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Outline 

n Quark distribution at small-x 
n Structure function at large Q is the 

leading-twist  
n Geometric scalings in hard scattering 

processes 
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Inclusive and  
Semi-inclusive DIS 

Inclusive DIS: 
Partonic Distribution depending on  
the longitudinal momentum fraction 

Semi-inclusive DIS: 
Probe additional information for partons’ 
transverse distribution in nucleon/nucleus  
 

Q 

Q 



Advantage of SIDIS 

n Direct probe for the transverse 
momentum dependence of partons 
¨ Saturation effects explicitly show up in the 

transverse momentum distribution 
n Factorization can be argued for large Q 
n Can be related to the TMD 

factorization 
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SIDIS at small-x 

n What are the relevant scales 
¨ Q, virtuality of the photon 
¨ Pt, transverse momentum of hadron 
¨ Qs, saturation scale 

n We are interested in the region of 
Q>>Qs, Pt 
¨ TMD factorization makes sense 
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Dipole picture for DIS 
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Fragmentation function 



SIDIS Differential Cross 
section 
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Unintegrated gluon dis. 



Small kt limit: Q>>pT 

n Keep the leading power contribution, 
neglect all higher power corrections 

4/8/11 8 



TMD quark 

n Reproduce the SIDIS cross section 
with the TMD quark distribution and 
the TMD factorization 
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Interesting properties 

integration over ! accompanied by W½!". It then follows
that

h!aðx$; x?Þ!bðy$; y?Þi!

¼
Z

D!W½!"!aðx$; x?Þ!bðy$; y?Þ (43)

¼ "ab"ðx$ $ y$Þ"ð2Þðx? $ y?Þ#2ðx$Þ: (44)

This turns out to be useful in the following derivations for
the TMD parton distributions in CGC.

A. DIS and Drell-Yan processes

As we discuss in Sec. II, the TMD quark distribution in
DIS in the scalar-QED model can be written as

~qDISðx; q?Þ ¼
xPþ2
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?Þ"g: (45)

To derive the above result, we have assumed the target
hadron (nucleus) to be a point particle. In order to calculate
the quark distribution in CGC, we need to relax the point
particle approximation. Following the above discussions,
we first assume that the target hadron has a color charge
distribution !aðz$; z?Þ and perform a replacement
e$igg1½Gðx?Þ" ) Uðx?Þ.

The second step is to average over the color sources
!aðz$; z?Þ, which appear in the exponents of the Wilson
lines Uðx?Þ, with the Gaussian distribution W½!".
Following this procedure, one finds (see Refs. [24–26])
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where Nc ¼ 3 is the number of colors; the saturation

scale Qs is defined as Q2
s ¼ #2

s

2$ ln 1
r2?%

2 with #2
s ¼

g2g21
2 tata

R
dx$#2ðz$Þ. In the evaluation of the above two-

point functions hUyðR? þ r?ÞUðR?Þi!, we have assumed
that the nucleus size is so large that we can shift R? in the
transverse integration. The saturation momentum naturally
arises as a result of multiple scatterings between the hard
parton and color charges inside the nucleus.

The next step is to use fermionic quark splitting kernel
instead of the scalar quark splitting kernel. Thus we replace
Vðr?Þ in Eq. (45) by 1

2$ 2K1ðMr?Þ where the factor of 2
comes from the fact that fermionic quark has two different
helicities. It is straightforward to derive this fermionic
quark splitting kernel as in Ref. [27]. The rest of the
calculation will remain the same since the eikonal propa-
gator for a fermionic quark is the same as the one for a
scalar quark as in Eq. (2). After changing the integral
variable to y ¼ 2xPþp$, we can cast the quark distribu-
tion into

x~qDISðx; q?Þ ¼
Nc
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The virtuality of the virtual photonQ2 ¼ 2xPþP$ is taken
to be much larger than Q2

s and q2?. Therefore, one can
approximately integrate y from 0 to þ1. The dominant
contribution comes from the region where y is close to 0.
It is hard to evaluate above integrals analytically.
Nevertheless, we can study the quark distribution in the
large and small q2? limit, which gives

dx~qDISðx; q?Þ
d2R?

&&&&&&&&q2?*Q2
s

¼ Nc

12$4
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&&&&&&&&q2?+Q2
s
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4$4 :

(48)

These results agree with those derived in the saturation
model for the quark distribution of a large nucleus in DIS
(see e.g., Eqs. (27–29) of Ref. [27]).1 Furthermore, we can
transform the above results to the momentum space and
define the normalized unintegrated gluon distribution
Fðk?; QsÞ as

Fðk?; QsÞ ¼
Z d2r?

ð2$Þ2 e
$ik?)r? TrhUðR?ÞUyðR? þ r?Þi!

Nc

’ 1

$Q2
s
exp

'
$ k2?
Q2

s

(
: (49)

1We notice that there is a factor of 1=2 difference between our
results and those obtained in Ref. [27]. This difference comes
from the fact that the quark distribution calculated in Ref. [27] is
in fact the total quark distribution which includes the antiquark
distribution as well.
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Quark distribution at 
different x 

11 

Ratio relative to that at 10-2 



Comments 
n We don’t lose the sensitivity to the 

saturation physics even with Large Q  
n We gain the direct probe for the 

transverse momentum dependence of 
partons  

n Beyond the leading order? 
n Additional dynamics involved  

¨ Soft gluon resummation 
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Integrated quark distribution 
n Rewrite the quark distribution 

n  Integrated quark distribution has 
Ultraviolet divergence 
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In arriving at the Gaussian form of Fðk?; QsÞ in Eq. (49),
we have neglected the logarithmic dependence of r2? in the
saturation momentum Qs. Thus, one can write the quark
distribution as a convolution of the unintegrated gluon
distribution and the splitting kernel in momentum space,

x~qDISðx; q?Þ ¼
Nc
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which is consistent with the results obtained in
Refs. [28,29]. The unintegrated gluon distribution
Fðk?; QsÞ is usually defined through the scattering ampli-
tude of a dipole with size r? on the target nucleus [30,31].
This dipole scattering amplitude is also equivalent to the
expectation value of a Wilson loop with width r? and
infinite length as we used above.

For comparison, we can also calculate the quark distri-
bution involved in the Drell-Yan process. Again, we start
with scalar-QED model result [20],

~qDYðx; q?Þ ¼
xPþ2
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Following the same procedures, we find that the quark
distribution in the Drell-Yan process in the CGC formalism
reads as

x~qDYðx;q?Þ ¼
Nc
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The quark distribution in the Drell-Yan process is the same
as that in DIS, which is consistent with the conclusion in
the scalar-QED model, as the QCD factorization predicts.
However, for the naive time-reversal-odd quark (T-odd)
distributions, such as the quark Sivers function, there is
sign changing between DIS and Drell-Yan processes [4–6].
We expect this general argument holds for small-x parton

distributions as well. Therefore, the small-x T-odd quark
distributions will not be universal between these two pro-
cesses, which is different from the spin-average (T-even)
quark distribution as we calculated above. It will be inter-
esting to perform an explicit calculation for the T-odd
quark distributions at small-x in the CGC formalism to
demonstrate this. This, of course, will involve how to
formulate the (transverse) spin effects in nucleon at
small-x. We hope that such a calculation can be carried
out in the future.

B. Dijet production in pA collisions

Finally, let us consider the TMD quark distribution for a
large nucleus involved in the dijet production, again, taking
the qq0 ! qq0 channel as an example. In the scalar-QED
model, the TMD quark distribution in this process is shown
in Eq. (40). In order to extend to the real QCD calculation,
we will assume that the color charge for quark q0 is the
same as the quark q in the sense of the average over
the large nucleus. This means that we will set g2 ¼ g1 in
the scalar-QED result.2 Furthermore, we find that the quark
distribution here will naturally involve the four-point func-
tion. For example, expanding the phase factor in Eq. (40)
will depend on the four-point function in the CGC
formalism,
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The appearance of the four-point functions signals the
difference between the dijet production process and DIS,
whereas the latter only involves two-point functions. This
indicates that parton distributions directly extracted from
DIS are not sufficient to compute and describe the dijet
production processes.
We can further simplify the above result by taking the

large Nc limit for the four-point functions [32]:

hUðR?ÞUyðR0
?ÞUðR?ÞUyðR? þ r?Þi#

’ exp
%
$Q2

s

4
½ðr? $ r0?Þ2 þ r2?)

&
: (54)

With this reduction, we arrive at the following quark
distribution in the large Nc limit,

2This can be checked against the lowest nontrivial order
perturbation expansion of the multigluon exchange contributions
in the large Nc limit. As we mentioned before, setting g2 ¼ $g1
will lead to the quark distribution in the Drell-Yan process.

BO-WEN XIAO AND FENG YUAN PHYSICAL REVIEW D 82, 114009 (2010)

114009-10

GBW model 

Mueller 1999 
Xiao-Yuan, 2010 

xq(x, µ) =
1
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+Q2

s ln
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Q2
s
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Comments  
n Saturation physics (multiple interaction) 

are also included in the integrated 
parton distributions 

n Reproduce the leading power (twist) 
expansion of the inclusive DIS 
structure function and Drell-Yan lepton 
pair production cross section 
¨ Bartels et al, 2009 
¨ Stasto et al, 2010 

4/8/11 14 



Prediction power 

n  Integrated parton distributions are 
universal  

n NLO corrections are easy to compute 
n We can use that to predict many other 

processes 
¨ EW processes at LHC 
¨ Higgs production in AA collisions 
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How good the approximation? 
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DY cross sections  for xF = 0.15

M/GeV

M
3  d

/d
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dx
F (
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 G

eV
2 )

T
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tw-2

tw-2
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tw-(2+4)

10 2

10 3

2 3 4 5 6 7 8

Golec-Biernat, Lewandowska, Stasto, arXiv:1008.2652  



Back to the structure function 

n Dipole (CGC) formalism 

n Taking Q->0 limit will lead to infrared 
divergence 
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xq(x, µ) =
1

�U.V.
−Q2

s ln
µ2

Q2
s
+ finite terms

σ(γ∗T p)|Q2→0 ∝
1

�I.R.
− ln

µ2

Q2
s
+ · · ·

1

GBW model 



n Sensitive to the quark mass when Q=0 
¨ GBW 97, Log(mq^2) 

n Associated with the real photon 
splitting to quark pair 
¨ Can be absorbed into the quark distribution 

in real photon (resolved photon) 
n Small Q prediction is strongly model-

dependent (wrong practice) 
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Geometric scaling in gluon 
distributions 
n Kt-dependent gluon distributions in 

dijet correlation processes 
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Dominguez’s talk  
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Modified factorization 
n Dilute system on a dense target, in the 

large Nc limit, 
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n Hard partonic cross section 

¨ Although the individual diagram depends on 
the gauge, the total contribution does not 
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Compare to the STAR data 
n  Y1~y2~3.1 
n  GBW model for UGDs 
n  Qs

2~(3.10-4/x)0.28GeV2 

n  Addition Fragmentation 
contribution 

n  Geometric scaling 
assumption to the UGDs 
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Fragmentation  
contribution 





Scaling in Forward hadron 
production  
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H Quark distribution 
From the projectile 

Dense medium 

Dumitru-Jalilian-Marian, 02 
Dumitru-Hayashigaki-Jalilian-Marian, 06 



Simple power counting 
n Forward region is dominated by the 

valence quark distribution (1-x)3 

n Similar power behavior for the 
fragmentation function, (1-z)1~2, 1009.2481 

n  Pt-dependent-Geometric scaling, 

Similar study by 
McLerran- Praszalowicz, 10 
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and dAu collisions. By comparing the data from these two cases, we conclude the saturation

scale changes from nucleon to nucleus at the same kinematic region. In Sec.III, we introduce

the transverse momentum dependence in the fragmentation process to understand the single

spin asymmetries in pp collisions. In particular, the transverse momentum dependence of

AN indicates the importance of details in the hadronization. We conclude our paper in Sec.

IV.

II. TRANSVERSE MOMENTUM DEPENDENT GEOMETRIC SCALING

In the forward rapidity region, the hadron production in pp and pA collisions at high

energy is dominated by the valence quark and gluon from the projectile. The energetic parton

penetrates in the nucleon (nucleus) target with multiple scattering and then fragments into

the final state hadron. In this region, the idea of the limiting fragmentation function is very

attractive. It provides an intuitive way to understand the power counting for the hadron

production distribution in these processes. Moreover, at high energy such as RHIC and

LHC, the forward rapidity region also probes the small-x parton distributions in the target.

An effective theory approach, the color-glass-condensate, has been developed to study the

high density physics and applied to single inclusive particle production in forward rapidity

region at RHIC.

We follow this approach to study the differential cross section of hadron production in

the forward rapidity region,

2Eh
dσ(pA → h+X)

d3Ph
=

�
dz

z2
q(x1)D(z)F (k⊥ = Ph⊥/z) , (1)

where x1 is the momentum fraction of the projectile carried by the incoming quark, z
the momentum fraction of the quark carried by the final state hadron, x2 the momentum

fraction of the target participating in the hard scattering. We have also suppressed the scale

dependence in various factors in the above formula, for which the precise forms will depend

on the next-to-leading perturbative corrections.

An important power counting for the large-x quark and gluon distribution can be applied

to study the general behavior for the differential cross section of the above process. In

particular, for the region where the quark distribution dominates, we have q(x) ∼ (1− x)3.
Furthermore, fragmentation function also have power counting rule, Dq(z) ∼ (1− z), where
the power comes from the current parameterization of the fragmentation function for the

charged and neutral pions
1
. Combining the above power counting analysis, we obtain the

following power behavior for the differential cross section,

P 2
h⊥

dσ

dyd2Ph⊥
= (1− xF )

5F
�

P 2
h⊥

Q2
s(x2)

�
, (2)

where the saturation scale Qs depends on the target and the momentum fraction carried by

the gluon. The geometric scaling (as function of Ph⊥/Qs only) comes from the geometric

scaling of the un-integrated gluon distribution: k2
⊥NF (x, k⊥).

Similar geometric scaling behavior for inclusive hadron production at central rapidity has

been observed by [], where it is the differential cross section alone exhibits the geometric

1 The original power counting would predict (1 − z)2 behavior. We notice that this change will not affect

the following analysis.
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Scaling in pp collisions 

4/8/11 27 

-110 1 10
-110

1

10

210

310

410

510  2.5)! (0  STAR(200GeV) 
+  BRAHMS(200GeV) 
-  BRAHMS(200GeV) 
-  BRAHMS(62.4GeV) 

2
s/Q2

TP

p3d
 h+X)(ppd

PE2
TP-5)

F
(1-x BRAHMS: 

2 rapidity bins 

STAR: 
3 rapidity bins 



Geometric Scaling for RpA? 
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R ratio depends  
on the difference 
in the saturation 
scales 
 
 
More data are  
needed to draw 
conclusion  
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Summary 
n Both integrated and un-integrated quark 

distributions depend on the saturation 
scale, and can be used to probe the 
gluon saturation 

n Geometric scaling of the un-integrated 
gluon distributions are used to predict 
the scaling of the shadowing of hadron 
and di-hadron production in pA collisions 



Phenomenology: quark 
distributions ratios 

30 

Transverse Mometum 
Broading with Q 

GBW model for dipole 
Cross section 


