The Q-weak Experiment

A search for parity violating new physics at the TeV scale by measurement of the Proton's weak charge.

(Content of this talk includes the work of students, postdocs and collaborators)

- Scatter longitudinally polarized electrons from liquid hydrogen
- Flip the electron spin and see how much the scattered fraction changes
- The difference is proportional to the weak charge of the proton
- Hadronic structure effects determined from global PVES measurements.

Jefferson Lab Site

Qweak Installation: May 2010-May 2012
~1 year of beam in 3 running periods:

Run 0
Jan - Feb 2011
Run 1
Feb - May 2011
Run 2
Nov 2011 - May 2012

Precision Tests of the Standard Model

- Standard Model is known to be the effective low-energy theory of a more fundamental underlying structure. (Meaning its not complete!)
- Finding new physics beyond the SM: Two complementary approaches:
- Energy Frontier (direct) :
- Precision Frontier (indirect) :
eg. Tevatron (deceased), LHC (dry well so far) Often at modest or low energy...
- $\mu(\mathrm{g}-2)$, EDM, $\beta \beta$ decay, $\mu \rightarrow \mathrm{e} \gamma, \mu \mathrm{A} \rightarrow \mathrm{eA}, \mathrm{K}^{+} \rightarrow \pi^{+} v \nu$, etc.
- v-oscillations
- Atomic Parity violation
- Parity-violating electron scattering

Hallmark of the Precision Frontier: Choose observables that are "precisely predicted" or "suppressed" in Standard Model.

If new physics is "eventually" found in direct measurements, precision measurements also useful to determine e.g. couplings...

The Weak Charges

Electron-quark scattering, general four-fermion contact interaction:

$$
\mathcal{L}_{e q}^{P V}=-\frac{G_{F}}{\sqrt{2}} \sum_{i}\left[C_{1 i} \bar{e} \gamma_{\mu} \gamma_{5} e \bar{q} \gamma^{\mu} q+C_{2 q} \bar{e} \gamma_{\mu} e \bar{q} \gamma^{\mu} \gamma^{5} q\right]+\mathcal{L}_{n e w}^{P V}
$$

Note "accidental" suppression of $\mathrm{Q}^{\mathrm{p}}{ }_{\mathrm{w}} \rightarrow$ sensitivity to new physics

Particle	Electric charge	Weak vector charge $\left(\sin ^{2} \theta_{W} \approx \frac{1}{4}\right)$
e	-1	$Q_{W}^{e}=-1+4 \sin ^{2} \theta_{W} \approx 0$
u	$+\frac{2}{3}$	$-2 C_{1 u}=+1-\frac{8}{3} \sin ^{2} \theta_{W} \approx+\frac{1}{3}$
d	$-\frac{1}{3}$	$-2 C_{1 d}=-1+\frac{4}{3} \sin ^{2} \theta_{W} \approx-\frac{2}{3}$
$\mathrm{p}(\mathrm{uud})$	+1	$Q_{W}^{p}=1-4 \sin ^{2} \theta_{W} \approx 0.07$
$\mathrm{n}(\mathrm{udd})$	0	$Q_{W}^{n}=-1$

$\mathrm{Q}^{\mathrm{p}}{ }_{\mathrm{w}}$ has a definite prediction in the electroweak Standard Model

Sensitivity to New Physics

The vertical axis is Λ / g
Depending on how you construct the PV "new physics" Lagrangian and select a model dependent " g " the mass reach can become much greater.

Qweak Experiment Objectives

10 years of development +2 years on floor (~ 1 year beam on target) International Collaboration: 23 institutions, 95 Collaborators (23 grad students,10 postdocs)

- Measured parity-violating e-p analyzing power with high precision at $\mathrm{Q}^{2} \sim 0.025(\mathrm{GeV} / \mathrm{c})^{2}$. Determine: $\mathrm{Q}^{\mathrm{p}}, \mathrm{Q}^{\mathrm{n}}{ }_{\mathrm{w}}, \Lambda / \mathbf{g}_{\mathrm{e}-\mathrm{p}}, \mathbf{C}_{1 \mathrm{u}}, \mathbf{C}_{1 \mathrm{~d}}, \boldsymbol{\operatorname { s i n }}^{2} \theta_{\mathrm{w}}$
Ancillary / Calibration Measurements: (Will be published as standalone results.)
- Parity-violating and conserving e-C and e-Al analyzing powers.
- Parity-allowed analyzing power with transverse-polarized beam on H and Al .
- Parity-violating and allowed analyzing powers on H in the $N \rightarrow \Delta(1232)$ region.
- PV asymmetries in pion photo-production.
- Transverse asymmetries in pion photo-production.
- Non-resonant inelastic measurement at 3.3 GeV to help constrain $\gamma-\mathrm{Z}$ Box uncertainty.
- Transverse asymmetry in the PV inelastic scattering region (3.3 GeV).

Current Experiment Status

- The Qweak experiment finished successfully
- Precise measurement of $\vec{e}-p$ analyzing power at low Q^{2}
- 2 years in situ, ~ 1 year of beam
- Commissioning run (a.k.a. Run 0 results) published in:

PRL 111,141803 (2013)

- ~ 4\% of total data collected
- $1^{\text {st }}$ "clean" determination of $Q^{p}{ }_{w}, C_{1 u}, C_{1 d}, \& Q^{n}{ }_{w}$
- Remainder of experiment still being analyzed
- Expect final results by late 2014

PVES and Hadronic Structure Effects

assume charge symmetry:

$$
4 G_{E, M}^{p Z}=\underset{\substack{\text { Proton weak charge } \\
\text { (tree level) }}}{\left(1-4 \sin ^{2} \theta_{W}\right)} G_{E, M}^{p \gamma}-G_{E, M}^{n \gamma}-G_{E, M}^{s} \text { Strangeness }_{G_{E, M}}^{\text {(Now measured to be }} \begin{gathered}
\text { relatively small!) }
\end{gathered}
$$

Note: Parity-violating asymmetry is sensitive to both weak charges and to hadron structure.

$Q^{p}{ }_{\text {weak }}$: Extract from Parity-Violating Electron Scattering

measures Q^{p} - proton's electric charge
measures Q^{p} weak - proton's weak charge

$$
\begin{aligned}
A= & \frac{2 M_{N C}}{M_{E M}}=\left\lfloor\frac{-G_{F}}{4 \pi \alpha \sqrt{2}}\right\rfloor\left[\mathrm{Q}^{2} \mathrm{Q}_{\text {weak }}^{p}+F^{p}\left(\mathrm{Q}^{2}, \theta\right)\right] \\
& \xrightarrow[\substack{\mathrm{Q}^{2} \rightarrow 0 \\
\theta \rightarrow 0}]{ }\left[\frac{-G_{F}}{4 \pi \alpha \sqrt{2}}\right]\left[\mathrm{Q}^{2} \mathrm{Q}_{\text {weak }}^{p}+\mathrm{Q}^{4} B\left(Q^{2}\right)\right]
\end{aligned}
$$

$$
\mathrm{Q}_{\text {weak }}^{p}=1-4 \sin ^{2} \theta_{W} \sim 0.072 \text { (at tree level) }
$$

Correction involving hadronic form factors.
Exp determined using global analysis of recently completed PVES experiments.

The lower the momentum transfer, Q , the more the proton looks like a point and the less important are the form factor corrections.

PV Measurements Relative "difficulty factor"

PVeS Experiment Summary

Technical challenges:

- Counting Statistics
- High rate, beam polarization, beam current, high-power target, large acceptance detectors
- Low noise
- Electronics, target density fluctuations, detector resolution
- Systematics
- Helicity-correlated beam asymmetry, backgrounds, precision beam polarimetry, precise Q^{2} determination

Q-weak goal: ~5 ppb on $A_{\text {ep }}$

Qweak Apparatus

Parameters:
$\mathrm{E}_{\text {beam }}=1.165 \mathrm{GeV}$
$\left\langle Q^{2}\right\rangle=0.025 \mathrm{GeV}^{2}$
$\langle\theta\rangle=7.9^{\circ} \pm 3^{\circ}$
ϕ coverage $=50 \%$ of 2π
$\mathrm{I}_{\text {beam }}=180 \mu \mathrm{~A}$
Integrated rate $=6.4 \mathrm{GHz}$
Beam Polarization = 88\%
Target $=35 \mathrm{~cm} \mathrm{LH}{ }_{2}$
Cryopower $=3 \mathrm{~kW}$

Electron beam
LH_{2} Target

The Apparatus (before shielding)

Quartz Cerenkov Detectors

Yield 100 pe's/track with 2 cm Pb pre-radiators Resolution limited by shower fluctuations.

Kinematics Determination

$$
A_{P V}=-\frac{Q^{2} G_{F}}{4 \sqrt{2} \pi \alpha}\left[Q_{W}^{p}+F\left(\theta, Q^{2}\right)\right]
$$

- Drift chambers before and after magnetic field
- Low current, reconstruct individual events
- Systematic studies

Polarized Injector

- Pockels cell for fast helicity reversal
- Helicity reversal frequency: 960 Hz (to "freeze" bubble motion in the target)
- Helicity pattern: pseudo-random "quartets" (+--+ or -++-, asymmetry calculated for each quartet)
- Insertable Half-Wave Plate: for "slow reversal" of helicity to check systematic effects and cancel certain false asymmetries. Less frequently, by Wien filter.

"Phase Locked" Detection Methodology

Detector signal integrated For each helicity window

Asymmetry formed by quartet (4 ms)
Statistical power is

$$
\Delta \mathrm{A}=\mathrm{S}_{\text {width }} / \square_{\mathbb{N}_{\text {quartets }}}
$$

Measured asymmetry has unknown additive "blinding factor" for analysis
($\pm 60 \mathrm{ppb}$ blinding box)
Helicity of electron beam flipped at 960 Hz , delayed helicity reporting to prevent direct electrial pick up of reversal signal by ADC's

Constructing the Asymmetry

- Asymmetry measured in blocks of runs "a.k.a. Slugs" of data - IHWP in/out
- Blinded Asymmetry: example Slug plot for "run 0" showing reversal

Helicity-Correlated Corrections

(Example: Commissioning Result)

$$
A_{\text {corr }}=\sum_{i=1}^{5}\left(\frac{\partial A}{\partial x_{i}}\right) \Delta x_{i}
$$

$$
\left(x, x^{\prime}, y, y^{\prime}, E\right)
$$

Regression Correction: $\mathrm{A}_{\text {req }}=-31 \pm 11 \mathrm{ppb}$

Detector sensitivity to helicity-correlated beam parameters and broken symmetry can cause false asymmetry.
Sensitivity "slopes" determined from linear regression with natural beam jitter.

Order of magnitude suppression in sum

Example: Detector Sensitivity to X Beam Jitter
Run 11781: Main Detector Barsum X-Sensitivities ($\mathrm{ppm} / \mathrm{mm}$) for Qweak Target: LH2, $164.7 \mathrm{uA}, 4.0 \times 4.0 \mathrm{~mm}$

$\Delta X(m m)$

Residual Transverse Asymmetry

- Dedicated measurement with fully transverse beam
- Constrains false asymmetry for $A_{e p}$ result

- Transverse result: nucleon structure and 2γ exchange
- Comparison to theory models

Aluminum Window Background

Large A (asymmetry) \& f (fraction) make this our largest correction. Determined from explicit measurements using Al dummy targets \& empty H_{2} cell.

$$
\begin{aligned}
& C_{\mathrm{Al}}=-64 \pm 10 \mathrm{ppb} \\
& A_{\mathrm{Al}}=1.76 \pm 0.26 \mathrm{ppm}
\end{aligned}
$$

$$
f_{\mathrm{Al}}=3.23 \pm 0.24 \%
$$

- Dilution from windows measured with empty target (actual target cell windows).
- Corrected for effect of H_{2} using simulation and data driven models of elastic and quasi-elastic scattering.

- Asymmetry measured from thick Al targets
- Measured asymmetry agrees with expectations from scaling.

$$
A_{P V}\left({ }_{Z}^{N} X\right)=-\frac{Q^{2} G_{F}}{4 \pi \alpha \sqrt{2}}\left[Q_{W}^{p}+\left(\frac{N}{Z}\right) Q_{W}^{n}\right]
$$

Simulated e- profile at detector:

Precision Polarimetry

Qweak requires $\Delta P / P \leq 1 \%$ (Expect final uncertainty $\sim 0.8 \%$)

Strategy: use 2 independent polarimeters

- Use existing <1\% Hall C Møller polarimeter:
- Low beam currents, invasive
- Known analyzing power provided by polarized "saturated" Fe foil in a 3.5 T field.
- Compton (photon \& electron) polarimeter ($1 \% / \mathrm{h}$)

- Continuous, non-invasive
- Known analyzing power provided by circularly-polarized laser

LH_{2} Target Design

- World's highest power cryogenic target $\sim 3 \mathrm{~kW}$
- Designed with computational fluid dynamics (CFD) to reduce density fluctuations

$6.40 \mathrm{e}+00$ $5.95 \mathrm{e}+00$ $5.50 \mathrm{e}+00$ $5.05 e+00$ $4.59 \mathrm{e}+00$ $4.14 \mathrm{e}+00$ $3.69 \mathrm{e}+00$ $3.24 \mathrm{e}+00$ $2.79 e+00$ $2.33 \mathrm{e}+00$ $1.88 \mathrm{e}+00$ $1.43 \mathrm{e}+00$ $9.78 \mathrm{e}-01$ $5.26 \mathrm{e}-01$ $7.40 \mathrm{e}-02$ $-3.78 \mathrm{e}-01$ $-8.30 \mathrm{e}-01$ $-1.28 e+00$ -1.73 э+60
 $-2.64 \mathrm{e}+00$ beam

NNSYS

Centrifugal pump ($15 \mathrm{l} / \mathrm{s}, 7.6 \mathrm{kPa}$)
3 kW Heater

3 kW HX utilizing $4 \mathrm{~K} \& 14 \mathrm{~K}$ He coolant

Target Performance

Measured helicity correlated noise.

At 960 Hz reversal rate, the target noise (<50 ppm) is very small compared to our helicity quartet ($\pm \mp \mp \pm)$ asymmetry width ($\sim 230 \mathrm{ppm}$). (statistical power $\sim \Delta \mathrm{A}_{\text {quartet }} / \square \mathbb{N}_{\text {quartets }}$)

FFT of noise spectrum

Determining $Q^{p}{ }_{\text {weak }}$

- $A_{e p}=\left[\frac{\sigma^{+}-\sigma^{-}}{\sigma^{+}+\sigma^{-}}\right] \sim \frac{\left|M_{\text {weak }}^{P V}\right|}{\left|M_{E M}\right|}$ where $\sigma^{ \pm}$is $\overrightarrow{\mathrm{ep}} \mathrm{x}$-sec for e's of helicity ± 1
- $A_{e p}=\left[\frac{G_{F} Q^{2}}{4 \pi \alpha \sqrt{2}}\right] \frac{\epsilon G_{E}^{\gamma} G_{E}^{Z}+\tau G_{M}^{\gamma} G_{M}^{Z}-\left(1-4 \sin ^{2} \theta_{w}\right) \epsilon^{\prime} G_{M}^{\gamma} G_{A}^{Z}}{\varepsilon\left(G_{E}^{\gamma}\right)^{2}+\tau\left(G_{M}^{\gamma}\right)^{2}}$
- where $\varepsilon=\left[1+2(1+\tau) \tan ^{2}(\theta / 2)\right]^{-1}, \quad \varepsilon^{\prime}=\sqrt{\tau(1+\tau)\left(1-\varepsilon^{2}\right)}$, $\tau=\mathrm{Q}^{2} / 4 \mathrm{M}^{2}, G_{E, M}^{\gamma}$ are EM FFs, $G_{E, M}^{Z}$ \& G_{A}^{Z} are strange \& axial FFs, and $\sin ^{2} \theta_{w}=1-\left(M_{w} / M_{z}\right)^{2}=$ weak mixing angle
- Recast $A_{e p}=\frac{G_{F} Q^{2}}{4 \pi \alpha \sqrt{2}}\left[Q_{w}^{p}+Q^{2} B\left(Q^{2}, \theta\right)\right]$
- So in a plot of $A_{e p} /\left[\frac{G_{F} Q^{2}}{4 \pi \alpha \sqrt{2}}\right]$ vs Q^{2} :

This Experiment

- Q_{w}^{p} is the intercept (anchored by precise data near $Q^{2}=0$) \longleftarrow
- $B\left(Q^{2}, \theta\right)$ is the slope (determined from higher Q^{2} PVES data)

Global PVES Fit Details

(Example: Commisioning Result)

- Effectively 5 free parameters:
- $\mathrm{C}_{1 \mathrm{u}}, \mathrm{C}_{1 \mathrm{~d} .}$. $\rho_{\mathrm{s}}, \mu_{\mathrm{s}}, \&$ isovector axial $\mathrm{FF} \mathrm{G}_{A}^{Z}$
- $\mathrm{G}_{E}^{S}=\rho_{\mathrm{s}} \mathrm{Q}^{2} \mathrm{G}_{\mathrm{D}}, \mathrm{G}_{M}^{S}=\mu_{\mathrm{s}} \mathrm{G}_{\mathrm{D}}, \& \mathrm{G}_{A}^{Z}$ use G_{D} where - $G_{D}=\left(1+Q^{2} / \lambda^{2}\right)^{-2}$ with $\lambda=1 \mathrm{GeV} / \mathrm{c}$
- Employs all PVES data up to $\mathrm{Q}^{2}=0.63(\mathrm{GeV} / \mathrm{c})^{2}$
- On p, d, \& ${ }^{4} \mathrm{He}$ targets, forward and back-angle data
- SAMPLE, HAPPEX, G ${ }^{0}$, PVA4
- Uses constraints on isoscalar axial $\mathrm{FF} \mathrm{G}_{A}^{Z}$
- Zhu, et al., PRD 62, 033008 (2000)
- All ep data corrected for $E \& Q^{2}$ dependence of $\square_{y Z} R C$
- Hall et al., arXiv:1304.7877 (2013) \& Gorchtein et al., PRC84, 015502 (2011)
- Effects of varying $Q^{2}, \theta, \& \lambda$ studied, found to be small

Mechanics of our γZ Correction

- Get E-dependent correction:
- From fit to Hall et al. (arxiv.org/pdf/1304.7877v1.pdf) Fig. 14
- Get t dependent correction:
- Using $\square_{\gamma Z}(E, t) / \square_{\gamma Z}(E, 0)=e^{-B|t| / 2 / F \gamma p}{ }_{1}(t)$, with $B=7 \pm 1 \mathrm{GeV}^{-2}$ from Gorchtein et al., PRC84, 015502 (2011), Eq. 60.
- Example (our point at $\left.1.165 \mathrm{GeV}, 0.025(\mathrm{GeV} / \mathrm{c})^{2}\right)$:
- E-dep part $=0.00567 \pm 0.0003$
- Q^{2}-dep factor $=0.9776 \pm 0.0120$
- Combined correction $=(\mathrm{E}-\text { dep part })^{*}\left(\mathrm{Q}^{2}\right.$-dep factor $)=0.00555 \pm 0.0003$
- Subtract this (${ }^{*} \mathrm{~A}_{0}$) from the asymmetry (-278.8 ppb $\left.\rightarrow-266.3 \mathrm{ppb}\right)$
- reduced asymmetry $0.1240 \rightarrow 0.1185$
- add error in quadrature to the systematic error
- Apply this to all proton data $A_{e p}(E, t)$ used in our fit
- not d, or He (yet)

Electroweak Corrections

$\left.Q_{W}^{p}=\left[\rho_{\mathrm{NC}}+\Delta_{e}\right]\left[1-4 \sin ^{2} \hat{\theta}_{\mathrm{W}}(0)+\Delta_{e}^{\prime}\right]+\square_{W W}+\square_{Z Z}+\square_{\gamma Z}\right)$
 $\square_{\gamma Z}$ contribution to Q_{W}^{p} (Qweak kinematics) $\sim 7 \%$ correction

Gorchtein \& Horowitz

Sibirtsev, Blunden \& Melnitchouk, Thomas PRD 82, 013011 (2010)
Rislow \& Carlson
PRD 83, 13007 (2011)
Gorchtein, Horowitz \& Ramsey-Muslof PRC 84, 015502 (2011)
$0.0047_{-0.0004}^{+0.0011}$

- Calculations are primarily dispersion theory type
- error estimates can be firmed up with data!
- Qweak: inelastic asymmetry data taken at $\mathrm{W} \sim 2.3 \mathrm{GeV}, \mathrm{Q}^{2}=0.09 \mathrm{GeV}^{2}$

Electroweak Corrections

$$
\frac{\left.Q_{W}^{p}=\left[\rho_{\mathrm{NC}}+\Delta_{e}\right]\left[1-4 \sin ^{2} \hat{\theta}_{\mathrm{W}}(0)+\Delta_{e}^{\prime}\right]+\square_{W W}+\square_{Z Z}+\square_{\gamma Z}\right)}{\square_{\gamma Z} \text { contribution to } Q_{W}^{p}(\text { Qweak kinematics })}
$$

Gorchtein \& Horowitz

Sibirtsev, Blunden \& Melnitchouk, Thomas

PRD 82, 013011 (2010)
Rislow \& Carlson
PRD 83, 13007 (2011)
Gorchtein, Horowitz \& Ramsey-Muslof PRC 84, 015502 (2011)
Hall, Blunden, Melnitchouk, Thomas \& Young
arXiv:1304:7877 (2013) (calculation constrained by PVDIS data)
$0.0047_{-0.0004}^{+0.0011}$
0.0057 ± 0.0009
0.0054 ± 0.0020
0.0052 ± 0.00043

- The central values of all 3 calculations are essentially in agreement!
- However, the errors are significantly different - or so it would seem at first glance.
- BUT -
- Whereas errors from Rislow and Hall ($\sim 0.5 \%$ uncertainty on $Q^{p}{ }_{w}$) are for normal (gaussian) distributions,
- Gorchtein shows the extreme limits between two distinct models - (therefore a uniform distribution) - which needs to be converted into an effective "sigma" before folding into our uncertainty (\rightarrow becomes a $\sim 1.4 \%$ uncertainty on $\mathrm{Q}^{\mathrm{p}}{ }_{\mathrm{w}}$)

First Results: Asymmetry

- Run 0 Results (1/25th of total data set) Kinematics: $\begin{aligned} & \left\langle E_{\text {beam }}\right\rangle=1.155 \pm 0.003 \mathrm{GeV}\end{aligned}$

Global Fit of $\mathrm{Q}^{2}<0.63(\mathrm{GeV} / \mathrm{c})^{2}$ PVES Data

Published 10/2/2013: PRL 111,141803 (2013)

Combined Analysis Extract: $\mathrm{C}_{1 \mathrm{u}}, \mathrm{C}_{1 \mathrm{~d}}, \mathrm{Q}^{\mathrm{n}}{ }_{\mathrm{w}}$

Qweak + Higher Q² PVES
Extract: $\mathbf{Q}^{p}{ }_{w}, \sin ^{2} \theta_{w}$
Weak Mixing Angle: Running of $\sin ^{2} \theta_{w}$

$$
\begin{aligned}
Q^{n} w & =-2\left(C_{1 u}+2 C_{1 d}\right) \\
& =-0.975 \pm 0.010
\end{aligned}
$$

$$
\begin{aligned}
& C_{1 u}=-0.184 \pm 0.005 \\
& C_{1 d}=0.336 \pm 0.005
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Q}^{\mathrm{p}}=-2\left(2 \mathrm{C}_{1 \mathrm{w}}+\mathrm{C}_{1 \mathrm{~d}}\right) \\
&=0.064 \pm 0.012 \\
& \mathrm{SM} \text { prediction }=0.0710(7)
\end{aligned}
$$

Remainder of experiment still being analyzed, final result before end of 2014.

Teaser: Simulated Fit !!

(Assuming anticipated final uncertainties and SM result)

Effect of Applying γ-Z Correction to Higher Q ${ }^{2}$ PVES Data - Commissioning Result

With γ-Z correction to all ep data

$$
Q_{w}^{p}=0.064 \pm 0.012
$$

With $\gamma-Z$ correction to only our $Q^{p}{ }_{w}$ point $Q^{p}{ }_{w}=0.070 \pm 0.012$

Effect of Applying γ-Z Correction to Higher Q ${ }^{2}$ PVES Data - Simulated Full Data Set For discussion lets assume the case: $\Delta A_{\text {ep }} / A_{\text {ep }}=3.4 \% \rightarrow \Delta Q^{p}{ }_{w} / Q^{p}{ }_{w}=5 \%$ Measurement
γ-Z correction applied to our Pt \& higher \mathbf{Q}^{2} ep data $\mathrm{Q}^{\mathrm{p}}{ }_{\mathrm{w}}($ Global $)=0.0743 \pm 0.0038$
$Q^{p}{ }_{w}($ PVES $)=0.0744 \pm 0.0038$

With γ-Z correction applied to only our Pt
$\mathrm{Q}^{\mathrm{p}}{ }_{\mathrm{w}}$ (Global) $=0.0745 \pm 0.0038$
$Q^{p}{ }_{w}$ (PVES) $=0.0745 \pm 0.0038$

Planned \& Possible Upgrades to $Q^{p}{ }_{w}$ Mathematica Code Extraction Procedure Prior to Un-blinding of Final Result

- Update PVES data set if any new Mainz results appear.
- Repeat studies of Chi ${ }^{2}$ stability as function of Q^{2} cut, theta cut, λ etc. (for final result may be better/sufficient to truncate at Q^{2} of $\sim 0.3 \mathrm{GeV}$ - for example.
- Addition theoretical corrections if required for He / deuterium data for CSV or possibly use slightly larger errors. (depend on theorist interest level in the problem)
- Apply γ-Z correction to APV result - also need $\gamma-\mathrm{Z}$ correction for $\mathrm{He} /$ deuterium.
- Improve how ${ }^{133} \mathrm{Cs} \mathrm{APV}$ result (and maybe other APV results) are used by code.
- Quantitative study of using different (from Kelly) or better EFF's.
- Include propagation of errors and correlations associated with EFF's into results. (very quick test run seems to indicate contribution a relatively small additional uncertainty). But, this needs more work!

Summary

- Measured during commissioning run:
$A_{\text {ep }}=-279 \pm 35$ (statistics) ± 31 (systematics) ppb
- Smallest \& most precise ep asymmetry ever measured
- First determination of $Q^{p}{ }_{w}$:
$-Q^{p}{ }_{w}=0.063 \pm 0.012$ (from only 4% of all data collected)
- SM value $=0.0710$ (7)
- New PV physics reach $\Lambda / \mathrm{g}>1 \mathrm{TeV}$ (very consevative)
- First determination of $Q^{n}{ }_{w}=-2\left(\mathrm{C}_{1 \mathrm{u}}+2 \mathrm{C}_{1 \mathrm{~d}}\right)$:
- By combining our result with APV
- $Q^{n}{ }_{w}=-0.975 \pm 0.010(S M$ value $=-0.9890(7))$
- Final results with much smaller uncertainties in 2014
- Expected PV new physics reach of:
$\Lambda / \mathrm{g} \sim 2.6 \mathrm{TeV}$ (simplest and most conservative model).
- SM test, sensitive to Z's and LQs

The Qweak Collaboration

95 collaborators 10 post docs

23 grad students 23 institutions

Institutions:
${ }^{1}$ University of Zagreb
${ }^{2}$ College of William and Mary
${ }^{3}$ A. I. Alikhanyan National Science Laboratory
${ }^{4}$ Massachusetts Institute of Technology
${ }^{5}$ Thomas Jefferson National Accelerator Facility
${ }^{6}$ Ohio University
${ }^{7}$ Christopher Newport University
${ }^{8}$ University of Manitoba,
${ }^{9}$ University of Virginia
${ }^{10}$ TRIUMF
${ }^{11}$ Hampton University
${ }^{12}$ Mississippi State University
${ }^{13}$ Virginia Polytechnic Institute \& State Univ
${ }^{14}$ Southern University at New Orleans
${ }^{15}$ Idaho State University
${ }^{16}$ Louisiana Tech University
${ }^{17}$ University of Connecticut
${ }^{18}$ University of Northern British Columbia
${ }^{19}$ University of Winnipeg
${ }^{20}$ George Washington University
${ }^{21}$ University of New Hampshire
${ }^{22}$ Hendrix College, Conway
${ }^{23}$ University of Adelaide
D. Androic, ${ }^{1}$ D.S. Armstrong, ${ }^{2}$ A. Asaturyan, ${ }^{3}$ T. Averett, ${ }^{2}$ J. Balewski, ${ }^{4}$ J. Beaufait, ${ }^{5}$ R.S. Beminiwattha, ${ }^{6}$ J. Benesch, ${ }^{5}$ F. Benmokhtar, ${ }^{7}$ J. Birchall, ${ }^{8}$ R.D. Carlini,,5,2 G.D. Cates, ${ }^{9}$ J.C. Cornejo, ${ }^{2}$ S. Covrig, ${ }^{5}$ M.M. Dalton, ${ }^{9}$ C.A. Davis, ${ }^{10}$ W. Deconinck, ${ }^{2}$ J. Diefenbach, ${ }^{11}$ J.F. Dowd, ${ }^{2}$ J.A. Dunne, ${ }^{12}$ D. Dutta, ${ }^{12}$ W.S. Duvall, ${ }^{13}$ M. Elaasar, ${ }^{14}$ W.R. Falk, ${ }^{8}$ J.M. Finn, ${ }^{2,}$ T. Forest, ${ }^{15,16}$ D. Gaskell, ${ }^{5}$ M.T.W. Gericke, ${ }^{8}$ J. Grames, ${ }^{5}$ V.M. Gray, ${ }^{2}$ K. Grimm, ${ }^{16,2}$ F. Guo, ${ }^{4}$ J.R. Hoskins, ${ }^{2}$ K. Johnston, ${ }^{16}$ D. Jones, ${ }^{9}$ M. Jones, ${ }^{5}$ R. Jones, ${ }^{17}$
M. Kargiantoulakis, ${ }^{9}$ P.M. King, ${ }^{6}$ E. Korkmaz, ${ }^{18}$ S. Kowalski, ${ }^{4}$ J. Leacock, ${ }^{13}$ J. Leckey, ${ }^{2,}$ A.R. Lee, ${ }^{13}$ J.H. Lee,,${ }^{6,2, ~ L . ~ L e e, ~}{ }^{10}$ S. MacEwan, ${ }^{8}$ D. Mack, ${ }^{5}$ J.A. Magee, ${ }^{2}$ R. Mahurin, ${ }^{8}$ J. Mammei, ${ }^{13,}$ J.W. Martin, ${ }^{19}$ M. J. McHugh, ${ }^{20}$ D. Meekins, ${ }^{5}$ J. Mei, ${ }^{5}$ R. Michaels, ${ }^{5}$
A. Micherdzinska, ${ }^{20}$ A. Mkrtchyan, ${ }^{3}$ H. Mkrtchyan, ${ }^{3}$ N. Morgan, ${ }^{13}$ K.E. Myers, ${ }^{20}$ A. Narayan, ${ }^{12}$ L.Z. Ndukum, ${ }^{12}$ V. Nelyubin, ${ }^{9}$ Nuruzzaman, ${ }^{11,12}$ W.T.H van Oers, ${ }^{10,8}$ A.K. Opper, ${ }^{20}$ S.A. Page, ${ }^{8}$ J. Pan, ${ }^{8}$ K.D. Paschke, ${ }^{9}$ S.K. Phillips, ${ }^{21}$ M.L. Pitt, ${ }^{13}$ M. Poelker, ${ }^{5}$
J.F. Rajotte, ${ }^{4}$ W.D. Ramsay, ${ }^{10,8}$ J. Roche, ${ }^{6}$ B. Sawatzky, ${ }^{5}$ T. Seva, ${ }^{1}$ M.H. Shabestari, ${ }^{12}$ R. Silwal, ${ }^{9}$ N. Simicevic, ${ }^{16}$ G.R. Smith, ${ }^{5}$
P. Solvignon, ${ }^{5}$ D.T. Spayde, ${ }^{22}$ A. Subedi, ${ }^{12}$ R. Subedi, ${ }^{20}$ R. Suleiman, ${ }^{5}$ V. Tadevosyan, ${ }^{3}$ W.A. Tobias, ${ }^{9}$ V. Tvaskis, ${ }^{19,} 8$ B. Waidyawansa, ${ }^{6}$ P. Wang, ${ }^{8}$ S.P. Wells, ${ }^{16}$ S.A. Wood, ${ }^{5}$ S. Yang, ${ }^{2}$ R.D. Young, ${ }^{23}$ and S. Zhamkochyan ${ }^{3}$

Uniform

