\
\text { Shuvaev }(02)]
\end{array}\right.
$$

- GPD model building in terms of $f_{j, j+1-v}(t)$ or $Q_{v}(z, t)$ (one-to-one to DDs)
"dual" parameterization [Guzey, Teckentrup (06)] effectively took v=0 [Polyakov (07)]

A flexible GPD model

- take three effective $\mathrm{SO}(3)$ partial waves

$$
\begin{aligned}
F_{j}(\eta, t) & =\hat{d}_{j}(\eta) f_{j}^{j+1}(t)+\eta^{2} \hat{d}_{j-2}(\eta) f_{j}^{j-1}(t)+\eta^{4} \hat{d}_{j-4}(\eta) f_{j}^{j-3}(t), \quad j \geq 4 \\
f_{j}^{j-k}(\eta, t) & =s_{k} f_{j}^{j+1}(\eta, t), \quad k=2,4, \cdots
\end{aligned}
$$

- rewrite Mellin-Barnes integral

$$
\begin{aligned}
\mathcal{F}= & \frac{1}{2 i} \sum_{\substack{k=0 \\
\text { even }}}^{4} \int_{c-i \infty}^{c+i \infty} d j \xi^{-j-1} \frac{2^{j+1+k} \Gamma(5 / 2+j+k)}{\Gamma(3 / 2) \Gamma(3+j+k)}\left(i-\frac{\cos (\pi j) \mp 1}{\sin (\pi j)}\right) \\
& \times s_{k} E_{j+k}\left(\mathcal{Q}^{2}\right) f_{j}^{j+1}(t) \hat{d}_{j}(\xi), \quad s_{0}=1
\end{aligned}
$$

NOTE:

$>$ first partial wave amplitude is fixed by PDFs (if they exist) and FFs
$>$ "Regge poles" should be in the angular momentum J-plane (not in the j-plane)

$$
H\left(x, x, t=0, \mathcal{Q}^{2}\right) \stackrel{x \rightarrow 0}{=} \sum_{\substack{k=0 \\ \text { even }}}^{4} s_{k} \frac{2^{\alpha+k} \Gamma(3 / 2+\alpha+k)}{\Gamma(3 / 2) \Gamma(2+\alpha+k)} q\left(x, \mathcal{Q}^{2}\right)
$$

> a J-pole is associated with a series of spurious poles in the j-plane

Is the conformal ratio supported?

 associating "Regge poles" with the j-plane yields "erroneous small x-claim" that GPDs are "tied" to PDFs:$$
r=\frac{H\left(x, x, t=0, Q^{2}\right)}{q\left(x, Q^{2}\right)}
$$

by the conformal (Shuvaev) ratio:
[Martin, Ryskin, Shuvaev et al.]

Modeling \& evolution in x-space

- "Dispersion relation" can be used at twist-two level:

$$
\begin{aligned}
& \Re \mathrm{e} \mathcal{F}\left(\xi, t, Q^{2}\right)=\frac{1}{\pi} \mathrm{PV} \int_{0}^{1} d \xi^{\prime}\left(\frac{1}{\xi-\xi^{\prime}} \mp \frac{1}{\xi+\xi^{\prime}}\right) \Im \mathrm{m} \mathcal{F}\left(\xi^{\prime}, t, Q^{2}\right)+\mathcal{C}\left(t, Q^{2}\right) \\
& \frac{1}{\pi} \Im \mathrm{~m} \mathcal{F}\left(\xi=x, t, Q^{2}\right) \stackrel{\mathrm{LO}}{=} F\left(x, x, t, Q^{2}\right) \mp F\left(-x, x, t, Q^{2}\right)
\end{aligned}
$$

- outer region governs the evolution at the cross-over trajectory
$\mu^{2} \frac{d}{d \mu^{2}} H\left(x, x, t, \mu^{2}\right)=\int_{x}^{1} \frac{d y}{x} V\left(1, x / y, \alpha_{s}(\mu)\right) H\left(y, x, \mu^{2}\right)$
GPD at $\eta=x$ is ‘measurable’ (LO)

good DVCS fits to H1 and ZEUS data at LO, NLO, and NNLO with flexible GPD ansatz

large Q^{2} lever arm and the "pomeron" pole in the glonic sector allow to ask for gluon contributions in DVCS at small x

"pomeron pole" related NLO and NNLO corrections

$>$ drastically reduction of perturbative corrections at NNLO for the hard part
$>$ reduction of renormalization scale dependence
$>$ but perturbative predictions for the evolution is unstable
> no improvement of factorization scale dependence
evolution is not needed to analyze fixed target DVCS data (HERMES, JLAB)
\Longrightarrow uses of "dispersion relation" approach (modeling accessible degrees of freedom)

- fits to HALL A harmonics are fine for unexpected large \hat{H} or Ě contribution - large \hat{H} KM09 scenario is excluded from longitudinal TSA (HERMES, CLAS)

Can one use evolution to pin down valence GPDs in a future EIC measurement?

\square it will be a challenge to discriminate between models

Summary

$>$ pQCD formalism for hard exclusive production is available at NLO

- for DVCS even at NNLO in a specific subtraction scheme
- pQCD@NLO will be needed for a global analysis of photon and meson data
$>$ NLO evolution kernels where obtained from the understanding that conformal symmetry is broken by the normalization conditions
- for $\beta=0$ restoration of conformal symmetry is possible in any order
- formally proved from conformal algebra and Ward identities
$>$ evolution operator in the flavor singlet and parity even sector becomes unstable in the small x-region
- fortunately, this is a universal feature
$>$ a high luminosity machine with dedicated experiments is desired
- to resolve the transverse degrees of freedom
- within the discussed EIC it might be possible to employ evolution effects to explore GPDs apart from the cross-over line

