

Evolution equations of twist-3 parton distributions

PRD 80 (2009) 114002 (Braun, Manashov, BP)

Björn Pirnay

Universität Regensburg

April 2011

Introduction	BFLK	RGE		

Relevant twist-3 operators

$$T_{\mu}(\mathbf{z}) = g \, \bar{q}(z_1) F_{\mu+}(z_2) \gamma_+ q(z_3)$$
$$\Delta T_{\mu}(\mathbf{z}) = g \, \bar{q}(z_1) F_{\mu+}(z_2) i \gamma_+ \gamma_5 q(z_3)$$

Twist-3 correlation function

$$\langle P, s_T | \tilde{s}^{\mu} T_{\mu}(\mathbf{z}) | P, s_T \rangle \sim \int \mathcal{D}x \, e^{-iP_+ \sum_i z_i x_i} \, T_{\bar{q}Fq}(x_1, x_2, x_3)$$

$$\langle P, s_T | s^{\mu} \Delta T_{\mu}(\mathbf{z}) | P, s_T \rangle \sim \int \mathcal{D}x \, e^{-iP_+ \sum_i z_i x_i} \, \Delta T_{\bar{q}Fq}(x_1, x_2, x_3)$$

where $\tilde{s}^{\mu} = -\epsilon^{\mu\nu\rho\sigma}s_{\nu}n_{\rho}\tilde{n}_{\sigma}$ and n, \tilde{n} light-like, $(n\tilde{n}) = 1$.

$$\int \mathcal{D}x = \int_{-1}^{1} dx_1 dx_2 dx_3 \,\delta(x_1 + x_2 + x_3)$$

Introduction	BFLK	RGE	Non-singlet	Summary

The relevant operators have a representation in terms of "quasipartonic" operators

$$\tilde{s} \cdot T(\mathbf{z}), s \cdot \Delta T(\mathbf{z}) \in \mathrm{span} \ \{\phi_1(z_1) \otimes \phi_2(z_2) \otimes \phi_3(z_3)\}$$

with

$$\phi_i \in \left\{\psi_+, \bar{\psi}_+, \chi_+, \bar{\chi}_+, f_{++}, \bar{f}_{++}\right\}$$

e.g.

$$\tilde{s} \cdot T(\mathbf{z}) \sim \bar{\psi}_+(z_1) f_{++}(z_2) \psi_+(z_3) + ...$$

"Quasipartonic":

- Twist = number of fields.
- Closed under renormalization.

Introduction	BFLK	RGE		

Scale dependence at one-loop level (schematically)

$$\mu \frac{d}{d\mu} T(\mathbf{z}, \mu) = -\frac{\alpha_s}{2\pi} \left(\mathbb{H}_{12} + \mathbb{H}_{23} + \mathbb{H}_{31} \right) T(\mathbf{z}, \mu)$$

- Only two-particle renormalization kernels required!
- Two-particle kernels are known

Bukhvostov, Frolov, Lipatov, Kuraev, NPB 258 (1985) 601 Braun, Manashov, Rohrwild NPB 807 (2009) 89

Conformal symmetry of QCD: *H_{ij}* are *SL*(2, *ℝ*)-invariant operators.

Introduction BIER	Non-singlet	Singlet	Summary

Only a few non-trivial building blocks possible

$$\begin{split} & [\hat{\mathcal{H}}\varphi](z_{1},z_{2}) = \int_{0}^{1} \frac{d\alpha}{\alpha} \left[2\varphi(z_{1},z_{2}) - \bar{\alpha}^{2j_{1}-1}\varphi(z_{12}^{\alpha},z_{2}) - \bar{\alpha}^{2j_{2}-1}\varphi(z_{1},z_{21}^{\alpha}) \right] \\ & [\mathcal{H}^{d}\varphi](z_{1},z_{2}) = \int_{0}^{1} d\alpha \, \bar{\alpha}^{2j_{1}-1}\alpha^{2j_{2}-1} \, \varphi(z_{12}^{\alpha},z_{12}^{\alpha}) \\ & [\mathcal{H}^{+}\varphi](z_{1},z_{2}) = \int_{0}^{1} d\alpha \int_{0}^{\bar{\alpha}} d\beta \, \bar{\alpha}^{2j_{1}-2}\bar{\beta}^{2j_{2}-2} \, \varphi(z_{12}^{\alpha},z_{21}^{\beta}) \\ & [\tilde{\mathcal{H}}^{+}\varphi](z_{1},z_{2}) = \int_{0}^{1} d\alpha \int_{0}^{\bar{\alpha}} d\beta \, \bar{\alpha}^{2j_{1}-2}\bar{\beta}^{2j_{2}-2} \left(\frac{\alpha\beta}{\bar{\alpha}\bar{\beta}}\right) \varphi(z_{12}^{\alpha},z_{21}^{\beta}) \\ & [\mathcal{H}^{-}\varphi](z_{1},z_{2}) = \int_{0}^{1} d\alpha \int_{\bar{\alpha}}^{1} d\beta \, \bar{\alpha}^{2j_{1}-2}\bar{\beta}^{2j_{2}-2} \, \varphi(z_{12}^{\alpha},z_{21}^{\beta}) \\ & [\mathcal{H}^{e}_{12}(k)\varphi](z_{1},z_{2}) = \int_{0}^{1} d\alpha \, \bar{\beta}^{2j_{1}-k-1} \, \alpha^{k-1}\varphi(z_{12}^{\alpha},z_{2}) \end{split}$$

Notation: $\bar{\alpha} = 1 - \alpha$, $z_{12}^{\alpha} = \bar{\alpha}z_1 + \alpha z_2$. Quarks: j = 1 Gluons: j = 3/2

Introduction BI	_K KG	-singlet	Singlet	Summary

	$X_1(z_1)\otimes X_2(z_2)$	$\mathbb{H}\left[X_1\otimes X_2\right]$
А	$\psi_+ \otimes \psi_+, \ \psi_+ \otimes \chi_+, \ \psi_+ \otimes \psi_+, \ \bar{\psi}_+ \otimes \bar{\chi}_+, \ \chi_+ \otimes \chi_+, \ \bar{\chi}_+ \otimes \bar{\chi}_+$	$-2(t_{i_{1}i_{1}'}^{a}t_{i_{2}i_{2}'}^{a})\Big[\widehat{\mathcal{H}}-2\sigma_{q}\Big]X^{i_{1}'}(z_{1})\otimes X^{i_{2}'}(z_{2})$
B ^{NS}	$\psi_+\otimesar\chi_+,\psi_+\otimes\chi_+,\ \psi_+\otimesar\psi_+,ar\chi_+\otimes\chi_+$	$-2(t^{\mathfrak{s}}_{i_{1}i_{1}'}t^{\mathfrak{s}}_{i_{2}i_{2}'})\Big[\widehat{\mathcal{H}}-\mathcal{H}^{+}-2\sigma_{q}\Big]X^{i_{1}'}(z_{1})\otimes X^{i_{2}'}(z_{2})$
в ^{<i>S</i>}	$\psi_+\otimesar\psi_+,\ \chi_+\otimesar\chi_+$	$ \begin{array}{c} -2(t^{a}_{i_{1}i_{1}'}t^{a}_{j_{2}i_{2}'})\Big[\widehat{\mathcal{H}}-\mathcal{H}^{+}-2\sigma_{q}\Big]X^{i_{1}'}(z_{1})\otimes X^{i_{2}'}(z_{2})\\ -4t^{a}_{i_{1}'}\mathcal{H}^{d}J^{a}(z_{1},z_{2}) \end{array} $
		$-2iz_{12}\left\{(t^at^b)_{ij}\left[\mathcal{H}^++\widetilde{\mathcal{H}}^+\right]+2(t^bt^a)_{ij}\mathcal{H}^-\right\}f^a_{++}(z_1)\otimes\overline{f}^b_{++}(z_2)$
с	$f^{a}_{++}\otimes\psi_{+}, \ f^{a}_{++}\otimes\chi_{+},$	$-2(t^{b}_{aa'}\otimes t^{b}_{ii'})\left[\widehat{\mathcal{H}}-\sigma_{q}-\sigma_{g}\right]X^{a'}(z_{1})\otimes X^{i'}(z_{2})$
	$ar{f}^{a}_{++}\otimesar{\psi}_{+},ar{f}^{a}_{++}\otimesar{\chi}_{+}$	$-2(t^{a'}t^{a})_{ii'}P_{12}\mathcal{H}^{e,(1)}_{12}X^{a'}(z_1)\otimes X^{i'}(z_2)$
D	$f^{a}_{++}\otimes ar{\psi}_{+}, \ f^{a}_{++}\otimes ar{\chi}_{+},$	$-2(t^{b}_{aa'}\otimes t^{b}_{ii'})\left[\widehat{\mathcal{H}}-2\mathcal{H}^{+}-\sigma_{q}-\sigma_{g}\right]X^{a'}(z_{1})\otimes X^{i'}(z_{2})$
	$\bar{f}^{a}_{++} \otimes \psi_{+}, \ \bar{f}^{a}_{++} \otimes \chi_{+}$	$+4(t^{a'}t^{a})_{ii'}\mathcal{H}^{-}X^{a'}(z_{1})\otimes X^{i'}(z_{2})$
E	$f^{a}_{++}\otimes f^{c}_{++},\ ar{f}^{a}_{++}\otimesar{f}^{c}_{++}$	$-2(t_{aa'}^b,t_{cc'}^b)\left[\widehat{\mathcal{H}}-2\sigma_g\right]X^{a'}(z_1)\otimes X^{c'}(z_2)$
F	$f^a_{++}\otimesar{f}^c_{++}$	$ \begin{array}{c} -2(t_{ad'}^{b}t_{cc'}^{b})\left[\hat{\mathcal{H}}-4\mathcal{H}^{+}-2\tilde{\mathcal{H}}^{+}-2\sigma_{g}\right]f_{++}^{a'}(z_{1})\otimes\bar{f}_{++}^{c'}(z_{2}) \\ +12(t_{ac'}^{b}t_{ca'}^{b})\mathcal{H}^{-}f_{++}^{a'}(z_{1})\otimes\bar{f}_{++}^{c'}(z_{2}) \\ +\frac{2i}{z_{12}}\left[2\mathcal{H}^{+}P_{12}-P_{ac}\right]\left(1-6\mathcal{H}^{d}\right)J^{ac}(z_{2},z_{1}) \end{array} $

Table of BFLK kernels.

Evolution equations of twist-3 parton distributions

BFLK	RGE		

Simple example

• Consider matrix element

$$\varphi(z_1, z_2) = \langle P | \, \bar{\psi}_+(z_1) \psi_+(z_2) \, | P \rangle_{NS}$$

• Evolution

$$\mu \frac{d}{d\mu} \varphi(z_1, z_2) = -\frac{\alpha_s}{2\pi} C_F [\hat{\mathcal{H}} - \mathcal{H}^+ - 3/2] \varphi(z_1, z_2)$$

DGLAP-equation

$$\mathbb{H}=2C_{\mathsf{F}}\left(\psi(J_{12}+1)+\psi(J_{12}-1)-2\gamma-\frac{3}{2}\right)$$

 $J_{12} \leftrightarrow SL(2)$ Casimir operator.

BFLK	RGE		

Strategy

- Apply this formalism to products of three fields, $T_{\bar{q}Fq}(x_1, x_2, x_3)$ etc. \rightarrow arbitrary momentum fractions.
- Compare with soft-gluon pole projected equations.

Z. B. Kang, J. W. Qiu, Phys. Rev. D 79 (2009) 016003 W. Vogelsang, F. Yuan, arXiv:0904.0410 [hep-ph]

	BFLK	RGE		
_				

- Constraints/support:
 - $x_i \in [-1,1]$
 - $x_1 + x_2 + x_3 = 0.$
 - Separating lines correspond to SGP and SFP configurations.

$$(12)^+3^-: x_1 > 0, x_2 > 0, x_3 < 0$$

< ∃ >

BFLK	RGE		

Evolution:
$$\mu \frac{d}{d\mu} T_{\bar{q}Fq}(\mathbf{x}) = -\frac{\alpha_s}{2\pi} \left(\mathbb{H}_{12} + \mathbb{H}_{23} + \mathbb{H}_{31} \right) T_{\bar{q}Fq}(\mathbf{x})$$

Björn Pirnay

æ

< ロ > < 回 > < 回 > < 回 > < 回 > .

BFLK	RGE	Non-singlet	

Evolution, flavor non-singlet

$$\mu \frac{d}{d\mu} T_{\bar{q}Fq}(\mathbf{x}) = -\frac{\alpha_s}{4\pi} \Big[\Big(\mathbb{H} + P_{13} \mathbb{H} P_{13} \Big) T_{\bar{q}Fq}(\mathbf{x}) + \Big(\mathbb{H} - P_{13} \mathbb{H} P_{13} \Big) \Delta T_{\bar{q}Fq}(\mathbf{x}) \Big]$$

"Hamiltonian"

$$\mathbb{H} = N_c \left(\hat{\mathcal{H}}_{12} + \hat{\mathcal{H}}_{23} - 2\mathcal{H}_{12}^+ \right) - \frac{1}{N_c} \left(\hat{\mathcal{H}}_{13} - \mathcal{H}_{13}^+ - P_{23}\mathcal{H}_{23}^{e,(1)} + 2\mathcal{H}_{12}^- \right) - 3C_F$$

Explicit expressions in momentum space are very long \rightarrow PRD 80 (2009) 114002

BFLK	RGE	Non-singlet	

Soft gluon pole, $x_2 \rightarrow 0$, $x_3 = -x_1 = x$

$$\begin{split} \mu \frac{d}{d\mu} \mathcal{T}_{q,F}(\mathbf{x},\mathbf{x}) &= \frac{\alpha_s}{\pi} \left\{ \int_x^1 \frac{d\xi}{\xi} \left[P_{qq}(z) \mathcal{T}_{q,F}(\xi,\xi) \right. \\ &+ \frac{N_c}{2} \left(\frac{(1+z) \mathcal{T}_{q,F}(\mathbf{x},\xi) - (1+z^2) \mathcal{T}_{q,F}(\xi,\xi)}{1-z} - \mathcal{T}_{\Delta q,F}(\mathbf{x},\xi) \right) \right] \\ &- N_c \mathcal{T}_{q,F}(\mathbf{x},\mathbf{x}) + \frac{1}{2N_c} \int_x^1 \frac{d\xi}{\xi} \left[(1-2z) \mathcal{T}_{q,F}(\mathbf{x},\mathbf{x}-\xi) - \mathcal{T}_{\Delta q,F}(\mathbf{x},\mathbf{x}-\xi) \right] \right\}, \end{split}$$

•
$$z = x/\xi$$

•
$$\mathcal{T}_{q,F}(x,y) = \mathcal{T}_{\bar{q}Fq}(-y,y-x,x)$$

Red terms are missing in PRD 79 (2009) 016003, arXiv:0904.0410.

BFLK	RGE	Non-singlet	

Diagonal term,
$$-N_c \mathcal{T}_{q,F}(x,x)$$

Large x

$$\mu \frac{d}{d\mu} \mathcal{T}_{q,F}(x,x) = \frac{\alpha_s}{\pi} \int_x^1 \frac{d\xi}{\xi} \mathcal{P}_{q,F}^{NS,z\to 1}(z) \mathcal{T}_{q,F}(\xi,\xi)$$

SSA

$$P_{q,F}^{NS,z\to1}(z) = 2C_F\left[\frac{1}{(1-z)} + \frac{3}{4}\delta(1-z)\right] - N_c\delta(1-z)$$

Twist-2 structure function $F_1(x, Q^2)$

$$P_{qq}^{NS,z\to1}(z) = 2C_F\left[\frac{1}{(1-z)}_+ + \frac{3}{4}\delta(1-z)\right]$$

Pol. structure function $g_2(x, Q^2)$

$$P_{g_2}^{NS,z\to 1}(z) = 2C_F\left[\frac{1}{(1-z)} + \frac{3}{4}\delta(1-z)\right] - \frac{N_c}{2}\delta(1-z)$$

- ∢ ⊒ →

Introduction BFLK RGE Non-singlet Singlet Summary

Results in suppression of twist-3 function

$$\mathcal{T}_{q,F}(x,x,Q^2)/F_1(x,Q^2) \sim \left(\frac{\alpha_s(Q)}{\alpha_s(\mu_0)}\right)^{2N_c/b_0} g_2^{t3}(x,Q^2)/F_1(x,Q^2) \sim \left(\frac{\alpha_s(Q)}{\alpha_s(\mu_0)}\right)^{N_c/b_0}$$

Spectrum of anomalous dimensions.

BFLK	RGE	Singlet	

Evolution, flavor singlet

- Flavor singlet: mixing with 3-gluon operators.
- Change of basis

$$\begin{split} \mathfrak{S}^{\pm}(\mathbf{z}) &= \tilde{s}^{\rho} \Big[S_{\rho}^{+}(\mathbf{z}) \pm P_{13} S_{\rho}^{-}(\mathbf{z}) \Big] \\ S_{\rho}^{\pm}(\mathbf{z}) &= g \, \bar{q}(z_{1}) \big[F_{\rho+}(z_{2}) \pm i \gamma_{5} \tilde{F}_{\rho+}(z_{2}) \big] \gamma_{+} q(z_{3}) \\ \mathcal{F}^{\pm}(\mathbf{z}) &= 2g C_{\pm}^{abc} \tilde{s}^{\rho} (1 \mp P_{23} \pm P_{12}) F_{+}^{a,\nu}(z_{1}) F_{+\rho}^{b}(z_{2}) F_{+\nu}^{c}(z_{3}) \\ C_{+}^{abc} &= i f^{abc} , \quad C_{-}^{abc} = d^{abc} \end{split}$$

000010000

10000

• Evolution

$$\mu \frac{d}{d\mu} \begin{pmatrix} \mathfrak{S}^{\pm} \\ \mathcal{F}^{\pm} \end{pmatrix} = -\frac{\alpha_s}{4\pi} \begin{pmatrix} \mathbb{H}_{QQ}^{\pm} & \mathbb{H}_{QF}^{\pm} \\ \mathbb{H}_{FQ}^{\pm} & \mathbb{H}_{FF}^{\pm} \end{pmatrix} \begin{pmatrix} \mathfrak{S}^{\pm} \\ \mathcal{F}^{\pm} \end{pmatrix}$$

	BFLK	RGE		Singlet		
	4 (6	~ +)	/ππ± ππ± \	$(\sim +)$		
	$\mu \frac{a}{\mu} \left(\frac{a}{\mu} \right)$	$\begin{pmatrix} 2^+\\ -+ \end{pmatrix} = -\frac{\alpha_s}{1}$	$\begin{pmatrix} \Pi QQ & \Pi QF \\ \Pi + & \Pi + \end{pmatrix}$	$\begin{pmatrix} \Theta^{\pm} \\ \tau^{\pm} \end{pmatrix}$		
	$J d\mu \setminus J$	$ / 4\pi$	$\left(\prod_{FQ} \prod_{FF} \right)$	(\mathcal{F}^{\perp})		
Hamilto	nians					
$\mathbb{H}_{QQ}^+ = \mathbb{H}_{NS} + 4n_f \mathcal{H}_{13}^d , \qquad \mathbb{H}_{QQ}^- = \mathbb{H}_{NS}$						
$\mathbb{H}_{FF}^{\pm} = N_c \Big[\hat{\mathcal{H}}_{12} + \hat{\mathcal{H}}_{23} + \hat{\mathcal{H}}_{31} - 4(\mathcal{H}_{12}^+ + \mathcal{H}_{13}^+)$						
$- 2(\mathcal{H}_{12}^{\scriptscriptstyle +} + \mathcal{H}_{13}^{\scriptscriptstyle +} \pm 6(\mathcal{H}_{12}^{\scriptscriptstyle -} + \mathcal{H}_{13}^{\scriptscriptstyle -}))ig] - eta_0$						
	$\mathbb{H}_{QF}^{\pm} = -in_f z_{13} \left[\mathcal{H}_{13}^+ + \tilde{\mathcal{H}}_{13}^+ \mp 2\mathcal{H}_{13}^- \right]$					
	1 [.]					

$$\mathbb{H}_{FQ}^{-} = iN_{c}(1 - P_{23})\frac{1}{z_{13}}\left[2\mathcal{H}_{13}P_{13} + 1\right]\Pi_{0}$$
$$\mathbb{H}_{FQ}^{-} = -i\frac{N_{c}^{2} - 4}{N_{c}}(1 + P_{23})\frac{1}{z_{13}}\left[2\mathcal{H}_{13}^{+}P_{13} - 1\right]$$

BFLK	RGE	Singlet	

Evolution, 3-gluon, SGP

$T_F^\pm \sim (1\mp P_{13})\mathcal{F}^\pm$, $x_2 ightarrow 0$

$$\begin{split} \mu \frac{d}{d\mu} T_F^{\pm}(\mathbf{x}, \mathbf{x}) &= \frac{\alpha_s N_c}{\pi} \left(-T_F^{\pm}(\mathbf{x}, \mathbf{x}) + \int_{\mathbf{x}}^1 \frac{d\xi}{\xi} \left\{ 2 \bar{P}_{gg}(z) T_F^{\pm}(\xi, \xi) + \frac{z}{1-z} \left[T_F^{\pm}(\xi, \mathbf{x}) - T_F^{\pm}(\xi, \xi) \right] \right. \\ &\left. - (1-z) \left(z + \frac{1}{z} \right) T_F^{\pm}(\xi, \xi) + \frac{1+z}{2} \left[T_F^{\pm}(\mathbf{x}, \xi) - \Delta T_F^{\pm}(\mathbf{x}, \xi) \right] \right. \\ &\left. \mp \frac{1}{2} (1-z) \left[T_F^{\pm}(\mathbf{x}, \mathbf{x} - \xi) - \Delta T_F^{\pm}(\mathbf{x}, \mathbf{x} - \xi) \right] \right. \\ &\left. + \frac{1}{2} A^{\pm} \bar{P}_{gq}(z) \left[T_{q,F}(\xi, \xi) \pm T_{q,F}(-\xi, -\xi) \right] \right\} \right) \end{split}$$

Analogous disagreement with PRD 79 (2009) 016003 as in flavor non-singlet case.

A B >
 A B >
 A

Summary and outlook

- BFLK-type formalism is very powerful, can be applied to operators up to twist-4.
- Neither SGP nor SFP evolution is autonomous. Complete "hexagonal" evolution required.
- Dynamical models needed for the correlation functions (partially done).