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Summary

• The future is now! Computers are not getting faster from the perspective of a 
nuclear (astro-)physicist. They are only getting “wider.” 

• The Xeon Phi/GPU/BG\Q choice is no choice at all. They are all versions of a 
single narrative. 

• Stellar astrophysics is rife with unrealized parallelism, but architectural details 
and memory (i.e. cost, power) constraints will present considerable challenges. 
Additional support (for both “application scientists” and our CS/Math 
collaborators) will be required to surmount these challenges.

• Bulk-synchronous execution is a terrible way to try to exploit near-future 
architectures. A new programming model will require considerably more effort 
than a simple multi/many-core port.

• Managing large simulations is something we can barely do know, but how about 
managing 1000’s, 10’s of thousands, or 100’s of thousands of simulations? We 
should not expect to rely on solutions to be thrown over the fence from 
developers in other communities. 
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Nuclear astrophysics INCITE allocations from 
2010 - present

• Average number of cpu-hours/project - 
152 M

• In aggregate, just less than 10% of the 
total available each year from 2010 - 
2012
- Allocations at NERSC are also above-

average in size

• This excellent record is due to 
- the formulation of large, important problems

- demonstrated ability to efficiently exploit 
the largest computational platforms

• Will this trend continue to the exascale? 
Can we continue to solve big problems 
efficiently?
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The Effects of Moore’s Law and Slacking 1 on Large
Computations

Chris Gottbrath, Jeremy Bailin, Casey Meakin, Todd Thompson,
J.J. Charfman

Steward Observatory, University of Arizona

Abstract

We show that, in the context of Moore’s Law, overall productivity
can be increased for large enough computations by ‘slacking’ or waiting

for some period of time before purchasing a computer and beginning the
calculation.

According to Moore’s Law, the computational power available at a particular
price doubles every 18 months. Therefore it is conceivable that for sufficiently
large numerical calculations and fixed budgets, computing power will improve
quickly enough that the calculation will finish faster if we wait until the available
computing power is sufficiently better and start the calculation then.

Figure 1:

This is illustrated in the above plot. Work is measured in units of whatever a
current machine can accomplish in one month and time is measured in months.

1This paper took 2 days to write
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ORNL’s “Titan” System

•Upgrade of existing Jaguar Cray XT5
•Cray Linux Environment 

operating system
•Gemini interconnect
• 3-D Torus 
•Globally addressable memory
• Advanced synchronization features
• AMD Opteron 6200 processor (Interlagos)
•New accelerated node design using NVIDIA multi-core accelerators
• 2011: 960 NVIDIA M2090 “Fermi” GPUs (“titandev”)
• 2012: 20 PF - NVIDIA “Kepler” GPUs

• 20 PFlops peak performance 
• Performance based on available funds

• 600 TB DDR3 memory (2x that of Jaguar)

Titan	
  Specs

Compute	
  Nodes 18,688

Login	
  &	
  I/O	
  Nodes 512

Memory	
  per	
  node 32	
  GB	
  +	
  6	
  GB

NVIDIA	
  “Fermi”	
  	
  (2011) 665	
  GFlops

#	
  of	
  Fermi	
  chips 960

NVIDIA	
  “Kepler”	
  (2012) >1	
  TFlops

Opteron	
   2.2	
  GHz

Opteron	
  performance 141	
  GFlops

Total	
  Opteron	
  Flops 2.6	
  PFlops

Disk	
  Bandwidth ~	
  1	
  TB/s
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Cray XK6 Compute Node (“titandev”)

HT3

HT3

PCIe Gen2

XK6	
  Compute	
  Node	
  Characteris\cs

AMD	
  Opteron	
  6200	
  “Interlagos”	
  
16	
  core	
  processor	
  @	
  2.2GHz

Tesla	
  M2090	
  “Fermi”	
  @	
  665	
  GF	
  with	
  6GB	
  
GDDR5	
  memory

Host	
  Memory
32GB

1600	
  MHz	
  DDR3

Gemini	
  High	
  Speed	
  Interconnect

Upgradeable	
  to	
  NVIDIA’s
next	
  genera\on	
  “Kepler”	
  processor	
  in	
  2012

Four	
  compute	
  nodes	
  per	
  XK6	
  blade.	
  	
  24	
  blades	
  
per	
  rack

Multicore CPU
+

Many-Core GPU
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NERSC

2 

NERSC-6 
Grace “Hopper” 
Cray XE6 
Performance 
  1.2 PF Peak 
  1.05 PF HPL (#5) 
Processor 
  AMD MagnyCours 
  2.1 GHz 12-core 
  8.4 GFLOPs/core 
  24 cores/node  
  32-64 GB DDR3-1333 per node 
System 
  Gemini Interconnect (3D torus) 
   6392 nodes 
  153,408 total cores 
I/O 
  2PB disk space 
   70GB/s peak I/O Bandwidth 

38,288 compute cores 
9,572 compute nodes 
One quad-core AMD 2.3 GHz 

Opteron processors 
(Budapest) per node 

4 processor cores per node 
8 GB of memory per node 
78 TB of aggregate memory 
1.8 GB memory / core for 

applications 
/scratch disk default quota of 

750 GB 

Light-weight Cray Linux 
operating system 

No runtime dynamic, shared-
object libs 

PGI, Cray, Pathscale, GNU 
compilers 

16 

Franklin - Cray XT4 

Use Franklin for all your computing jobs, except those 
that need a full Linux operating system.  

Last year

This year
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Hierarchical Parallelism

• MPI parallelism between nodes (or PGAS)

• On-node, SMP-like parallelism via threads (or 
subcommunicators, or…)

• Vector parallelism 
– SSE/AVX/etc on CPUs
– GPU threaded parallelism

• Exposure of unrealized parallelism is essential to exploit all 
near-future architectures.

• Uncovering unrealized parallelism and improving data locality 
improves the performance of even CPU-only code.

• Experience with vanguard codes at OLCF suggests 1-2 person-
years is required to “port” extant codes to GPU platforms.

• Likely less if begun today, due to better tools/compilers

11010110101000
01010110100111
01110110111011

01010110101010
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Good news! Stellar astrophysics tends to have a 
lot of unrealized parallelism at present

• Related, computationally-
intensive topics will, perhaps, 
have to work harder to identify 
additional parallelism outside of 
large stellar simulations, but 
plenty of opportunity exists.
- high-density physics 

- nuclear structure and reactions

• Simulation codes for stellar evolution and explosions 
- Exemplars of “multiphysics application codes”

- Typically many degrees-of-freedom per spatial grid point
o radiation transport
o nuclear burning

- Spatial domains typically parallelized via domain decomposition
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Posited Exascale Specs

System attributes 2010 “2015”“2015” “2018”“2018”

System peak 2 PF 200 PF/s200 PF/s 1 Exaflop/s1 Exaflop/s

Power 6 MW 15 MW15 MW 20 MW20 MW

System memory 0.3 PB 5 PB5 PB 32–64 PB32–64 PB

Node performance 125 GF 0.5 TF 7 TF 1 TF 10 TF

Node memory BW 25 GB/s 0.1 TB/s 1 TB/s 0.4 TB/s 4 TB/s

Node concurrency 12 O(100) O(1,000) O(1,000) O(10,000)

System size (nodes) 18,700 50,000 5,000 1,000,000 100,000

Total node interconnect BW 1.5 GB/s 150 GB/s 1 TB/s 250 GB/s 2 TB/s

MTTI day O(1 day)O(1 day) O(1 day)O(1 day)
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Achieving high spatial (or phase-space, etc.) 
resolution will be very difficult.

 turbulence is frozen by expansion

Khokhlov ca. 2003 

Total memory on the entire exascale system will be O(10 PB)
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Example goals/highlights from NP Exascale 
Workshop report (2009)

100x Tera Peta 100x Peta 10x Peta Exa 10x Tera -flop year 
sustained

Full quantum kinetics

150-species nuclear 
network

Large (precision) nuclear 
network

Multi-energy, multi-angle 
neutrino transport

Multi-energy neutrino transport 
and coherent neutrino flavor 

mixing

All of these goals are attainable, but will require new algorithms and 
implementations to bridge the gap to the posited architectures.

CC SNe

http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Np_report.pdf
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Simulation is required to guide experiment

CC SN neutrino-driven wind (less neutron rich)

CC SN neutrino-driven wind (more neutron rich)

NS-NS merger

possible r-process paths 
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Locally bulk-synchronous programming model is not a viable 
path for maximum performance on these new platforms

• FLOP/s are cheap and moving data is expensive

• Even perfect knowledge of resource capabilities at every moment and perfect load 
balancers will not rescue billion-thread SPMD implementations of PDE simulations

• Cost of rebalancing frequently is too large, but the Amdahl penalty of failing to 
rebalance is fatal

• To take full advantage of asynchronous algorithms, we need to develop greater 
expressiveness in scientific programming

- Create separate threads for logically separate tasks, whose priority is a 
function of algorithmic state, not unlike the way a time-sharing OS works

- Join priority threads in a directed acyclic graph (DAG), a task graph showing 
the flow of input dependencies; fill idleness with noncritical work or steal work

Comments taken directly from keynote 
address by David Keyes at EU-US HPC 
Summer School, June 2012
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Asynchronous execution models via task 
scheduling

• Examples exist already 
in other domains
- MAGMA (linear algebra)

- MADNESS (DFT)

- Uintah (terrestrial 
combustion)

• Operator-split physics 
modules become 
“tasks” associated 
with execution threads
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Will the exascale (or before) machine be 
primarily a “strong-scaling” platform?

• Memory constraints provide a hard ceiling for spatial resolution 
and number of unknowns.
- bytes/FLOP goes down by an order of magnitude

• Simulations will be certainly be larger, but likely not as large as 
one would expect if scaling with FLOPs is assumed.
- no more than ~10x the number of MPI ranks?

- this connotes no more than factors of ~2 in resolution in each dimension 
for 3D

• OK: considerable understanding can be realized by fully 
exploring parameter space.
- progenitor mass, rotation, metallicity

- transport approximations, additional physics
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Simulation, code, and data 
management become even harder

• Revision control, regression testing, viz, workflow... 
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