

Exclusive k_{\perp} Radyushkin

Transition F Definition pQCD

Pion DA Definition Evolution Shape

BaBar Data Logarithmic mode Gaussian model

1 loop pQCD Structure Modified factorization

NONpQCD Wave function Born term

Summary

Transverse Momentum in Hard Exclusive Processes

A. Radyushkin

Old Dominion University and Jefferson Lab

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Photon-Pion Transition Form Factor

- Exclusive k_{\perp} Radyushkin
- Transition FF Definition PQCD
- Pion DA Definition Evolution Shape
- BaBar Data Logarithmic mode Gaussian model
- 1 loop pQCD Structure Modified factorization
- NONpQCD Wave function Born term
- Summary

- $F_{\gamma^*\gamma^*\pi^0}(q_1^2,q_2^2)$ relates two (in general, virtual) photons with the lightest hadron, the pion
- Plays special role among exclusive processes in QCD
- For real photons $F_{\gamma^*\gamma^*\pi^0}(0,0)$ determines rate of $\pi^0 \to \gamma\gamma$ decay, deeply related to axial anomaly
- For large photon virtualities, it has simplest structure analogous to that of form factors in deep inelastic scattering
- Comparing pQCD predictions with data gives information about shape of the pion DA $\varphi_\pi(x)$

Transition Form Factor in Perturbative QCD

- Exclusive k_{\perp} Radyushkin
- Transition FF Definition pQCD
- Pion DA Definition Evolution Shape
- BaBar Data Logarithmic mode Gaussian model
- 1 loop pQCD Structure Modified factorization
- NONpQCD Wave function Born term
- Summary

- Since only one hadron is involved, $\gamma^*\gamma^*\pi^0$ has simplest structure for pQCD analysis
- Nonperturbative information about pion is accumulated in pion DA $\varphi_{\pi}(x)$
- Short-distance amplitude for γ^{*}γ^{*} → π⁰ at leading order is given by single quark propagator
- Cleanest situation: both photon virtualities are large, but experiments are difficult due to very small cross section.

Pion Distribution Amplitude

Exclusive k_⊥ Radyushkin

- Transition FF Definition pQCD
- Pion DA Definition Evolution Shape
- BaBar Data Logarithmic mode Gaussian model
- 1 loop pQCD Structure Modified factorization
- NONpQCD Wave function Born term

Summary

• Pion DA $\varphi_{\pi}(x)$: momentum sharing for pion in valence $\bar{q}q$ configuration

• Chernyak; A.R. 1977: function whose x^n moments

$$f_n = \int_0^1 x^n \, \varphi_\pi(x) \, dx$$

are given by reduced matrix elements of twist-2 local operators

$$i^{n+1} \langle 0 | \bar{d}(0) \gamma_5 \{ \gamma_{\nu} D_{\nu_1} \dots D_{\nu_n} \} u(0) | \pi^+, P \rangle = \{ P_{\nu} P_{\nu_1} \dots P_{\nu_n} \} f_n$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Pion DA in Light-Front Formalism

- Exclusive k_⊥ Radyushkin
- Transition FF Definition pQCD
- Pion DA Definition Evolution Shape
- BaBar Data Logarithmic mode Gaussian model
- 1 loop pQCD Structure Modified factorization
- NONpQCD Wave function Born term
- Summary

• Jackson, 1977; Lepage & Brodsky,1979: k_{\perp} -integral of light-front wave function $\Psi(x, k_{\perp})$

$$\varphi_{\pi}(x,\mu) = rac{\sqrt{6}}{(2\pi)^3} \int_{k_{\perp}^2 \le \mu^2} \Psi(x,k_{\perp}) \, d^2k_{\perp}$$

• zeroth moment of $\varphi_{\pi}(x)$: matrix element of the axial current

$$\int_0^1 \varphi_\pi(x) \, dx = f_\pi$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

pion decay constant $f_{\pi} \approx 130 \,\text{MeV}$.

Shape and Evolution of Pion DA

Exclusive k_⊥

Transition F Definition pQCD

Pion DA Definition Evolution Shape

BaBar Data Logarithmic mode Gaussian model

1 loop pQCD Structure Modified factorization

NONpQCD Wave function Born term

Summary

- Integral under $\varphi_{\pi}(x)$ curve is fixed, but not its shape
- Shape of pion DA depends on renormalization scale μ : $\varphi_{\pi}(x) \rightarrow \varphi_{\pi}(x, \mu).$
- Evolution equation for pion DA may be written in matrix form

$$\mu \frac{d}{d\mu} f_n(\mu) = \sum_{k=0}^n Z_{nk} f_k(\mu)$$

A.R. 1977

• Or in kernel form

$$\mu \frac{d}{d\mu} \varphi_{\pi}(x,\mu) = \int_0^1 V(x,y) \,\varphi_{\pi}(y,\mu) \,dy$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Lepage&Brodsky:1979

Solution of Evolution Equation

Exclusive k_{\perp} Radyushkin

Transition Fl Definition pQCD

Pion DA Definition Evolution Shape

BaBar Data Logarithmic mode Gaussian model

1 loop pQCD Structure Modified factorization

NONpQCD Wave function Born term

Summary

Evolution kernel

$$V(x,y) = \frac{\alpha_s}{2\pi} C_F \left[\frac{x}{y} \theta(x < y) \left(1 + \frac{1}{x - y} \right) + \{x \leftrightarrow y\} \right]_+$$

• The "+"-operation is defined by

$$[F(x,y)]_{+} = F(x,y) - \delta(x-y) \int_{0}^{1} F(z,y) \, dz$$

• Expansion over Gegenbauer polynomials

$$\varphi_{\pi}(x,\mu) = 6f_{\pi} x(1-x) \left\{ 1 + \sum_{n=1}^{\infty} \frac{a_{2n} C_{2n}^{3/2}(2x-1)}{[\ln(\mu^2/\Lambda^2)]^{\gamma_{2n}/\beta_0}} \right\}$$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

∃ \0<</p> \0

Efremov & A.R. 1978; Lepage & Brodsky, 1979

Shape of Pion DA at Low Scales

- Exclusive k_{\perp} Radyushkin
- Transition Fl Definition pQCD
- Pion DA Definition Evolution Shape
- BaBar Data Logarithmic mode Gaussian model
- 1 loop pQCD Structure Modified factorization
- NONpQCD Wave function Born term
- Summary

- What is shape of pion DA at low scales $\mu \lesssim 1\,$ GeV?
- Simplistic argument (A.R. 1980):
- For system of two equal-mass non-interacting particles, $\varphi(x) = f_{\pi} \delta(x 1/2)$
- When interaction is on, width of $\varphi(x)$ increases
- It may be estimated as $\sim E_{\rm int}/m_q \sim \Lambda_{\rm QCD}/m_q$
- For heavy mesons (e.g., Υ), $\varphi(x)$ is narrow
- Taking $m_{u,d} \lesssim 10 \, {\rm MeV}$ gives very broad DA for pion
- Flat DA: $\varphi_{\pi}(x)$ close to f_{π} almost everywhere

Different Large Photon Virtualities

- Exclusive k_⊥ Radyushkin
- Transition FF Definition pQCD
- Pion DA Definition Evolution Shape
- BaBar Data Logarithmic mode Gaussian model
- 1 loop pQCD Structure Modified factorization
- NONpQCD Wave function Born term
- Summary

- Introduce asymmetry parameter $q_1^2=-Q^2(1+\omega)/2,$ $q_2^2=-Q^2(1-\omega)/2$
- pQCD leading-order result

$$F^{\rm pQCD}_{\gamma^*\gamma^*\pi}(Q^2,\omega) = \frac{2\sqrt{2}}{3Q^2} \int_0^1 \frac{\varphi_{\pi}(x)}{1+\omega(2x-1)} \, dx \equiv \frac{\sqrt{2}f_{\pi}}{3\,Q^2} \, J(\omega)$$

- Invert integral transform to get pion DA $\varphi_{\pi}(x)$
- Experimentally feasible: one photon is real, $\omega = 1$

One Real and One Virtual Photon

- Exclusive k_⊥ Radyushkin
- Transition FF Definition pQCD
- Pion DA Definition Evolution Shape
- BaBar Data Logarithmic mode Gaussian model
- 1 loop pQCD Structure Modified factorization
- NONpQCD Wave function Born term
- Summary

- $q_1^2 = -Q^2, q_2^2 = 0$
- Leading-order pQCD prediction

$$F^{\rm pQCD}_{\gamma^*\gamma\pi}(Q^2) = \frac{\sqrt{2}}{3Q^2} \int_0^1 \frac{\varphi_{\pi}(x)}{x} \, dx \ \equiv \frac{\sqrt{2}f_{\pi}}{3Q^2} \, J$$

(日) (日) (日) (日) (日) (日) (日)

- Information about pion DA is now accumulated in factor J
- J = 2 for infinitely narrow $\sim \delta(x 1/2)$ DA
- J = 3 for asymptotic $\sim 6x(1-x)$ DA
- J = 5 for CZ $\sim 30x(1-x)(1-2x)^2$ DA
- Another measure of the width of pion DA
- $J = \infty$ for flat $\varphi_{\pi}(x) = f_{\pi}$ DA!

BaBar Data

- Exclusive k_{\perp} Radyushkin
- Transition Fl Definition pQCD
- Pion DA Definition Evolution Shape
- BaBar Data Logarithmic model Gaussian model
- 1 loop pQCD Structure Modified factorization
- NONpQCD Wave function Born term
- Summary

Recent BaBar data may be fitted by

$$Q^2 F_{\gamma^* \gamma \pi^0}(Q^2) \cong \sqrt{2} f_\pi \left(\frac{Q^2}{10 \,\text{GeV}^2}\right)^{0.25} \equiv \frac{\sqrt{2} f_\pi}{3} J^{\exp}(Q^2)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

• $J^{\exp}(Q^2)$ does not flatten to some particular value!

Logarithmic Model

- Exclusive k_⊥ Radyushkin
- Transition FF Definition pQCD
- Pion DA Definition Evolution Shape
- BaBar Data Logarithmic model Gaussian model
- 1 loop pQCD Structure Modified factorization
- NONpQCD Wave function Born term
- Summary

• $J^{\exp}(Q^2)$ is very close to logarithmic function $J^L(Q^2) = \ln \left(Q^2/M^2 + 1\right)$

if one takes $M^2 = 0.6 \,\mathrm{GeV^2}$

• $J^L(Q^2)$ is obtained if $\varphi_{\pi}(x) = f_{\pi}$ and $xQ^2 \to xQ^2 + M^2$

$$J^{L}(Q^{2}) = Q^{2} \int_{0}^{1} \frac{dx}{xQ^{2} + M^{2}}$$

- *M* is usually treated as average intrinsic transverse momentum
- $M = 0.77 \,\text{GeV}$ is too large for such interpretation!

Tower of Higher Twists?

- Exclusive k_⊥
- Transition FI
- Pion DA Definition Evolution Shape
- BaBar Data Logarithmic model Gaussian model
- 1 loop pQCD Structure Modified factorization
- NONpQCD Wave function Born term
- Summary

- Also: $1/xQ^2 \rightarrow 1/(xQ^2 + M^2)$ brings in a tower of $(-M^2/xQ^2)^n$ power corrections, higher twists
- Known (Musatov, A.R. 1997) : handbag diagram

$$F(q,p) = \frac{1}{2\pi^2} \int e^{-iqz} \langle 0|\bar{\psi}(0)\gamma_5 \not z\psi(z)|p\rangle \frac{d^4z}{(z^2)^2} \,.$$

cannot generate infinite tower of power corrections

- Massless quark propagator is $\sim \not\!\!\! z/(z^2)^2$
- Matrix element of bilocal operator

 $\langle 0|\bar{\psi}(0)\gamma_5 \not z\psi(z)|p\rangle = \xi_2(zp)|_{z^2=0} + z^2\xi_4(zp)|_{z^2=0} + (z^2)^2\xi_6(zp)|_{z^2=0} + \dots$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Twist-6 and higher cancel singularity of quark propagator \rightarrow no tower of $(1/Q^2)^n$ terms!

"Sudakov" transverse momentum

1

- Exclusive k_⊥ Radyushkin
- Transition FF Definition pQCD
- Pion DA Definition Evolution Shape
- BaBar Data Logarithmic model Gaussian model
- 1 loop pQCD Structure Modified factorization
- NONpQCD Wave function Born term
- Summary

Sudakov parametrization of integration momentum

$$k = xp + \eta q_1 + k_\perp$$

• Formally integrating over η by residue in "*p-k*" propagator:

$$F(Q^2) \sim \int_0^1 dx \int d^2 k_\perp \frac{\Psi(x,k_\perp)}{xQ^2 + k_\perp^2/(1-x)}$$

- But: *i*) this formula generates infinite $(1/Q^2)^n$ tower
- And ii) Ψ -functions depending on k_{\perp} through $k_{\perp}^2/x(1-x)/\sigma$ give $k_{\perp}^2(x) \sim x(1-x)\sigma$ and 1/x singularity remains

Light-Front Formula and Gaussian Model

Exclusive k_⊥ Radyushkin

Transition Ff Definition pQCD

Pion DA Definition Evolution Shape

BaBar Data Logarithmic mode Gaussian model

1 loop pQCD Structure Modified factorization

NONpQCD Wave function Born term

Summary

• Two-body (*i.e.*, $\bar{q}q$) contribution for $\gamma^*\gamma\pi^0$ form factor in light-front formalism (Lepage & Brodsky, 1980)

$$[\epsilon_{\perp} \times q_{\perp}) F^{\bar{q}q}_{\gamma^*\gamma\pi^0}(Q^2) \sim \int_0^1 dx \int \frac{(\epsilon_{\perp} \times (xq_{\perp} + k_{\perp}))}{(xq_{\perp} + k_{\perp})^2 - i\epsilon} \Psi(x, k_{\perp}) d^2k_{\perp}$$

• Simplifies for wave functions of $\Psi(x,k_{\perp}) = \psi(x,k_{\perp}^2)$ type

$$F^{\bar{q}q}_{\gamma^*\gamma\pi^0}(Q^2) = \frac{1}{2\pi^2\sqrt{3}} \int_0^1 \frac{dx}{xQ^2} \int_0^{xQ} \psi(x,k_{\perp}^2) \, k_{\perp} dk_{\perp}$$

(Musatov & A.R. 1997)

J

• Gaussian ansatz for k_{\perp} -dependence (BHL 1984, JKR 1996)

$$\mathcal{U}^{G}(x,k_{\perp}) = \frac{4\pi^{2}}{x\bar{x}\sigma\sqrt{6}}\,\varphi_{\pi}(x)\,\exp\left(-\frac{k_{\perp}^{2}}{2\sigma x\bar{x}}\right)$$

Result for form factor

$$F^G_{\gamma^*\gamma\pi^0}(Q^2) = \frac{\sqrt{2}}{3} \int_0^1 \frac{\varphi_\pi(x)}{xQ^2} \left[1 - \exp\left(-\frac{xQ^2}{2\bar{x}\sigma}\right) \right] dx$$

Features of Gaussian Model

Exclusive k_⊥ Radyushkin

Transition FF Definition pQCD

Pion DA Definition Evolution Shape

BaBar Data Logarithmic mode Gaussian model

1 loop pQCD Structure Modified factorization

NONpQCD Wave function Born term

Summary

Result for form factor

$$F^{G}_{\gamma^{*}\gamma\pi^{0}}(Q^{2}) = \frac{\sqrt{2}}{3} \int_{0}^{1} \frac{\varphi_{\pi}(x)}{xQ^{2}} \left[1 - \exp\left(-\frac{xQ^{2}}{2\bar{x}\sigma}\right) \right] dx \equiv \frac{\sqrt{2}f_{\pi}}{3} J^{G}(Q^{2},\sigma)$$

- Contains 1/xQ² pQCD contribution and correction term making integral convergent for small x
- Extra term reflects k_{\perp} -dependence of pion wave function
- Extra term decreases faster than any power of $1/Q^2$ \rightarrow not a higher twist \rightarrow term invisible in OPE!
- For large Q^2 and flat DA: $J^G(Q^2, \sigma) = \ln (Q^2/(2\sigma)) + \gamma_E + \mathcal{O}(\sigma/Q^2)$
- In logarithmic model: $J^L(Q^2, M^2) = \ln (Q^2/M^2) + \mathcal{O}(M^2/Q^2)$
- $\bullet~$ Two models coincide up to $\mathcal{O}(1/Q^2)$ terms if $\sigma=M^2\,e^{\gamma_E}/2$
- Numerically: $\sigma=0.53\,{\rm GeV^2}$ for $M^2=0.6~{\rm GeV^2}$

Properties of Gaussian Model

Exclusive k_⊥

- Transition F
- Pion DA Definition Evolution Shape
- BaBar Data Logarithmic mode Gaussian model
- 1 loop pQCD Structure Modified factorization
- NONpQCD Wave function Born term
- Summary

• In fact, $J^L(Q^2, M^2 = 0.6 \,\mathrm{GeV}^2)$ and $J^G(Q^2, \sigma = 0.53 \,\mathrm{GeV}^2)$ practically coincide for $Q^2 > 1 \,\mathrm{GeV}^2$

• Average transverse momentum for Gaussian model:

$$\langle k_{\perp}^2 \rangle = \frac{\sigma}{3} = (0.42 \, \mathrm{GeV})^2$$

• $\sqrt{\langle k_{\perp}^2
angle}$ is close to folklore value of 300 MeV

Perturbative source of transverse momentum: radiative corrections

Exclusive k_{\perp} Radyushkin

- Transition Fl Definition pQCD
- Pion DA Definition Evolution Shape
- BaBar Data Logarithmic mode Gaussian model
- 1 loop pQCD Structure Modified factorization

NONpQCD Wave function Born term

Summary

• One-loop diagram in Sudakov decomposition:

- gluon momentum: $k = (\xi x)p + \eta q + k_{\perp}$ quark momentum: $(1 - \xi)p + \eta q + k_{\perp}$, $d^4k \Rightarrow d^2k_{\perp} d\xi d\eta$
- After taking η -integral by residue

$$T_i(x,Q^2) = \frac{\alpha_s}{2\pi} C_F \int_0^1 d\xi \int M_i(x,Q^2;\xi,k_{\perp}) \frac{d^2k_{\perp}}{2\pi}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Virtual photon vertex correction

Exclusive k_{\perp} Radyushkin

Transition FF Definition pQCD

Pion DA Definition Evolution Shape

BaBar Data Logarithmic mode Gaussian model

1 loop pQCD Structure Modified factorizatio

NONpQCD Wave function Born term

Summary

• Concentrate on $\xi > x$ part

$$M_a^{sing}(x, Q^2; \xi, k_{\perp}) = -\frac{1}{xQ^2} \frac{Q^2}{k_{\perp}^2 \left[\xi Q^2 + k_{\perp}^2/\bar{\xi}\right]} \, \left(\frac{\bar{\xi}}{\bar{x}}\right) \, \theta(\xi > x)$$

NB: singular for $k_{\perp} = 0$ Collinear divergence may be regulated by $k_{\perp}^2 \rightarrow k_{\perp}^2 + m^2$ producing evolution logarithm $\ln(Q^2/m^2)$. Using

$$-\frac{\theta(\xi > x)}{\left[\xi Q^2 + k_{\perp}^2/\bar{\xi}\right] x Q^2} = \left(\frac{1}{\xi Q^2 + k_{\perp}^2/\bar{\xi}} - \frac{1}{xQ^2}\right) \frac{\theta(\xi > x)}{(\xi - x)Q^2 + k_{\perp}^2/\bar{\xi}}$$

and taking $k_{\perp}^2 = 0$ when it is added to $O(Q^2)$ terms gives
$$1 \quad \left[\left(\bar{\xi}\right) \ \theta(\xi > x)\right] \quad , \quad \left(Q^2\right)$$

$$\frac{1}{\xi Q^2} \left[\left(\frac{\xi}{\bar{x}} \right) \frac{\theta(\xi > x)}{\xi - x} \right]_+ \ln \left(\frac{Q^2}{m^2} \right) :$$

product of the "Born" term $1/\xi Q^2$ and V_a part of ERBL kernel with "+" prescription:

$$[F(\xi, x)]_{+} = F(\xi, x) - \delta(\xi - x) \int_{0}^{1} F(\zeta, x) d\zeta$$

pQCD one-loop corrections

Exclusive k

- Transition Ff Definition pQCD
- Pion DA Definition Evolution Shape
- BaBar Data Logarithmic mode Gaussian model
- 1 loop pQCD Structure Modified factorizatio

NONpQCD Wave function Born term

Summary

- NB: in impact parameter b_{\perp} representation $[b_{\perp}$ is Fourier-conjugate to $k_{\perp}]$ difference $[\dots k_{\perp} \dots] [\dots k_{\perp} = 0 \dots]$ produces $(e^{ik_{\perp}b_{\perp}} 1)$ factor vanishing at $b_{\perp} = 0$
- Similarly, it makes sense to isolate $x = \xi$ part, where longitudinal momentum does not change Factorization in b_{\perp} space

$$M_a^{sing}(x,Q^2) = \frac{\alpha_s}{2\pi} C_F \int_0^1 d\xi \int B(\xi;bQ) \left[V_a(\xi,x) L(bm) \right]$$

$$+\delta(\xi-x)S_a(x,bQ) + E_a(x,\xi;bQ) \left] \frac{d^2b_{\perp}}{2\pi} \right]$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

pQCD one-loop corrections

Exclusive k_⊥ Radyushkin

Transition Fl Definition pQCD

Pion DA Definition Evolution Shape

BaBar Data Logarithmic mode Gaussian model

1 loop pQCD Structure Modified factorizatio

NONpQCD Wave function Born term

Summary

Born term

$$B(\xi; bQ) = \frac{1}{2\pi} \int \frac{e^{-ik_\perp b_\perp}}{\xi Q^2 + k_\perp^2/\bar{\xi}} d^2k_\perp = \bar{\xi} K_0 \left(bQ\sqrt{\xi\bar{\xi}} \right)$$

Evolution term

$$V_a(\xi, x)L(bm)$$
 , $L(bm) = \frac{1}{2\pi} \int \frac{d^2k_{\perp}e^{ik_{\perp}b_{\perp}}}{k_{\perp}^2 + m^2} = K_0(bm)$

"Sudakov" term

$$S_a(x;bQ) = \frac{1}{2\pi} \int d^2k_\perp \frac{e^{ik_\perp b_\perp} - 1}{k_\perp^2} \int_0^1 \left(\frac{\bar{\zeta}}{\bar{x}}\right) \frac{\theta(\zeta > x)d\zeta}{\zeta - x + k_\perp^2/\bar{\zeta}Q^2}$$

NB: singularity of evolution kernel at $\zeta = x$ is regularized here by $k_{\perp}^2/\bar{\zeta}Q^2$ rather than by + prescription.

pQCD one-loop corrections (cont'd)

- Exclusive k_{\perp} Radyushkin
- Transition Ff Definition pQCD
- Pion DA Definition Evolution Shape
- BaBar Data Logarithmic mode Gaussian model
- 1 loop pQCD Structure Modified factorization
- NONpQCD Wave function Born term

Summary

Evolution-related term

$$E_a(x,\xi;bQ) = -\left[\frac{\bar{\xi}}{\bar{x}} \frac{\theta(\xi > x)}{\xi - x} K_0\left(bQ\sqrt{(\xi - x)\bar{\xi}}\right)\right]_+$$

• b_{\perp} space (or modified) factorization at one loop level

$$F_{\gamma^*\gamma\pi^0}(Q^2) = \frac{4\pi}{3} \int_0^1 \varphi_\pi(x) \, dx \, \left\{ \frac{1}{xQ^2} + \frac{\alpha_s}{2\pi} \, C_F \int_0^1 d\xi \int \frac{d^2 b_\perp}{2\pi} \right.$$

$$\times B(\xi; bQ) \left[V(\xi, x) \, L(bm) + E(\xi, x; bQ) + \delta(\xi - x) S(x, bQ) \right.$$

$$\left. + R(\xi, x; bQ) \right] \left. \right\}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Terms, nonsingular at $k_{\perp} = 0$, give $R(\xi, x; bQ)$

pQCD one-loop corrections (cont'd)

Exclusive k_⊥

- Transition Ff Definition pQCD
- Pion DA Definition Evolution Shape
- BaBar Data Logarithmic mode Gaussian model
- 1 loop pQCD Structure Modified factorization
- NONpQCD Wave function Born term

Summary

- Born term B(ξ; bQ) and evolution terms L(bm), E_a(x, ξ; bQ) exponentially decrease at large b: K₀ (b...) ~ exp(-b...)
- Sudakov terms are doubly-logarithmic in b, e.g.,

$$S_a(x; bQ) \approx \frac{1}{2\pi} \int d^2 k_\perp \frac{e^{ik_\perp b_\perp} - 1}{k_\perp^2} \ln\left(\frac{\bar{x}Q}{k_\perp}\right)$$

$$\approx \int\limits_{1/b} \frac{dk_{\perp}}{k_{\perp}} \ln\left(\frac{k_{\perp}}{\bar{x}Q}\right) \approx -\frac{1}{2} \ln^2(\bar{x}Qb),$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- \Rightarrow Resummation is needed
- NB: Derivation was done in perturbation theory ⇒ d²b_⊥ integration gives the same result as standard pQCD factorization

Standard & modified factorization

Exclusive k_⊥ Radyushkin

Transition FF Definition pQCD

Pion DA Definition Evolution Shape

BaBar Data Logarithmic mode Gaussian model

1 loop pQCD Structure Modified factorization

NONpQCD Wave function Born term

Summary

• NB: Except L(bm) = L(bQ * m/Q), b_{\perp} everywhere appears through bQ. After d^2b_{\perp} integration

$$F_{\gamma^*\gamma\pi}(Q^2) = \frac{4\pi}{3} \int_0^1 dx \, \frac{\varphi_\pi(x)}{xQ^2} \left\{ 1 + C_F \frac{\alpha_s}{2\pi} \left[\left(\frac{3}{2} + \ln x \right) \ln \left(\frac{Q^2}{m^2} \right) + \frac{1}{2} \ln^2 x - \frac{x \ln x}{2(1-x)} - \frac{9}{2} \right] \right\}$$

mass logarithm $\ln(Q^2/m^2)$ is accompanied by

$$\frac{1}{x}\left(\frac{3}{2} + \ln x\right) = \int_0^1 \frac{d\xi}{\xi} V(\xi, x)$$

forming standard evolution combination

$$\left[\delta(\xi - x) + \frac{\alpha_s}{2\pi} \ln\left(\frac{Q^2}{m^2}\right) V(\xi, x)\right] \varphi_{\pi}(x)$$

-

suggesting the change $\varphi_{\pi}(x) \rightarrow \varphi_{\pi}(\xi, Q^2)$

Standard & modified factorization

- Exclusive k_⊥ Radyushkin
- Transition Fl Definition pQCD
- Pion DA Definition Evolution Shape
- BaBar Data Logarithmic mode Gaussian model
- 1 loop pQCD Structure Modified factorization
- NONpQCD Wave function Born term

Summary

In the impact parameter representation,

$$\varphi_{\pi}(\xi) \to \varphi_{\pi}(\xi) - \frac{\alpha_s}{2\pi} \ln(bm) \int_0^1 V(\xi, x) \varphi_{\pi}(x) dx$$

suggesting the change $\varphi_{\pi}(\xi) \rightarrow \varphi_{\pi}(\xi, 1/b^2)$ Symbolically:

$$\varphi(\xi, 1/b^2) = \exp\left[-\frac{\alpha_s}{2\pi}\ln(bm)V\right](\xi, x)\otimes\varphi(x)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

NB: $\varphi(\xi, 1/b^2)$ is usual ("collinear") pion DA, with $1/b^2$ serving as factorization scale

"Nonperturbative" transverse momentum

Exclusive k_⊥ Radyushkin

- Transition Ff Definition pQCD
- Pion DA Definition Evolution Shape
- BaBar Data Logarithmic mode Gaussian model
- 1 loop pQCD Structure Modified factorization

NONpQCD Wave function Born term

Summary

 $\bullet\,$ Local duality relation for $F_{\gamma^*\gamma\pi^0}(Q^2)$ form factor

$$F^{LD}_{\gamma^*\gamma\pi^0}(Q^2) = \frac{1}{\pi f_\pi} \int_0^{s_0} \rho^{quark}(s,Q^2) \, ds$$

• Spectral density for triangle (anomaly) diagram

$$\rho^{quark}(s,Q^2) = 2 \int_0^1 \frac{x\bar{x}(xQ^2)^2}{[sx\bar{x} + xQ^2]^3} \, dx$$

• Substituting
$$s = k_{\perp}^2/(x\bar{x})$$
:

$$F^{LD}_{\gamma^*\gamma\pi^0}(Q^2) = \frac{2}{\pi^2 f_\pi} \int_0^1 dx \int \frac{(xQ^2)^2}{(xQ^2 + k_\perp^2)^3} \theta(k_\perp^2 \le x\bar{x}s_0) d^2k_\perp$$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

Effective wave function

Exclusive k_⊥ Radyushkin

Transition FF Definition pQCD

Pion DA Definition Evolution Shape

BaBar Data Logarithmic mode Gaussian model

1 loop pQCD Structure Modified factorization

NONpQCD Wave function Born term

Summary

• "Local duality" wave function for pion:

$$\Psi^{LD}(x,k_{\perp}) = \frac{2\sqrt{6}}{f_{\pi}} \,\theta(k_{\perp}^2 \le x\bar{x}s_0)$$

• b_{\perp} -space version

$$\widetilde{\Psi}^{LD}(x,b_{\perp}) = \frac{\sqrt{6}}{\pi f_{\pi} b_{\perp}} \sqrt{x \overline{x} s_0} J_1(b_{\perp} \sqrt{x \overline{x} s_0})$$

• Form factor In terms of effective LD wave function $F_{\gamma^*\gamma\pi^0}^{LD}(Q^2) = \frac{1}{\pi^2\sqrt{6}} \int_0^1 dx \int \frac{(xQ^2)^2}{(xQ^2 + k_\perp^2)^3} \Psi^{LD}(x,k_\perp) d^2k_\perp$

• In the impact parameter representation

$$F_{\gamma^*\gamma\pi^0}^{LD}(Q^2) = \frac{1}{\sqrt{6}} \int_0^1 dx \int x Q^2 b^2 K_2\left(\sqrt{x}bQ\right) \tilde{\Psi}^{LD}(x,b_{\perp}) \frac{d^2 b_{\perp}}{2\pi}$$

Born term in LD formula

Exclusive k_⊥ Radyushkin

Transition Ff Definition pQCD

Pion DA Definition Evolution Shape

BaBar Data Logarithmic mode Gaussian model

1 loop pQCD Structure Modified factorization

NONpQCD Wave function Born term

Summary

• $K_2(\sqrt{x}bQ)$: from Born term written in the *b*-space

$$\frac{1}{2\pi} \int e^{-ik_{\perp}b_{\perp}} \frac{(xQ^2)^2}{(xQ^2 + k_{\perp}^2)^3} d^2k_{\perp} = \frac{1}{4} xQ^2 b^2 K_2 \left(\sqrt{x}bQ\right)$$

• Connection with pQCD Born term

$$\frac{(xQ^2)^2}{(xQ^2+k_{\perp}^2)^3} = \frac{1}{xQ^2+k_{\perp}^2} - \frac{2k_{\perp}^2}{(xQ^2+k_{\perp}^2)^2} + \frac{k_{\perp}^4}{(xQ^2+k_{\perp}^2)^3}$$

- Differ only by O(k²_⊥) terms invisible in the analysis of effects induced by the 1/k²_⊥ singularity at small k_⊥.
- However, this difference is very essential when one extrapolates into the region of small Q^2 .
- Local duality formula exactly reproduces pQCD asymptotics and also $F_{\gamma^*\gamma\pi^0}(0)$ value dictated by axial anomaly
- $\Psi^{LD}(x, k_{\perp})$ is effective wave function describing all $\bar{q}G \dots Gq$ Fock components of the usual light-front approach

Summary

Exclusive k_{\perp}

- Radyushkin
- Transition F Definition pQCD
- Pion DA Definition Evolution Shape
- BaBar Data Logarithmic mode Gaussian model
- 1 loop pQCD Structure Modified factorization
- NONpQCD Wave function Born term

Summary

- Photon-pion transition form factor
 - Definition
 - pQCD
- 2 Pion Distribution Amplitude
 - Definition
 - Evolution
 - Shape
- 3
- BaBar Data
- Logarithmic model
- Gaussian model

4 pQCD at one loop

- Structure of one-loop corrections
- Standard & modified factorization
- 5
- "Nonperturbative" transverse momentum
- Effective wave function
- Born term in LD formula
- Summary