
Computational Challenges and Opportunities for
Nuclear Astrophysics

Bronson Messer

Acting Group Leader
Scientific Computing Group

National Center for Computational Sciences

Theoretical Astrophysics Group
Oak Ridge National Laboratory

Department of Physics & Astronomy
University of Tennessee

Monday, July 23, 2012

Summary

• The future is now! Computers are not getting faster from the perspective of a
nuclear (astro-)physicist. They are only getting “wider.”

• The Xeon Phi/GPU/BG\Q choice is no choice at all. They are all versions of a
single narrative.

• Stellar astrophysics is rife with unrealized parallelism, but architectural details
and memory (i.e. cost, power) constraints will present considerable challenges.
Additional support (for both “application scientists” and our CS/Math
collaborators) will be required to surmount these challenges.

• Bulk-synchronous execution is a terrible way to try to exploit near-future
architectures. A new programming model will require considerably more effort
than a simple multi/many-core port.

• Managing large simulations is something we can barely do know, but how about
managing 1000’s, 10’s of thousands, or 100’s of thousands of simulations? We
should not expect to rely on solutions to be thrown over the fence from
developers in other communities.

Monday, July 23, 2012

Nuclear astrophysics INCITE allocations from
2010 - present

• Average number of cpu-hours/project -
152 M

• In aggregate, just less than 10% of the
total available each year from 2010 -
2012
- Allocations at NERSC are also above-

average in size

• This excellent record is due to
- the formulation of large, important problems

- demonstrated ability to efficiently exploit
the largest computational platforms

• Will this trend continue to the exascale?
Can we continue to solve big problems
efficiently?

Monday, July 23, 2012

ar
X

iv
:a

st
ro

-p
h/

99
12

20
2v

1
 9

 D
ec

 1
99

9

The Effects of Moore’s Law and Slacking 1 on Large
Computations

Chris Gottbrath, Jeremy Bailin, Casey Meakin, Todd Thompson,
J.J. Charfman

Steward Observatory, University of Arizona

Abstract

We show that, in the context of Moore’s Law, overall productivity
can be increased for large enough computations by ‘slacking’ or waiting

for some period of time before purchasing a computer and beginning the
calculation.

According to Moore’s Law, the computational power available at a particular
price doubles every 18 months. Therefore it is conceivable that for sufficiently
large numerical calculations and fixed budgets, computing power will improve
quickly enough that the calculation will finish faster if we wait until the available
computing power is sufficiently better and start the calculation then.

Figure 1:

This is illustrated in the above plot. Work is measured in units of whatever a
current machine can accomplish in one month and time is measured in months.

1This paper took 2 days to write

1

ar
X

iv
:a

st
ro

-p
h/

99
12

20
2v

1
 9

 D
ec

 1
99

9

The Effects of Moore’s Law and Slacking 1 on Large
Computations

Chris Gottbrath, Jeremy Bailin, Casey Meakin, Todd Thompson,
J.J. Charfman

Steward Observatory, University of Arizona

Abstract

We show that, in the context of Moore’s Law, overall productivity
can be increased for large enough computations by ‘slacking’ or waiting

for some period of time before purchasing a computer and beginning the
calculation.

According to Moore’s Law, the computational power available at a particular
price doubles every 18 months. Therefore it is conceivable that for sufficiently
large numerical calculations and fixed budgets, computing power will improve
quickly enough that the calculation will finish faster if we wait until the available
computing power is sufficiently better and start the calculation then.

Figure 1:

This is illustrated in the above plot. Work is measured in units of whatever a
current machine can accomplish in one month and time is measured in months.

1This paper took 2 days to write

1

astro-ph/9912202

ar
X

iv
:a

str
o-

ph
/9

91
22

02
v1

 9
 D

ec
 1

99
9

The Effects of Moore’s Law and Slacking 1 on Large
Computations

Chris Gottbrath, Jeremy Bailin, Casey Meakin, Todd Thompson,
J.J. Charfman

Steward Observatory, University of Arizona

Abstract

We show that, in the context of Moore’s Law, overall productivity
can be increased for large enough computations by ‘slacking’ or waiting

for some period of time before purchasing a computer and beginning the
calculation.

According to Moore’s Law, the computational power available at a particular
price doubles every 18 months. Therefore it is conceivable that for sufficiently
large numerical calculations and fixed budgets, computing power will improve
quickly enough that the calculation will finish faster if we wait until the available
computing power is sufficiently better and start the calculation then.

Figure 1:

This is illustrated in the above plot. Work is measured in units of whatever a
current machine can accomplish in one month and time is measured in months.

1This paper took 2 days to write

1

Monday, July 23, 2012

ORNL’s “Titan” System

•Upgrade of existing Jaguar Cray XT5
•Cray Linux Environment

operating system
•Gemini interconnect
• 3-D Torus
•Globally addressable memory
• Advanced synchronization features
• AMD Opteron 6200 processor (Interlagos)
•New accelerated node design using NVIDIA multi-core accelerators
• 2011: 960 NVIDIA M2090 “Fermi” GPUs (“titandev”)
• 2012: 20 PF - NVIDIA “Kepler” GPUs

• 20 PFlops peak performance
• Performance based on available funds

• 600 TB DDR3 memory (2x that of Jaguar)

Titan	
 Specs

Compute	
 Nodes 18,688

Login	
 &	
 I/O	
 Nodes 512

Memory	
 per	
 node 32	
 GB	
 +	
 6	
 GB

NVIDIA	
 “Fermi”	
 	
 (2011) 665	
 GFlops

#	
 of	
 Fermi	
 chips 960

NVIDIA	
 “Kepler”	
 (2012) >1	
 TFlops

Opteron	
 2.2	
 GHz

Opteron	
 performance 141	
 GFlops

Total	
 Opteron	
 Flops 2.6	
 PFlops

Disk	
 Bandwidth ~	
 1	
 TB/s

Monday, July 23, 2012

Cray XK6 Compute Node (“titandev”)

HT3

HT3

PCIe Gen2

XK6	
 Compute	
 Node	
 Characteris\cs

AMD	
 Opteron	
 6200	
 “Interlagos”	

16	
 core	
 processor	
 @	
 2.2GHz

Tesla	
 M2090	
 “Fermi”	
 @	
 665	
 GF	
 with	
 6GB	

GDDR5	
 memory

Host	
 Memory
32GB

1600	
 MHz	
 DDR3

Gemini	
 High	
 Speed	
 Interconnect

Upgradeable	
 to	
 NVIDIA’s
next	
 genera\on	
 “Kepler”	
 processor	
 in	
 2012

Four	
 compute	
 nodes	
 per	
 XK6	
 blade.	
 	
 24	
 blades	

per	
 rack

Multicore CPU
+

Many-Core GPU

Monday, July 23, 2012

NERSC

2

NERSC-6
Grace “Hopper”
Cray XE6
Performance
 1.2 PF Peak
 1.05 PF HPL (#5)
Processor
 AMD MagnyCours
 2.1 GHz 12-core
 8.4 GFLOPs/core
 24 cores/node
 32-64 GB DDR3-1333 per node
System
 Gemini Interconnect (3D torus)
 6392 nodes
 153,408 total cores
I/O
 2PB disk space
 70GB/s peak I/O Bandwidth

38,288 compute cores
9,572 compute nodes
One quad-core AMD 2.3 GHz

Opteron processors
(Budapest) per node

4 processor cores per node
8 GB of memory per node
78 TB of aggregate memory
1.8 GB memory / core for

applications
/scratch disk default quota of

750 GB

Light-weight Cray Linux
operating system

No runtime dynamic, shared-
object libs

PGI, Cray, Pathscale, GNU
compilers

16

Franklin - Cray XT4

Use Franklin for all your computing jobs, except those
that need a full Linux operating system.

Last year

This year

Monday, July 23, 2012

Hierarchical Parallelism

• MPI parallelism between nodes (or PGAS)

• On-node, SMP-like parallelism via threads (or
subcommunicators, or…)

• Vector parallelism
– SSE/AVX/etc on CPUs
– GPU threaded parallelism

• Exposure of unrealized parallelism is essential to exploit all
near-future architectures.

• Uncovering unrealized parallelism and improving data locality
improves the performance of even CPU-only code.

• Experience with vanguard codes at OLCF suggests 1-2 person-
years is required to “port” extant codes to GPU platforms.

• Likely less if begun today, due to better tools/compilers

11010110101000
01010110100111
01110110111011

01010110101010

Monday, July 23, 2012

Good news! Stellar astrophysics tends to have a
lot of unrealized parallelism at present

• Related, computationally-
intensive topics will, perhaps,
have to work harder to identify
additional parallelism outside of
large stellar simulations, but
plenty of opportunity exists.
- high-density physics

- nuclear structure and reactions

• Simulation codes for stellar evolution and explosions
- Exemplars of “multiphysics application codes”

- Typically many degrees-of-freedom per spatial grid point
o radiation transport
o nuclear burning

- Spatial domains typically parallelized via domain decomposition

Monday, July 23, 2012

Posited Exascale Specs

System attributes 2010 “2015”“2015” “2018”“2018”

System peak 2 PF 200 PF/s200 PF/s 1 Exaflop/s1 Exaflop/s

Power 6 MW 15 MW15 MW 20 MW20 MW

System memory 0.3 PB 5 PB5 PB 32–64 PB32–64 PB

Node performance 125 GF 0.5 TF 7 TF 1 TF 10 TF

Node memory BW 25 GB/s 0.1 TB/s 1 TB/s 0.4 TB/s 4 TB/s

Node concurrency 12 O(100) O(1,000) O(1,000) O(10,000)

System size (nodes) 18,700 50,000 5,000 1,000,000 100,000

Total node interconnect BW 1.5 GB/s 150 GB/s 1 TB/s 250 GB/s 2 TB/s

MTTI day O(1 day)O(1 day) O(1 day)O(1 day)

Monday, July 23, 2012

Achieving high spatial (or phase-space, etc.)
resolution will be very difficult.

 turbulence is frozen by expansion

Khokhlov ca. 2003

Total memory on the entire exascale system will be O(10 PB)

Monday, July 23, 2012

Example goals/highlights from NP Exascale
Workshop report (2009)

100x Tera Peta 100x Peta 10x Peta Exa 10x Tera -flop year
sustained

Full quantum kinetics

150-species nuclear
network

Large (precision) nuclear
network

Multi-energy, multi-angle
neutrino transport

Multi-energy neutrino transport
and coherent neutrino flavor

mixing

All of these goals are attainable, but will require new algorithms and
implementations to bridge the gap to the posited architectures.

CC SNe

http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Np_report.pdf

Monday, July 23, 2012

http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Np_report.pdf
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Np_report.pdf

Simulation is required to guide experiment

CC SN neutrino-driven wind (less neutron rich)

CC SN neutrino-driven wind (more neutron rich)

NS-NS merger

possible r-process paths

Monday, July 23, 2012

Locally bulk-synchronous programming model is not a viable
path for maximum performance on these new platforms

• FLOP/s are cheap and moving data is expensive

• Even perfect knowledge of resource capabilities at every moment and perfect load
balancers will not rescue billion-thread SPMD implementations of PDE simulations

• Cost of rebalancing frequently is too large, but the Amdahl penalty of failing to
rebalance is fatal

• To take full advantage of asynchronous algorithms, we need to develop greater
expressiveness in scientific programming

- Create separate threads for logically separate tasks, whose priority is a
function of algorithmic state, not unlike the way a time-sharing OS works

- Join priority threads in a directed acyclic graph (DAG), a task graph showing
the flow of input dependencies; fill idleness with noncritical work or steal work

Comments taken directly from keynote
address by David Keyes at EU-US HPC
Summer School, June 2012

Monday, July 23, 2012

Asynchronous execution models via task
scheduling

• Examples exist already
in other domains
- MAGMA (linear algebra)

- MADNESS (DFT)

- Uintah (terrestrial
combustion)

• Operator-split physics
modules become
“tasks” associated
with execution threads

Monday, July 23, 2012

Will the exascale (or before) machine be
primarily a “strong-scaling” platform?

• Memory constraints provide a hard ceiling for spatial resolution
and number of unknowns.
- bytes/FLOP goes down by an order of magnitude

• Simulations will be certainly be larger, but likely not as large as
one would expect if scaling with FLOPs is assumed.
- no more than ~10x the number of MPI ranks?

- this connotes no more than factors of ~2 in resolution in each dimension
for 3D

• OK: considerable understanding can be realized by fully
exploring parameter space.
- progenitor mass, rotation, metallicity

- transport approximations, additional physics

Monday, July 23, 2012

Simulation, code, and data
management become even harder

• Revision control, regression testing, viz, workflow...

Monday, July 23, 2012

Summary

• The future is now! Computers are not getting faster from the perspective of a
nuclear (astro-)physicist. They are only getting “wider.”

• The Xeon Phi/GPU/BG\Q choice is no choice at all. They are all versions of a
single narrative.

• Stellar astrophysics is rife with unrealized parallelism, but architectural details
and memory (i.e. cost, power) constraints will present considerable challenges.
Additional support (for both “application scientists” and our CS/Math
collaborators) will be required to surmount these challenges.

• Bulk-synchronous execution is a terrible way to try to exploit near-future
architectures. A new programming model will require considerably more effort
than a simple multi/many-core port.

• Managing large simulations is something we can barely do know, but how about
managing 1000’s, 10’s of thousands, or 100’s of thousands of simulations? We
should not expect to rely on solutions to be thrown over the fence from
developers in other communities.

Monday, July 23, 2012

