Computational Nuclear Physics Meeting James P. Vary, Iowa State University, July 14, 2014

ab initio theory is entering new territory...

- **QCD frontier** nuclear structure connected systematically to QCD via chiral EFT
- accuracy frontier control uncertainties, improve convergence, inform extrapolations
- mass frontier ab initio calculations up to heavy nuclei with quantified uncertainties
- **open-shell frontier** extend to medium-mass open-shell nuclei and their excitation spectrum
- continuum & clustering frontier include continuum & clustering effects for threshold states & nuclei
- reaction frontier describe structure & reaction observables on the same footing

...providing a coherent theoretical framework for nuclear structure & reactions and linking it to experiment

Adapted from TRIUMF talk by Robert Roth February 2014

J.P. Vary, NTSE-2013 Proceedings

Low-energy nuclear physics & HPC

INCITE Awards

- (2008 2010) PI: D. J. Dean (ORNL)
 H. Nam (ORNL), W. Nazarewicz (UTK/ORNL), S. Pieper (ANL), J. P. Vary (ISU)
- (2011 2013) PI: J. P. Vary (ISU)
 P. Maris (ISU), J. Carlson (LANL), H. Nam (ORNL), P. Navratil (TRIUMF), W. Nazarewicz (UTK/ORNL), S. Pieper (ANL), N. Schunck (LLNL)
- (2014 2016) PI: J. P. Vary (ISU)
 P. Maris (ISU), J. Carlson (LANL), H. Nam, G. Hagen (ORNL), P. Navratil (TRIUMF), W. Nazarewicz (UTK/ORNL), S. Pieper (ANL), N. Schunck (LLNL)

Supports ~ 40 users

- 2 Early Science Awards
 - 2009 Jaguar XT5, 30 Million hours
 Origin of the Anomalous Long Lifetime of ¹⁴C
 Physical Review Letters 106, 202502 (2011)
 - 2012 Mira, 110 Million hours
 Ab Initio Reaction Calculations for Carbon-12
 Charge Form Factor and Sum Rules of Electromagnetic
 Response Functions in ¹²C
 Physical Review Letters 111, 092501 (2013)

Office of Science

"Why does Carbon-14 live so long?"

Carbon-14 dating relies on ~5,730 year half-life, but other light nuclei undergo similar beta decay with half-lives less than a day!

GT matrix element

UNEDF SciDAC Collaboration Universal Nuclear Energy Density Functional

- Members of UNEDF collaboration made microscopic nuclear structure calculations to solve the puzzle
- Used systematic chiral Hamiltonian from low-energy effective field theory of QCD
- Key feature: consistent 3-nucleon interactions

shell

is very small

Computational ref.: Procedia Computer Science **1**, 97 (2010)

NP Utilization @ Leadership Class

Titan

(18,688 nodes = 299,008 CPU-cores + 261,632 GPU-cores)

- 20% = 3738 nodes = 59,808 CPU-cores

• Mira (48k nodes = 786k cores)

> - 20% = 9600 nodes = 153,600 cores

Low Energy NP Application Areas

Application	Production Run Sizes	Resource	Dense Linear Alg.	Sparse Linear Alg.	Monte Carlo	•	the limits to o Density Fund solution to ca
AGFMC: Argonne Green's Function Monte Carlo	262,144 cores @ 10 hrs	Mira			X		2014
MFDn: Many Fermion Dynamics - nuclear	260K cores @ 4 hrs 500K cores @ 1.33 hrs	Titan Mira		X			2013
NUCCOR: Nuclear Coupled-Cluster Oak Ridge, m-scheme & spherical	100K cores @ 5 hrs (1 nucleus, multiple parameters)	Titan		x			2012
DFT Code Suite: Density Functional Theory, mean-field methods	100K cores @ 10 hrs (entire mass table, fission barriers)	Titan	x				2010
MADNESS: Schroedinger, Lippman-Schwinger and DFT	40,000 cores @ 12 hrs (extreme asymmetric functions)	Titan	X	X			2009 2009 10
NCSM_RGM: Resonating Group Method for scattering	98,304 cores @ 8 hrs	Titan	X	X			0

 Ab initio Methods (CC, GFMC, NCSM) → pushing the limits to calculate larger nuclei

 Density Functional Theory → reasonable time to solution to calculate the entire mass table

ANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

2014 Case Studies: ab initio Nuclear Structure ab initio Nuclear Reactions

	Used at NERSC in 2013	Needed at NERSC in 2017	Used at NERSC in 2013	Needed at NERSC in 2017	
Computational Hours	27 (mostly Edison pre- acceptance usage)	96	~12M (Edison early users)	75M	
Typical number of cores* used for production runs	From 5% to full machine	From 5% to full machine	4,800 to 14,400 (3% to 10% of machine)	28,800 to 60,000 (20% to 45% of machine)	
Maximum number of cores* that can be used for production runs	Full machine	Full machine	28,800 (20% of machine)	Full machine	
Data read and written per run	< 1 TB	< 1 TB	<1TB	< 1TB	
Maximum I/O bandwidth	Not known	Not known	Not known	Not known	
Percent of runtime for I/O	< 5%	< 5%	<5%	<5%	
Scratch File System space	1 TB	3 ТВ	1 TB	4 TB	
Shared filesystem space	2 TB	8 TB	2 TB	8 TB	
Archival data	5 TB	50 TB	Not used	30 TB	
Memory per node	All available GB	Maximum possible GB	All available memory	All available memory	
Aggregate memory	Full machine	Full machine	<38 TB	Typical: 160 TB	

Adapted from Case Studies presented to NERSC May 2014: James P. Vary, "ab initio Nuclear Structure"

http://www.nersc.gov/assets/HPC-Requirements-for-Science/NP2017/VaryNPStructureApril2014.pdf Sofia Quaglioni, "ab initio Calculations of Nuclear Reactions and Exotic Nuclei" http://www.nersc.gov/assets/HPC-Requirements-for-Science/NP2017/Quaglioni.pdf

BACKUP SLIDES

Ab initio Extreme Neutron Matter

Objectives

- Predict properties of neutron-rich systems which relate to exotic nuclei and nuclear astrophysics
- Determine how well high-precision phenomenological strong interactions compare with effective field theory based on QCD
- Produce accurate predictions with quantified uncertainties

Impact

- Improve nuclear energy density functionals used in extensive applications such as fission calculations
- Demonstrate the predictive power of *ab initio* nuclear theory for exotic nuclei with quantified uncertainties
- Guide future experiments at DOE-sponsored rare isotope production facilities

Comparison of ground state energies of systems with N neutrons trapped in a harmonic oscillator with strength 10 MeV. Solid red diamonds and blue dots signify new results with two-nucleon (NN) plus three-nucleon (3N) interactions derived from chiral effective field theory related to QCD. Inset displays the ratio of NN+3N to NN alone for the different interactions. Note that with increasing N, the chiral predictions lie between results from different high-precision phenomenological interactions, i.e. between AV8'+UIX and AV8'+IL7.

Accomplishments

- 1. Demonstrates predictive power of *ab initio* nuclear structure theory.
- 2. Provides results for next generation nuclear energy density functionals
- 3. Leads to improved predictions for astrophysical reactions
- Demonstrates that the role of three-nucleon (3N) interactions in extreme neutron systems is significantly weaker than predicted from high-precision phenomemological interactions

References: P. Maris, J.P. Vary, S. Gandolfi, J. Carlson, S.C. Pieper, Phys. Rev. C87, 054318 (2013); H. Potter, S. Fischer, P. Maris, J.P. Vary, S. Binder, A. Calci, J. Langhammer and R.Roth, arXiv:1406.1160: Contact: ivarv@iastate.edu

Calculation of three-body forces at N³LO

Low Energy Nuclear **Physics** International Collaboration J. Golak, R. Skibinski, K.Tolponicki, H.Witala E. Epelbaum, H. Krebs RUB JÜLICH A. Nogga R. Furnstahl S. Binder, A. Calci, K. Hebeler, TECHNISCHE UNIVERSITÄT I. Langhammer, R. Roth DARMSTADT

P. Maris, J. Vary

H. Kamada

Goal

Calculate matrix elements of 3NF in a partialwave decomposed form which is suitable for different few- and many-body frameworks

Challenge

Due to the large number of matrix elements, the calculation is extremely expensive.

Strategy

Develop an efficient code which allows to treat arbitrary local 3N interactions. (Krebs and Hebeler)

FIG. 17. (color online) Ground-state energy of ⁷Li for the NN+NNN evolved Hamiltonians at $\lambda = 2.0 \,\mathrm{fm}^{-1}$, with IR (vertical dashed) and UV (vertical dotted) corrections from Eq. (5) that add to predicted E_{∞} values (points near the horizontal dashed line, which is the global E_{∞}).

E.D. Jurgenson, P. Maris, R.J. Furnstahl, P. Navratil, W.E. Ormand, J.P. Vary, Phys. Rev. C. 87, 054312 (2013); arXiv: 1302:5473

Many outstanding nuclear physics puzzles and discovery opportunities

Clustering phenomena Origin of the successful nuclear shell model Nuclear reactions and breakup Astrophysical r/p processes & drip lines Predictive theory of fission Existence/stability of superheavy nuclei Physics beyond the Standard Model Possible lepton number violation Spin content of the proton + Many More!

Chiral EFT for nuclear forces, leading order 3N forces

Adapted from Kai Hebeler, ECT* workshop May 2014