Unitary Coupled-Channel Model for Heavy Meson Decays into Three Mesons

Satoshi Nakamura

Excited Baryon Analysis Center (EBAC), JLab

Collaborators

Hiroyuki Kamano (RCNP, Osaka U.) Harry Lee (Argonne National Lab) Toru Sato

(Osaka Univ.)

Hadron Spectroscopy

 \Rightarrow Key information for confinement physics

Hadron Spectroscopy

data analysis \Rightarrow hadron properties

 $(J^{PC}, \text{mass, width, branching ratios, ..})$

Reliable analysis tool is essential !

Light Flavor Meson Spectroscopy (relevant to JLab 12 GeV programs)

- * data
- * analysis tool

Light Flavor Meson Spectroscopy (relevant to JLab 12 GeV programs)

e.g., E852 (BNL)
$$\pi^- p \to \pi^+ \pi^- \pi^- p$$

Chung et al., PRD 65, 072001 (2001)

Light Flavor Meson Spectroscopy (relevant to JLab 12 GeV programs)

e.g., E852 (BNL) $\pi^- p \to \pi^+ \pi^- \pi^- p$

Chung et al., PRD 65, 072001 (2001)

E852 (BNL), Chung et al., PRD 65, 072001 (2001)

* L = 0, 1, 2

* For $R = f_0(980), \ \rho(770), \ f_2(1270), \ \rho_3(1690)$

$$\implies \text{Breit-Wigner form} \quad A_R = \frac{F_{R \to \pi\pi}}{m_R^2 - m_{\pi\pi}^2 - i m_R \Gamma_R(m_{\pi\pi})}$$

 $* \; \operatorname{For} R = \sigma$

⇒ K-matrix model [e.g., Au, Morgan, Pennington, PRD 35, 1633 (1987)]

*
$$A_{M^* \to \pi\pi\pi} = \sum_R a_R e^{i\phi_R} A_R + \text{ (background)}$$

Questions

- * coupled-channels ?
- * 3-body unitarity ?

Coupled-channel effect

 $\pi^+ p \rightarrow \pi^+ \pi^+ n$ $\pi^{-} p \rightarrow \pi^{+} \pi^{-} n$ $\pi^{-} p \rightarrow \pi^{-} \pi^{0} p$ 25 15 6 20 4 (qm) 2 ع 10 15 10 5 5 0 L 1.2 0 0 L 1.2 1.6 1.8 1.8 1.6 1.8 2 1.6 1.4 1.41.42 2 W (GeV) $\pi^{-} p \rightarrow \pi^{0} \pi^{0} n$ $\pi^+ p \rightarrow \pi^+ \pi^0 p$ 30 8 Full 6 σ (mb) 20 C.C. effect off 4 10 2 Ŧ 0 L 1.2 1.2 1.8 1.8 1.6 2 1.4 1.4 1.6 2 W (GeV) W (GeV)

e.g., $\pi N \to \pi \pi N$ [$\pi N, \eta N, \pi \Delta, \rho N, \sigma N$ coupled-channels]

Kamano et al., PRC79 025206 (2009)

3-body unitarity requires ... Z-diagrams

Question to be addressed

How 3-body unitarity makes a difference in extracting hadron properties from data ?

Method

- 1. Construct a unitary and an isobar models
- 2. Fit them to the same Dalitz plot
- 3. Extract and compare M^* properties from them

(pole position, coupling strength to decay channels)

Coupled-Channels Model

Matsuyama, Sato, Lee, Phys. Rept. **439**, 193 (2007) Kamano, Nakamura, Sato, Lee, PRD **84** 114019 (2011)

 $\underline{M^* \to \pi R \to \pi \pi \pi}$

Channels $R: f_0(600), f_0(980), \rho(760), f_2(1270), \dots$

R : resonance in $\pi\pi$ scattering amplitude (not Breit-Wigner form)

- (I) Develop $\pi\pi$ model
- (II) Develop πR interaction
- (III) Solve πR scattering equation

Simple $\pi\pi$ model

Coupled-channel scattering equation for $\pi\pi$ partial wave (L, I)

$$t_{i,j}^{LI}(p',p;W) = V_{i,j}^{LI} + \sum_{k} \int_{0}^{\infty} q^{2} dq \, V_{i,k}^{LI}(p',q;W) \frac{1}{W - E_{k}(q) + i\epsilon} t_{k,j}^{LI}(q,p;W)$$

$$E_{\pi\pi}(q) = 2\sqrt{m_{\pi}^2 + q^2}$$
 $(i, j, k = \pi\pi, K\bar{K})$

Phase and inelasticity of $\pi\pi$ amplitude

[Data: Gayer et al. (1974); Hyams et al. (1973); Batley et al. (2008)]

Pole positions in $\pi\pi$ amplitude

	${\sf Re}[M_R]$ (MeV)		$-{ m Im}[M_R]$ (MeV)	
	Ours	PDG	Ours	PDG
f_0 (600)	430	400 - 1200	270	250 - 500
f_0 (980)	1000	980 ± 10	9	20 - 50
f_0 (1370)	1350	1200 - 1500	170	150 - 250
ho (760)	770	775.5 ± 0.3	81	74.5 ± 0.4
ho (1700)	1610	1550 - 1780	120	80 - 300
f_2 (1270)	1250	1275 ± 1.2	100	92.5 ± 1.3

Quasi two-particle (πR) interaction

 3π Z-graph

 $M^* \operatorname{graph}$

Quasi two-particle (πR) scattering equation

 M^* decay amplitude (unitary model)

 M^{\ast} decay amplitude (isobar model)

Case Study : $\gamma p \rightarrow M^* n \rightarrow \pi^+ \pi^- n$ (CLAS 6, GlueX)

Nakamura, Kamano, Sato, Lee, in preparation

How 3-body unitary makes a difference in extracting M^* properties from data ?

3-body unitarity requires consistency with M^{\ast} decay amplitude

Pole position : $M_R \Rightarrow G^{-1}(M_R) = 0$

Solved with analytic continuation to the unphysical Riemann sheet

Suzuki, Sato, Lee, PRC 79, 025205 (2009); ibid, 82, 045206 (2010)

 M^* propagator (isobar model)

Breit-Wigner :
$$G^{-1}(W) = W - M_{M^*} - i \frac{\Gamma(W)}{2}$$

but any phenomenological parametrization should be fine ...

$$G^{-1}(W) = W - M_{M^*}^0 - \Sigma_{M^*}(W)$$

M^* propagator (isobar model)

This work :
$$G^{-1}(W) = W - M_{M^*}^0 - \Sigma_{M^*}(W) - \Delta M_{M^*}^0$$

complex constant

Pole position : M_R (isobar) ~ M_R (unitary) + $\Delta M_{M^*}^0$

Production amplitude

Simple assumptions :

- * t-channel π -exchange
- * vector-dominance of $\gamma\pi M^*$ coupling

Not realistic but good enough

interested in effect of 3-body unitarity implemented in M^* propagation and decay

Kinematics

- $* E_{\gamma}$ = 5 GeV
- $*t = -0.4 \, \text{GeV}^2$

* 0.8 ${\rm GeV} \leq W \leq$ 2 ${\rm GeV}~~;~~W$: 3 π invariant mass

* 3 π orientation (Euler angles : α , β , γ) $\pi^ \pi^+$ π^+

 $\alpha,\ \beta \ \mbox{fixed} \ ; \ 0 \leq \gamma \leq 2\pi \quad \mbox{Dalitz plot depends on } \gamma$

 \Leftarrow Photon excites a polarized M^* that decays to a certain γ more often

Procedure

- 1. Determine parameters of unitary model with reasonable input
- 2. Generate *mock data* with the unitary model
- 3. Fit the data with isobar model
- 4. Compare M^* properties from the two models

Partial wave, M^* 's in unitary model

J^{PC}	M^*
1++	$a_1(1230)$, $a_1(1700)$
2^{++}	$a_2(1320)$, $a_2(1700)$
2^{-+}	$\pi_2(1670)$, $\pi_2(1800)$
1^{-+}	$\pi_1(1600)$

Determination of M^{\ast} parameters for unitary model

- $\ast \qquad M^{\ast} {
 m \ bare \ mass}$
- $* \qquad M^* o \pi R \,\, {
 m bare \,\, coupling \,\, and \,\, cutoff}$

 M^* propagator

$$G^{-1}(W) = W - M_{M^*}^0 - \Sigma_{M^*}(W)$$

 $M^* \to \pi R\;$ vertex function

$$F(p) \propto \frac{C}{\sqrt{E_R E_\pi}} \left(\frac{\Lambda^2}{p^2 + \Lambda^2}\right)^{2+(L/2)} p^L$$

Determination of M^{\ast} parameters for unitary model

- $\ast \qquad M^{\ast} \ {\rm bare\ mass}$
- $* \qquad M^* o \pi R \,\, {
 m bare \,\, coupling \,\, and \,\, cutoff}$

 3P_0 model

Flux-tube model for $\pi_1(1600)$

Barnes et al., PRD **55**, 4157 (1997)

lsgur et al., PRL 54, 869 (1985)

- Partial width \Rightarrow coupling
- Cutoff is set to 1 GeV

J^{PC}	decay n	nodes	$\Gamma_{qar{q}}$	$\Gamma_{\rm hybrid}$
1++	$a_1(1230) \rightarrow$	$\pi ho(770)$	540.	-
	$a_1(1700) \rightarrow$	$\pi f_0(1300)$	2.	6.
		$\pi ho(770)$	57.	30.
		$\pi \rho(1465)$	41.	0.
		$\pi f_2(1275)$	39.	70.
2^{++}	$a_2(1318) \rightarrow$	$\pi ho(770)$	55 .	-
	$a_2(1700) \rightarrow$	$\pi ho(770)$	104.	-
		$\pi f_2(1275)$	20.	-
2^{-+}	$\pi_2(1670) \rightarrow$	$\pi ho(770)$	118.	-
		$\pi f_2(1275)$	75.	-
	$\pi_2(1800) \rightarrow$	$\pi f_0(1300)$	1.	1.
		$\pi ho(770)$	162.	8.
		$\pi f_2(1275)$	86.	50.
1^{-+}	$\pi_1(1600) \rightarrow$	$\pi ho(770)$	-	8.

J^{PC}	decay modes		$\Gamma_{qar{q}}$	Γ_{hybrid}
1++	$a_1(1700) \rightarrow$	$\pi f_0(1300)$	2.	6.
		$\pi ho(770)$	57.	30.
		$\pi \rho(1465)$	41.	0.
		$\pi f_2(1275)$	39.	70.
2^{-+}	$\pi_2(1800) \rightarrow$	$\pi f_0(1300)$	1.	1.
		$\pi ho(770)$	162.	8.
		$\pi f_2(1275)$	86.	50.

Difference between $\ \Gamma_{q\bar{q}}$ and $\ \Gamma_{hybrid}$

⇒ Coupling strength to decay channel is a key information to understand the nature of hadron structure

We use $\ \Gamma_{q \bar{q}} \$ except for $\pi_1(1600)$

Dalitz plot from unitary model

 $W = 1 \text{ GeV} \text{ near } a_1(1230) \text{ peak}$

Dalitz plot from unitary model

Dalitz plot from unitary model

Fit with isobar model

Error :

- $\bullet~$ Data for the same W have the same error
- At each W, the error is assigned by 5% of the highest peak

Fit :

- 1. Fit with real couplings of $M^* \to \pi R$
- 2. Allow couplings complex
- 3. Include W-dependent flat non-interfering background
 - (2, 3 are common in isobar-model analysis)

 $\chi^2/({
m \# of data})~<~0.5$ is achieved

Fit with isobar model

Fit with isobar model

Question I didn't explicitly ask

Can isobar model extract partial wave amplitudes of the unitary model ?

 $W\mbox{-}dependence of integrated Dalitz plot}$

- **Q**: Can isobar model extract partial wave amplitudes of the unitary model ?
- A : To a good extent, yes.

Comments

- Not so in kinematics where a partial wave amplitude plays a minor role
- Analyzing polarized observables may have helped

M^{\ast} pole positions

 $\Delta M^0_{M^*}$ (MeV) : pole position shift in the isobar model

$$G^{-1}(W) = W - M_{M^*}^0 - \Sigma_{M^*}(W) - \Delta M_{M^*}^0$$

$a_1(1260)$	$a_1(1700)$	$a_2(1320)$	$a_2(1700)$
- 22.37 $-$ 23.21 i	8.48 - 4.46i	0.15 — 0.04 <i>i</i>	- 1.03 - 0.30 <i>i</i>
$\pi_2(1670)$	$\pi_2(1800)$	$\pi_1(1600)$	
— 0.51 + 0.38 <i>i</i>	- 3.07 $-$ 3.42 i	0.57 + 0.33 <i>i</i>	

Here, 3-body unitarity effect is moderate

Couplings of $a_1(1260)$ to decay channels

		Unitary	Isobar
$a_1(1260)$	$\rightarrow \pi f_0(1300)$	-	— 2.0 + 8.2 <i>i</i>
	$\rightarrow \pi f_0(2400)$	-	7.5 $-$ 2.3 i
	$\rightarrow \pi \rho(770)$	24.6	31.9-3.7~i
	$\rightarrow \pi \rho(1700)$	-	11.0 + 5.2 <i>i</i>
	$\rightarrow \pi f_2(1270)$	-	- 2.7 + 4.4 i

Rather large change in M^* couplings to decay channels

 \leftarrow Large Z-graph effect in $a_1(1260)$ region

Couplings of $a_2(1320)$ to decay channels

		Unitary	Isobar
$a_2(1320)$	$\rightarrow \pi \rho(770)$	1.0	0.9 $-$ 0.1 i
	$\rightarrow \pi f_2(1270)$	-	1.4 $-$ 0.1 i

Still rather large change in M^* couplings to decay channels

even though Z-graph effect on Dalitz plot in $a_2(1320)$ region seems moderate

Conclusion

Q : How 3-body unitary makes a difference in extracting M^* properties from data ?

Method

- 1. Construct a unitary and an isobar models
- 2. Fit them to the same Dalitz plot
- 3. Extract and compare M^{\ast} properties from them

Conclusion

- **Q** : How 3-body unitary makes a difference in extracting M^* properties from data ?
- **A** : It (and thus Z-diagrams) makes a significant difference in extracting dynamical aspect of M^* properties , i.e., coupling strength to decay channel

Key information to understand the hadron structure

Conclusion

- **Q** : How 3-body unitary makes a difference in extracting M^* properties from data ?
- **A** : It (and thus Z-diagrams) makes a significant difference in extracting dynamical aspect of M^* properties , i.e., coupling strength to decay channel
- **Q** : What about pole position ?
- **A** : Moderate. Sometimes non-negligible.