The Q-weak Experiment

A search for parity violating new physics at the TeV scale by measurement of the Proton's weak charge.

> Roger D. Carlini Jefferson Laboratory

(Content of this talk includes the work of students, postdocs and collaborators)

- Scatter longitudinally polarized electrons from liquid hydrogen
- Flip the electron spin and see how much the scattered fraction changes
- The difference is proportional to the weak charge of the proton
- Hadronic structure effects determined from global PVES measurements.

s(+

Thomas Jefferson National Accelerator Facility

Jefferson Lab Site

Qweak Installation: May 2010-May 2012

~1 year of beam in 3 running periods:

Run 0 Jan – Feb 2011

Run 1 Feb – May 2011

Run 2 Nov 2011 – May 2012

Precision Tests of the Standard Model

- Standard Model is known to be the effective low-energy theory of a more fundamental underlying structure. (Meaning its not complete!)
- Finding new physics beyond the SM: Two complementary approaches:
 - Energy Frontier (direct) : eg. Tevatron (deceased), LHC (dry well so far)
 - Precision Frontier (indirect) :

Often at modest or low energy...

- μ (g-2) , EDM, $\beta\beta$ decay, $\mu \rightarrow e \gamma$, $\mu A \rightarrow eA$, $K^+ \rightarrow \pi^+ \nu \nu$, *etc.*
- *v* oscillations
- Atomic Parity violation
- Parity-violating electron scattering

Hallmark of the Precision Frontier: Choose observables that are *"precisely predicted"* or *"suppressed"* in Standard Model.

If new physics is "eventually" found in direct measurements, precision measurements also useful to determine e.g. couplings...

The Weak Charges

Electron-quark scattering, general four-fermion contact interaction:

Note "accidental" suppression of $Q^p_W \rightarrow sensitivity to new physics$

Particle	Electric charge	Weak vector charge $(\sin^2 \theta_W pprox rac{1}{4})$
e	-1	$Q^e_W = -1 + 4 \sin^2 heta_W pprox 0$
u	$+\frac{2}{3}$	$-2C_{1u} = +1 - \frac{8}{3}\sin^2\theta_W \approx +\frac{1}{3}$
d	$-\frac{1}{3}$	$-2C_{1d} = -1 + \frac{4}{3} \sin^2 \theta_W \approx -\frac{2}{3}$
p(uud)	+1	$Q^p_W = 1 - 4 \sin^2 heta_W pprox 0.07$
n(udd)	0	$Q_W^n=-1$

Q^p_W has a definite prediction in the electroweak Standard Model

Sensitivity to New Physics

The vertical axis is Λ/g

Depending on how you construct the PV "new physics" Lagrangian and select a model dependent "g" the mass reach can become much greater.

LO

Leptoquarks

Qweak Experiment Objectives

10 years of development + 2 years on floor (~1 year beam on target) International Collaboration: 23 institutions, 95 Collaborators (23 grad students,10 postdocs)

 Measured parity-violating e-p analyzing power with high precision at Q² ~ 0.025 (GeV/c)². Determine: Q^p_W, Qⁿ_W, Λ/g_{e-p}, C_{1u}, C_{1d}, sin² θ_W

Ancillary / Calibration Measurements: (Will be published as standalone results.)

- Parity-violating and conserving e-C and e-Al analyzing powers.
- Parity-allowed analyzing power with transverse-polarized beam on H and Al.
- Parity-violating and allowed analyzing powers on H in the $N \rightarrow \Delta(1232)$ region.
- PV asymmetries in pion photo-production.
- Transverse asymmetries in pion photo-production.
- Non-resonant inelastic measurement at 3.3 GeV to help constrain γ -Z Box uncertainty.
- Transverse asymmetry in the PV inelastic scattering region (3.3 GeV).

Published 10/2/2013: PRL 111,141803 (2013) Current Experiment Status

- The Qweak experiment finished successfully
 - Precise measurement of \vec{e} -p analyzing power at low Q²
 - 2 years in situ, ~1 year of beam
 - Commissioning run (a.k.a. Run 0 results) published in: PRL 111,141803 (2013)
 - ~ 4% of total data collected
 - 1st "clean" determination of Q^p_W, C_{1u}, C_{1d}, & Qⁿ_W
- Remainder of experiment still being analyzed
 - Expect final results by late 2014

PVES and Hadronic Structure Effects

assume charge symmetry:

$$4G_{E,M}^{pZ} = (1 - 4\sin^2\theta_W)G_{E,M}^{p\gamma} - G_{E,M}^{n\gamma} - G_{E,M}^s$$
Proton weak charge
(tree level)
Strangeness
(Now measured to be
relatively small!)

Note: Parity-violating asymmetry is sensitive to both weak charges *and* to hadron structure.

Q^p_{Weak} : Extract from Parity-Violating Electron Scattering

As $Q^2 \rightarrow 0$

measures Q^p – proton's electric charge

measures Q^p_{Weak} – proton's weak charge

$$A = \frac{2M_{NC}}{M_{EM}} = \left[\frac{-G_F}{4\pi\alpha\sqrt{2}}\right] \left[Q^2 Q_{weak}^p + F^p(Q^2,\theta)\right]$$

$$\xrightarrow{Q^2 \to 0}_{\theta \to 0} \left[\frac{-G_F}{4\pi\alpha\sqrt{2}}\right] \left[Q^2 Q_{weak}^p + Q^4 B(Q^2)\right]$$

$$Q_{weak}^p = 1 - 4\sin^2\theta_W \sim 0.072 \quad \text{(at tree level)} \quad \text{(at tree level)} \quad \text{(at tree level)}$$

The **lower** the momentum transfer, Q, the more the proton looks like a point and the less important are the form factor corrections.

PV Measurements Relative "difficulty factor"

Technical challenges:

- Counting Statistics
 - High rate, beam polarization, beam current, high-power target, large acceptance detectors
- Low noise
 - Electronics, target density fluctuations, detector resolution
- Systematics
 - Helicity-correlated beam asymmetry, backgrounds, precision beam polarimetry, precise Q² determination

Q-weak goal: ~5 ppb on A_{ep}

Qweak Apparatus

Quartz Cerenkov Bars

The Apparatus (before shielding)

Quartz Cerenkov Detectors

Kinematics Determination

$$A_{PV} = -\frac{Q^2 G_F}{4\sqrt{2}\pi\alpha} [Q_W^p + F(\theta, Q^2)]$$

- Drift chambers before and after magnetic field
- Low current, reconstruct individual events
- Systematic studies

2 m

Polarized Injector

- Pockels cell for fast helicity reversal
- Helicity reversal frequency: 960 Hz (to "freeze" bubble motion in the target)
- Helicity pattern: pseudo-random "quartets" (+--+ or -++-, asymmetry calculated for each quartet)
- Insertable Half-Wave Plate: for "slow reversal" of helicity to check systematic effects and cancel certain false asymmetries. Less frequently, by Wien filter.

"Phase Locked" Detection Methodology

Detector signal integrated For each helicity window

Asymmetry formed by quartet (4 ms)

Statistical power is

 $\Delta A = s_{width} / N_{quartets}$

Measured asymmetry has unknown additive "blinding factor" for analysis $(\pm 60 \text{ ppb blinding box})$

delayed helicity reporting to prevent direct electrial pick up of reversal signal by ADC's 1ms(@1KHz sampling) **Detector Signal Helicity States** MD Asymmetry :: Blinded (60 ppb box) :: Not Regressed Entries 93341 -0.05576 Mean 4000 RMS 236.1 3500 3000 2500 236 ppm per quartet 2000 1500 1000 500 O -1000-500 500 1000 nmetry (ppm) LH₂ Asymmetry 16

Helicity of electron beam flipped at 960 Hz,

Constructing the Asymmetry

- Asymmetry measured in blocks of runs "a.k.a. Slugs" of data IHWP in/out
- Blinded Asymmetry: example Slug plot for "run 0" showing reversal

- A_{L} = potential non-linearity in PMT A_{reg} = helicity-correlated false asymmetry
- A = background asymmetry (backgrounds: AI windows, beamline, neutral backgrounds, $N \rightarrow \Delta$)

Helicity-Correlated Corrections

(Example: Commissioning Result)

 $A_{corr} = \sum_{i=1}^{5} \left(\frac{\partial A}{\partial x_i} \right) \Delta x_i$ (x, x', y, y', E)

Regression Correction: $A_{reg} = -31 \pm 11 \text{ ppb}$

Detector sensitivity to helicity-correlated beam parameters and broken symmetry can cause false asymmetry.

Sensitivity "slopes" determined from linear regression with natural beam jitter.

Order of magnitude suppression in sum

Example: Detector Sensitivity to X Beam Jitter

Residual Transverse Asymmetry

- Dedicated measurement with fully transverse beam
 - Constrains false asymmetry for A_{ep} result

- Transverse result: nucleon structure and 2γ exchange
 - Comparison to theory models

19

Aluminum Window Background

Large A (asymmetry) & f (fraction) make this our largest correction. Determined from explicit measurements using Al dummy targets & empty H₂ cell.

$$C_{\rm Al} = -64 \pm 10 \text{ ppb}$$

 $A_{\rm Al} = 1.76 \pm 0.26 \text{ ppm}$

$$f_{
m Al} = 3.23 \pm 0.24~\%$$

- Dilution from windows measured with empty target (actual target cell windows).
- Corrected for effect of H₂ using simulation and data driven models of elastic and quasi-elastic scattering.

- Asymmetry measured from thick AI targets
- Measured asymmetry agrees with expectations from scaling.

$$A_{PV}\binom{N}{Z}X = -\frac{Q^2 G_F}{4\pi\alpha\sqrt{2}} \left[Q_W^p + \left(\frac{N}{Z}\right)Q_W^n\right]$$

Precision Polarimetry

Qweak requires $\Delta P/P \le 1\%$ (Expect final uncertainty ~0.8%)

Strategy: use 2 independent polarimeters

- Use existing <1% Hall C Møller polarimeter:
 - Low beam currents, invasive
 - Known analyzing power provided by polarized "saturated" Fe foil in a 3.5 T field.
- Compton (photon & electron) polarimeter (1%/h)
 - Continuous, non-invasive
 - Known analyzing power provided by circularly-polarized laser

Compton Polarimeter

Fabry-Perot

laser Tab

- Determining Q^p_{Weak} + EM (PC) neutral-weak (PV) • $A_{ep} = \left[\frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}\right] \sim \frac{|M_{weak}^{PV}|}{|M_{rud}|}$ where σ^{\pm} is $\vec{e}p$ x-sec for e's of helicity ± 1 • $A_{ep} = \left[\frac{G_F Q^2}{4\pi\alpha\sqrt{2}}\right] \frac{\epsilon G_E^{\gamma} G_E^{Z} + \tau G_M^{\gamma} G_M^{Z} - (1 - 4\sin^2\theta_w)\epsilon' G_M^{\gamma} G_A^{Z}}{\epsilon (G_T^{\gamma})^2 + \tau (G_M^{\gamma})^2}$ - where $\varepsilon = [1 + 2(1 + \tau) \tan^2(\theta/2)]^{-1}$, $\varepsilon' = \sqrt{\tau(1 + \tau)(1 - \varepsilon^2)}$, $\tau = Q^2/4M^2$, G_{EM}^{γ} are EM FFs, G_{EM}^Z & G_A^Z are strange & axial FFs, and $\sin^2 \theta_w = 1 - (M_W / M_Z)^2$ = weak mixing angle Recast $A_{ep} = \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \left[Q_w^p + Q^2 B(Q^2, \theta) \right]$
 - So in a plot of $A_{ep} / \left[\frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \right] vs Q^2$:

This Experiment

- Q_w^p is the <u>intercept</u> (anchored by precise data near Q²=0) \leftarrow
- $B(Q^2, \theta)$ is the <u>slope</u> (determined from higher Q² PVES data)

Global PVES Fit Details

(Example: Commisioning Result)

- Effectively 5 free parameters:
 - C_{1u} , C_{1d} , ρ_s , μ_s , & isovector axial FF G_A^Z
 - $G_E^S = \rho_s Q^2 G_D$, $G_M^S = \mu_s G_D$, & G_A^Z use G_D where
 - $G_D = (1 + Q^2/\lambda^2)^{-2}$ with $\lambda = 1$ GeV/c
- Employs all PVES data up to Q² = 0.63 (GeV/c)²
 - On p, d, & ⁴He targets, forward and back-angle data
 - SAMPLE, HAPPEX, G⁰, PVA4
- Uses constraints on isoscalar axial FF G_A^2
 - Zhu, et al., PRD 62, 033008 (2000)
- All ep data corrected for E & Q² dependence of $\Box_{\gamma Z} RC$
 - Hall et al., arXiv:1304.7877 (2013) & Gorchtein et al., PRC84, 015502 (2011)
- Effects of varying Q^2 , θ , $\& \lambda$ studied, found to be small

Mechanics of our yZ Correction

- Get E-dependent correction:
 - From fit to Hall et al. (arxiv.org/pdf/1304.7877v1.pdf) Fig. 14
- Get t dependent correction:
 - Using $\Box_{\gamma Z}(E,t) / \Box_{\gamma Z}(E,0) = e^{-B|t|/2}/F^{\gamma p}_{1}(t)$, with B=7±1 GeV⁻² from Gorchtein et al., PRC84, 015502 (2011), Eq. 60.
- Example (our point at 1.165 GeV, 0.025 (GeV/c)²):
 - E-dep part = 0.00567 ± 0.0003
 - Q²-dep factor = 0.9776 ± 0.0120
 - Combined correction = $(E-dep part)*(Q^2-dep factor) = 0.00555 \pm 0.0003$
 - Subtract this (*A₀) from the asymmetry (-278.8 ppb \rightarrow -266.3 ppb)
 - reduced asymmetry 0.1240 → 0.1185
 - add error in quadrature to the systematic error
- Apply this to all proton data A_{ep}(E,t) used in our fit
 - not d, or He (yet)

Electroweak Corrections

Electroweak Corrections

- The central values of all 3 calculations are essentially in agreement!
- However, the errors are significantly different or so it would seem at first glance.

– BUT –

- Whereas errors from Rislow and Hall (~0.5% uncertainty on Q^p_W) are for normal (gaussian) distributions,
- Gorchtein shows the extreme limits between two distinct models (therefore a uniform distribution) which needs to be converted into an effective "sigma" before folding into our uncertainty (→ becomes a ~1.4% uncertainty on Q^p_W)

Published 10/2/2013: PRL 111,141803 (2013)

First Results: Asymmetry

 Run 0 Results Kinematics: $\langle Q^2 \rangle = 0.0250 \pm 0.0006 \text{ GeV}^2$ $\langle E_{beam} \rangle = 1.155 \pm 0.003 \text{ GeV}$ (1/25th of total data set) $-279 \pm 35 \text{ (stat)} \pm 31 \text{ (syst) ppb}$ 0.05 0.1 0.15 0.2 0.25 0 0.3 0 • G0 HAPPEX -1 ì * SAMPLE -2 ▲ PVA4 Qweak Asymmetry [ppm] Q-weak (4% of data, 3 days @ 100%) -6 Ţ -7 -8 Q^{2} [(GeV/c)²]

Global Fit of Q²<0.63 (GeV/c)² PVES Data

 \sim

 \sim

Published 10/2/2013: PRL 111,141803 (2013)

Combined Analysis Extract: C_{1u}, C_{1d}, Qⁿ_W

Qweak + Higher Q² PVES Extract: Q^p_w, sin² θ_w

Remainder of experiment still being analyzed, final result before end of 2014.

Teaser: Simulated Fit !!

(Assuming anticipated final uncertainties and SM result)

Effect of Applying γ -Z Correction to Higher Q² PVES Data – Commissioning Result

With γ -Z correction to <u>all ep data</u> $Q^{p}_{W} = 0.064 \pm 0.012$

With γ -Z correction to <u>only</u> our Q^{p}_{W} point $Q^{p}_{W} = 0.070 \pm 0.012$

Effect of Applying γ -Z Correction to Higher Q² PVES Data – Simulated Full Data Set For discussion lets assume the case: $\Delta A_{ep}/A_{ep} = 3.4\% \rightarrow \Delta Q^{p}_{W}/Q^{p}_{W} = 5\%$ Measurement

 γ -Z correction applied to our Pt & higher Q² ep data Q^p_W (Global) = 0.0743 ± 0.0038 Q^p_W (PVES) = 0.0744 ± 0.0038

With γ -Z correction applied to only our Pt Q_W^p (Global) = 0.0745 \pm 0.0038 Q_W^p (PVES) = 0.0745 \pm 0.0038

Planned & Possible Upgrades to Q^p_W Mathematica Code Extraction Procedure Prior to Un-blinding of Final Result

- Update PVES data set if any new Mainz results appear.
- Repeat studies of Chi² stability as function of Q² cut, theta cut, λ etc.
 (for final result may be better/sufficient to truncate at Q² of ~0.3 GeV for example.
- Addition theoretical corrections if required for He / deuterium data for CSV or possibly use slightly larger errors. (depend on theorist interest level in the problem)
- Apply γ -Z correction to APV result also need γ -Z correction for He / deuterium.
- Improve how ¹³³Cs APV result (and maybe other APV results) are used by code.
- Quantitative study of using different (from Kelly) or better EFF's.
- Include propagation of errors and correlations associated with EFF's into results. (very quick test run seems to indicate contribution a relatively small additional uncertainty). But, this needs more work!

•

Summary

• Measured during commissioning run:

 $A_{ep} = -279 \pm 35$ (statistics) ± 31 (systematics) ppb

- Smallest & most precise ep asymmetry ever measured
- First determination of Q^p_W :
 - $Q^{p}_{W} = 0.063 \pm 0.012$ (from only 4% of all data collected)
 - SM value = 0.0710(7)
 - New PV physics reach $\Lambda/g > 1$ TeV (very consevative)
- First determination of $Q_W^n = -2(C_{1u} + 2C_{1d})$:
 - By combining our result with APV
 - $Q_W^n = -0.975 \pm 0.010$ (SM value = -0.9890(7))
- Final results with much smaller uncertainties in 2014
 - Expected PV new physics reach of:
 - $\Lambda/g \sim 2.6$ TeV (simplest and most conservative model).
 - SM test, sensitive to Z's and LQs

The Qweak Collaboration

95 collaborators23 grad students10 post docs23 institutions

Institutions:

- ¹ University of Zagreb
- ² College of William and Mary
- ³ A. I. Alikhanyan National Science Laboratory
- ⁴ Massachusetts Institute of Technology
- ⁵ Thomas Jefferson National Accelerator Facility
- ⁶ Ohio University
- ⁷ Christopher Newport University
- ⁸ University of Manitoba,
- ⁹ University of Virginia
- ¹⁰ TRIUMF
- ¹¹ Hampton University
- ¹² Mississippi State University
- ¹³ Virginia Polytechnic Institute & State Univ
- ¹⁴ Southern University at New Orleans
- ¹⁵ Idaho State University
- ¹⁶ Louisiana Tech University
- ¹⁷ University of Connecticut
- ¹⁸ University of Northern British Columbia
- ¹⁹ University of Winnipeg
- ²⁰ George Washington University
- ²¹ University of New Hampshire
- ²² Hendrix College, Conway
- ²³ University of Adelaide

D. Androic,¹ D.S. Armstrong,² A. Asaturyan,³ T. Averett,² J. Balewski,⁴ J. Beaufait,⁵ R.S. Beminiwattha,⁶ J. Benesch,⁵
F. Benmokhtar,⁷ J. Birchall,⁸ R.D. Carlini,^{5, 2} G.D. Cates,⁹ J.C. Cornejo,² S. Covrig,⁵ M.M. Dalton,⁹ C.A. Davis,¹⁰ W. Deconinck,²
J. Diefenbach,¹¹ J.F. Dowd,² J.A. Dunne,¹² D. Dutta,¹² W.S. Duvall,¹³ M. Elaasar,¹⁴ W.R. Falk,⁸ J.M. Finn,^{2,} T. Forest,^{15, 16} D. Gaskell,⁵
M.T.W. Gericke,⁸ J. Grames,⁵ V.M. Gray,² K. Grimm,^{16, 2} F. Guo,⁴ J.R. Hoskins,² K. Johnston,¹⁶ D. Jones,⁹ M. Jones,⁵ R. Jones,¹⁷
M. Kargiantoulakis,⁹ P.M. King,⁶ E. Korkmaz,¹⁸ S. Kowalski,⁴ J. Leacock,¹³ J. Leckey,², A.R. Lee,¹³ J.H. Lee,^{6, 2,} L. Lee,¹⁰
S. MacEwan,⁸ D. Mack,⁵ J.A. Magee,² R. Mahurin,⁸ J. Mammei,^{13,} J.W. Martin,¹⁹ M.J. McHugh,²⁰ D. Meekins,⁵ J. Mei,⁵ R. Michaels,⁵
A. Micherdzinska,²⁰ A. Mkrtchyan,³ H. Mkrtchyan,³ N. Morgan,¹³ K.E. Myers,²⁰ A. Narayan,¹² L.Z. Ndukum,¹² V. Nelyubin,⁹
Nuruzzaman,^{11, 12} W.T.H van Oers,^{10, 8} A.K. Opper,²⁰ S.A. Page,⁸ J. Pan,⁸ K.D. Paschke,⁹ S.K. Phillips,²¹ M.L. Pitt,¹³ M. Poelker,⁵
J.F. Rajotte,⁴ W.D. Ramsay,^{10, 8} J. Roche,⁶ B. Sawatzky,⁵ T. Seva,¹ M.H. Shabestari,¹² R. Silwal,⁹ N. Simicevic,¹⁶ G.R. Smith,⁵
P. Solvignon,⁵ D.T. Spayde,²² A. Subedi,¹² R. Subedi,²⁰ R. Suleiman,⁵ V. Tadevosyan,³ W.A. Tobias,⁹ V. Tvaskis,^{19, 8}
B. Waidyawansa,⁶ P. Wang,⁸ S.P. Wells,¹⁶S.A. Wood,⁵ S. Yang,² R.D. Young,²³ and S. Zhamkochyan ³

Notation	$\mathcal{U}(a,b)$ or $\mathrm{unif}(a,b)$
Parameters	$-\infty < a < b < \infty$
Support	$x \in [a, b]$
pdf	$\int \frac{1}{b-a}$ for $x \in [a, b]$
	0 otherwise
CDF	$\int 0 \text{for } x < a$
	$\begin{cases} \frac{x-a}{b-a} & \text{for } x \in [a,b) \end{cases}$
	$1 \text{for } x \ge b$
Mean	$\frac{1}{2}(a+b)$
Median	$\frac{1}{2}(a+b)$
Mode	any value in $[a, b]$
Variance	$\frac{1}{12}(b-a)^2$
Skewness	0
Ex. kurtosis	$-\frac{6}{5}$
Entropy	$\ln(b-a)$
MGF	$e^{tb} - e^{ta}$
	$\overline{t(b-a)}$
CF	$e^{itb} - e^{ita}$
	$\overline{it(b-a)}$

