
Uses of Q2 evolution 
in GPD phenomenology

Dieter MüllerDieter Müller
LBNL 

•• GPD definitions and one trivial remark on QGPD definitions and one trivial remark on Q22 evolutionevolution•• GPD definitions and one trivial remark on QGPD definitions and one trivial remark on Q22 evolutionevolution
•• Uses of conformal symmetryUses of conformal symmetry
•• Modeling GPDs at the initial scale and their QModeling GPDs at the initial scale and their Q22 evolutionevolution•• Modeling GPDs at the initial scale and their QModeling GPDs at the initial scale and their Q22 evolutionevolution
•• Is evolution needed to describe present and future Is evolution needed to describe present and future 

hard exclusive photon and meson hard exclusive photon and meson electroproductionelectroproduction data?data?pp pp

based on collaborations with 

A. Belitsky (98-01)A. Belitsky (98 01)
K. Kumerički, K. Passek-Kumerički (05-...)
A. Schäfer, T. Lautenschlager, M. Meskauskas



Field theoretical GPD definitionField theoretical GPD definition
GPDs are defined as matrix elements ofGPDs are defined as matrix elements of 
renormalized lightlight--rayray operators:
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momentum fraction x , skewness
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For a nucleon target we have four chiral even twist-two GPDs:
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shorthands:
chiral even GPDs: & CFFs:
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F = {H E eH eE} F = {H, E , eH, eE}chiral even GPDs:

chiral odd GPDs:

& CFFs:F = {H,E,H,E} { , , , }

FT = {HT , ET , eHT , eET } FT = {HT , ET , eHT , eET }



Q2 evolutionevolution
“two-body” operators posses apart from self-energy  insertions no singularities

O(x, y) = zφT :φbar(y)φbar(x) : (x− y)2 6= 0

y p p p gy g
(in a generic scalar theory)

usually a minimal subtraction (MS) scheme is used e g
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usually a minimal subtraction  (MS) scheme is used, e.g.  

scale dependence is governed by anomalous dimensions·
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are obtained from



irreducible representations :

Conformal operator basisConformal operator basis

[j1]⊗ [j2] =
M

[j ] j = j1 + j2 + n

Φj,l = ∂l+Φj(0) , j = (d+ s)/2

[j1]⊗ [j2] =
M
n≥0

[jn] , jn = j1 + j2 + n.
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"
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#
 conformal symmetry is preserved at tree-level     

► diagonal LO anomalous dimensions  [Ohrndorf 82, DM 91] 
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"
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#

► d ago a O a o a ous d e s o s [O do 8 , 9 ]

! conformal symmetry is broken by the trace anomaly in d=4-2ε dimensions

► apart from β-proportional term it is also broken by the renormalization scheme

 conformal renormalization scheme exist so that the breaking appears only due 
to the β proportional  trace anomaly in d=4 dimensions [DM (97)]

 anomalous dimensions and DVCS hard-scattering part @NLO [Belitsky,DM (98)]

 constructing all 12 twist-two NLO evolution kernels [Belitsky, DM, Freund (00)]
(two explicit calculated NLO kernerls [Radyushkin et al (~85); Mikhailov, Vladimirov (09)])



conformal conformal PW PW expansion of DAsexpansion of DAs
conformal symmetry in LO pQCD suggest Gegenbauer expansionconformal symmetry in LO pQCD suggest Gegenbauer expansion
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(eigenfunction of the LO evolution operator) 
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• LO evolution equation is trivially solved
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• inverse moment enters in LO descriptions of form factors
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EEffective model for DAsffective model for DAs
three conformal moments, two free parameters

a0 = 1 (fixed by normalization) , a2 , a4 , for μ2 = Q20

IM (Q2 = Q20) = 1 + a2 + a4 , fixed by data

suppose we have a “measurement” ,  there is still freedom left

suppose                                 : Can one practically pin down such a model? 

M (Q Q0) + a2 + a4 , ed by data

IM (Q2 →∞) = 1 , asymptotic limit is slowly reached

IM (Q2 = Q20) = 1 y(Q Q0)
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Conformal partial wave expansion of GPDsConformal partial wave expansion of GPDs
 a GPD can be expanded with respect to conformal partial waves of the 

collinear conformal group SO(2,1) (similar to SO(3) expansion)

• expansion in terms of discrete conformal spin j+2 for h >1,  |x/h| ≤ 1∞X
j

• conformal moments (partial wave amplitudes) are polynomials:

z=x/h j+2F (x, η, t) =
X
j=0

(−1)jpj(x, η)Fj(η, t)

conformal moments (partial wave amplitudes) are polynomials:

Fj(x, η) =
Γ(3/2)Γ(1 + j)
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¶
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• conformal partial waves ensure the polynomiality condition:

pj(x, η) =
Γ(5/2 + j) dj

Z 1

du(1− u2)j+1δ(x− uη)

crossing symmetry allows for a more convenient representation
(technicality e g Sommerfeld Watson transform numerous failures in the literature)

pj(x, η)
j!Γ(1/2)Γ(2 + j) dxj

Z
−1
du(1 u ) δ(x uη)

(technicality, e.g., Sommerfeld-Watson transform, numerous failures in the literature) 

 partial waves evolve autonomously          trivial implementation of evolution



Summing up conformal PWsSumming up conformal PWs
• GPD support is a consequence of Poincaré invariance (polynomiality)• GPD support is a consequence of Poincaré invariance (polynomiality)

Hj(η, t,μ
2) =

Z 1

1

dx cj(x, η)H(x, η, t,μ
2) , cj(x, η) = ηjC

3/2
j (x/η)

• conformal moments evolve autonomous  (to LO and beyond in a special scheme) 

Z
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d
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αs(μ) (0)
H ( t 2)

• inverse relation is given as series of mathematical distributions:

μ
dμ
Hj(η, t,μ

2) = − s(μ)

2π
γ
(0)
j Hj(η, t,μ

2)

g

H(x, η, t) =

∞X
j=0

(−1)jpj(x, η)Hj(η, t) , pj(x, η) ∝ θ(|x| ≤ η)
η2 − x2
ηj+3

C
3/2
j (−x/η)

• various ways of resummation were proposed:
• smearing method [Radyushkin (97); Geyer, Belitsky, DM., Niedermeier, Schäfer (97/99)]
• mapping to a kind of forward PDFs [A. Shuvaev (99), J. Noritzsch (00)]
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• dual parameterization [M. Polyakov, A. Shuvaev (02)]
• based on conformal light-ray operators [Balitsky, Braun (89); Kivel, Mankewicz (99)]
• MellinMellin--Barnes integralBarnes integral [DM, Schäfer (05); A. Manashov, M. Kirch, A. Schäfer (05)]



SommerfeldSommerfeld--Watson transformWatson transform
 rewrite sum as an integral around the real axis:

F (x, η,∆2) =
1

2i

I (∞)
dj
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2)

 find appropriate analytic continuation of pj and Fj
(Carlson’s theorem)
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2

¶
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 change integration path so that singularities remain on the l.h.s.
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Advantages of the MellinAdvantages of the Mellin--Barnes integralBarnes integral
 another possibility to parameterize GPDs [similar to the dual parameterization] 

(basic properties are implemented, essential for flexible fitting routines)

 (LO) l ti f th l ti ti i t i i l i l t d (LO) solution of the evolution equation is trivial implemented

F (x, η,∆2,Q2) = i
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Z c+i∞
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γ
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2,Q20)

 fast and robust numerical evaluation 

 simple representation of amplitudes
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¸
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dj ξ−j−1

2j+1Γ(5/2 + j)

Γ(3/2)Γ(3 + j)

µ
i− cos(πj)∓ 1

sin(πj)

¶
Fj(ξ,∆
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MS f t i ti ti b i l t d t NLOMS factorization conventions can be implemented at NLO

 CS factorization conventions enable us to explore NNLO corrections



What is ``dual’’ GPD parameterization ?What is ``dual’’ GPD parameterization ?
t channel scattering angle and skewness parameter are related: θ ≈ 1/• t-channel scattering angle and skewness parameter are related: 

• labeling the conformal moments by the t-channel angular momentum J
(conjugated variable to θ or in some sense to h)

cos θ ≈ −1/η

[Polyakov (99)
Ji, Lebed (00)
Diehl (03),
KMP-K (07)]

Fj(η, t) = ηj+1
j+1X

J=Jmin

fj,J(t) dJ(1/η)

reduced Wigner 
rotation matrices

partial wave amplitudes
depending on j and J

KMP K (07)]J=J

 primary `quantum numbers’ are  j+2 and  the difference ν= j+1-J 

 in ``dual’’ parameterization j+2 is replaced by conjugate momentum fraction z 
∞ Z 1

GPD model building in terms of f (t) or Q ( t) ( t t DD )

[Polyakov,
Shuvaev (02)]F (x, η, t) =

∞X
ν=0

Z 1

0

dz Kν(x, η|z)Qν(z, t)

• GPD model building in terms of  fj,j+1-ν (t) or Qν(z,t)   (one-to-one to DDs)

``dual’’ parameterization [Guzey, Teckentrup (06)] effectively took ν=0  [Polyakov (07)]



A flexible GPD A flexible GPD mmodelodel
• take  three effective SO(3) partial waves

Fj(η, t) = d̂j(η)f
j+1
j (t) + η2d̂j−2(η)f

j−1
j (t) + η4d̂j−4(η)f

j−3
j (t), j ≥ 4

f j−kj (η, t) = skf
j+1
j (η, t) , k = 2, 4, · · ·

i M lli B i l• rewrite Mellin-Barnes integral
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NOTE:NOTE:  
 first partial wave amplitude is fixed by PDFs (if they exist)  and FFs

 “Regge poles” should be in the angular momentum J-plane (not  in the j-plane)gg p g p ( j p )

H(x, x, t = 0,Q2) x→0=
4X

k=0

sk
2α+kΓ(3/2 + α+ k)

Γ(3/2)Γ(2 + α+ k)
q(x,Q2)

12 a J-pole is associated with a series of spurious poles in the j-plane

k=0
even

( / ) ( )



Is the conformal ratio supported?Is the conformal ratio supported?
associating “Regge poles” with the j-plane g gg p j p
yields ``erroneous small x-claim’’ that 
GPDs are “tied” to PDFs:

r H(x,x,t=0,Q2)r = ( , , ,Q )
q(x,Q2)

by the conformal  (Shuvaev) ratio:
[Martin, Ryskin, Shuvaev et al.]

counter counter exampleexample (non-singlet case)
rcon =

2αΓ(3/2+α)
Γ(3/2)Γ(2+α)

meson-like DA 
for J=1
(t-channel)

skewness ratio r(Q2)

conformal ratioconformal ratioasymptotic GDAasymptotic GDA
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Modeling & Modeling & eevolution in xvolution in x--spacespace
1

• “Dispersion relation”  can be used at twist-two level:

<eF(ξ, t, Q2) = 1

π
PV

Z 1

0

dξ0
µ

1

ξ − ξ0
∓ 1

ξ + ξ0

¶
=mF(ξ0, t, Q2) + C(t, Q2)

1=mF(ξ = x t Q2) LO= F (x x t Q2)∓ F (−x x t Q2)
• outer region governs the evolution at the cross-over trajectory

2 d H( t 2)
R 1 dyV (1 / ( ))H( 2)

π
=mF(ξ = x, t, Q ) = F (x, x, t,Q )∓ F ( x, x, t, Q )

GPD at h = x is `measurable’ (LO)
net contribution of

μ2 d
dμ2H(x, x, t,μ

2) =
R
x
dy
x V (1, x/y,αs(μ))H(y, x,μ

2)

net contribution of 
outer + central region is
governed by a sum rule:

fixed h

PV

Z 1

0

dx
2x

η2 − x2H
−(x, η, t)
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x
= PV

Z 1

0

dx
2x

η2 − x2H
−(x, x, t) + C(t)



good DVCS fits good DVCS fits to H1 and ZEUS data to H1 and ZEUS data at at LOLO, , NLONLO, and , and NNLONNLO
with with flexible GPD flexible GPD ansatzansatz

σ ∝/ Q−4
scaling violation  
is due to evolution 

σ ∝/ Q
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large Q2 lever arm and the “pomeron” pole in the glonic sector
allow to ask for gluon contributions in DVCS at small x 

conformal ratio excluded at 
LO or in a DVCS scheme

sea quarkssea quarks gluons

k

transverse distribution in 
impact parameter space

sea quarks
gluons
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“pomeron pole” related NLO and NNLO corrections

 drastically reduction of perturbative corrections at NNLO for the hard part

 reduction of renormalization scale dependence reduction of renormalization scale dependence

 but perturbative predictions for the evolution is unstable 

 no improvement of factorization scale dependence 



evolution  is not needed to analyze fixed target DVCS data (HERMES, JLAB)
uses of  “dispersion relation”  approach  (modeling accessible degrees of freedom)

HALL-A data: 

neglected at all
ratios of moments
cross sections

• fits to HALL A harmonics are fine for unexpected large Ĥ or Ě contribution
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fits to HALL A harmonics are fine  for unexpected large Ĥ or Ě contribution
• large Ĥ KM09 scenario is excluded from longitudinal TSA (HERMES, CLAS)



Can one use evolution to pin down valence GPDs in a future EIC measurement?

differences due to 
evolution 

all four models are compatible 
with present DVCAS data
(HALL A excluded)

19it will be a challenge to discriminate between models 



Summary Summary 
 pQCD formalism for hard exclusive production is available at NLOp p

• for DVCS even at NNLO in a specific subtraction scheme

• pQCD@NLO will be needed for a global analysis of photon and meson data

 NLO evolution kernels where obtained from the understanding that 
conformal symmetry is broken by the normalization conditions 

• for β=0 restoration of conformal symmetry is possible in any order• for β=0 restoration of conformal symmetry is possible in any order

• formally proved  from conformal algebra  and Ward identities

 evolution operator in the flavor singlet and parity even sector becomes evolution operator in the flavor singlet  and parity even sector  becomes  
unstable in the small x-region 

• fortunately, this is a universal feature  

 a high luminosity machine with dedicated experiments is desired

• to resolve the transverse degrees of freedom
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• within the discussed EIC it might be possible to employ evolution effects 
to explore GPDs apart from the cross-over line 


