

YZ box(ing) workshop, Dec. 16-I7, 20I3, JLab

Our relevant papers

- "Contributions from γZ box diagrams to parity violating elastic ep scattering," Rislow \& Carlson, Phys.Rev. D83 (20II) II3007
- "Resonance Region Structure Functions and Parity Violating Deep Inelastic Scattering," Carlson \& Rislow, Phys.Rev. D85 (2012) 073002
- "Modification of electromagnetic structure functions for the YZ-box diagram," Rislow \& Carlson, Phys.Rev. D88 (2013) 013018

Weak Charge of the Proton

- QwP extracted from parity-violating, ep scattering:

$$
A_{P V}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}}
$$

- Lowest order diagrams and result:

- Lowest order definition of QwP :

$$
Q_{W}^{p, L O}=-4 g_{A}^{e} g_{V}^{p}=1-4 \sin ^{2} \theta_{W}
$$

One-loop result

Running Weinberg Angle (Czarnecki and Marciano)

$$
\sin ^{2} \theta_{W} \rightarrow \sin ^{2} \theta_{W}\left(Q^{2}\right)=\kappa\left(Q^{2}\right) \sin ^{2} \theta_{W}\left(M_{Z}^{2}\right)
$$

Only "Pinched" Part Degrassi and Sirlin, PRD 46, 3104 (1992)

Running Weinberg Angle

Czarnecki and Marciano Running Int. J. Mod. Phys. A15, 2365 (2000)

Erler and Langacker
Particle Data Group (2012)

Weak Charge Extrapolation

$$
\left.A_{P V}\right|_{1 \mathrm{Loop}}=\frac{G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha}\left(Q_{W}^{p}+B_{4} Q^{2}+\ldots\right)
$$

rZ Box

- Definition:

- ForWW or ZZ boxes, two heavy propagators enough to ensure contributing momenta are big. Calculate w/pQCD. Here, one heavy propagator not enough. Low momenta in loop, perturbative calculation unreliable.:

$$
<0\left|A^{\mu}(x) A^{\nu}(y)\right| 0>\propto \frac{1}{q^{2}} \quad<0\left|Z^{\mu}(x) Z^{\nu}(y)\right| 0>\propto \frac{1}{q^{2}-M_{Z}^{2}}
$$

rZ Box

- Gorchtein and Horowitz (PRL I02, 091806 (2009)) had insight to calculate the amplitude dispersively

- Optical theorem,

$$
\operatorname{Im} \mathcal{M}_{a a}=\frac{1}{2} \sum_{b}(2 \pi)^{4} \delta^{(4)}\left(p_{a}-p_{b}\right) \mathcal{M}_{a b} \mathcal{M}_{b a}
$$

γZ Box equations

- Imaginary part

$$
\begin{aligned}
\operatorname{Im} \square_{\gamma Z}\left(E_{L a b}\right) & =\frac{\alpha}{\left(s-M^{2}\right)^{2}} \int_{W_{\pi}^{2}}^{s} d W^{2} \int_{0}^{Q_{\max }^{2}} d Q^{2}\left\{\frac{F_{1}^{\gamma Z}\left(x, Q^{2}\right)+A F_{2}^{\gamma Z}\left(x, Q^{2}\right)}{\frac{Q^{2}}{M_{Z}^{2}}+1}\right. \\
& \left.+\frac{g_{V}^{e}}{g_{A}^{e}} \frac{B F_{3}^{\gamma Z}\left(x, Q^{2}\right)}{\frac{Q^{2}}{M_{Z}^{2}}+1}\right\} \\
& =\operatorname{Im} \square_{\gamma Z}^{V}\left(E_{L a b}\right)+\operatorname{Im} \square_{\gamma Z}^{A}\left(E_{L a b}\right) .
\end{aligned}
$$

- Dispersion relations,

$$
\begin{aligned}
& \operatorname{Re} \square_{\gamma Z}^{V}\left(E_{L a b}\right)=\frac{2 E_{L a b}}{\pi} \int_{\nu_{\pi}}^{\infty} \frac{d E_{L a b}^{\prime}}{E_{L a b}^{\prime 2}-E_{L a b}^{2}} \operatorname{Im} \square_{\gamma Z}^{V}\left(E_{L a b}^{\prime}\right) \\
& \operatorname{Re} \square_{\gamma Z}^{A}\left(E_{L a b}\right)=\frac{2}{\pi} \int_{\nu_{\pi}}^{\infty} \frac{E_{L a b}^{\prime} d E_{L a b}^{\prime}}{E_{L a b}^{\prime 2}-E_{L a b}^{2}} \operatorname{Im} \square_{\gamma Z}^{A}\left(E_{L a b}^{\prime}\right)
\end{aligned}
$$

γZ Box equations

- Imaginary part

$$
\begin{aligned}
\operatorname{Im} \square_{\gamma Z}\left(E_{L a b}\right) & =\frac{\alpha}{\left(s-M^{2}\right)^{2}} \int_{W_{\pi}^{2}}^{s} d W^{2} \int_{0}^{Q_{\text {max }}^{2}} d Q^{2}\left\{\frac{F_{1}^{\gamma Z}\left(x, Q^{2}\right)+A F_{2}^{\gamma Z}\left(x, Q^{2}\right)}{\uparrow \frac{Q^{2}}{M_{Z}^{2}}+\eta^{Z}}\right. \\
& \left.+\frac{g_{V}^{e}}{g_{A}^{e}} \frac{B F_{3}^{\gamma Z}\left(x, Q^{2}\right)}{\frac{Q^{2}}{M_{Z}^{2}}+1}\right\} \\
& =\operatorname{Im} \square_{\gamma Z}^{V}\left(E_{L a b}\right)+\operatorname{Im} \square_{\gamma Z}^{A}\left(E_{L a b}\right) . \quad \begin{array}{l}
\text { Structure Functions } \\
\text { must be modeled. }
\end{array}
\end{aligned}
$$

- Dispersion relations,

Vector Boxes

Vector box plots

Hall et al. PRD 88, 013011 (2013)

Carlson and Rislow
PRD 83, 113007 (2011)

Gorchtein et al. PRC 84, 015502 (2011)

$$
\operatorname{Re} \square_{\gamma Z}^{V}(E=1.165 \mathrm{GeV})
$$

$$
(5.6 \pm 0.36) \times 10^{-3} \quad(5.7 \pm 0.9) \times 10^{-3} \quad(5.4 \pm 2.0) \times 10^{-3}
$$

- Differences come from the treatment of the structure functions
- We divided up the energy regions and modified the structure functions.

Evaluation in scaling region

- Calculated directly using PDFs

$$
F_{2}^{\gamma Z}\left(x, Q^{2}\right)=2 x F_{1}^{\gamma Z}\left(x, Q^{2}\right)=x \sum_{q, \bar{q}} 2 e_{q} g_{V}^{q}\left(q\left(x, Q^{2}\right)+\bar{q}\left(x, Q^{2}\right)\right)
$$

- We use CTEQ
- Alternative
- Hall et al. use ABMII (PRD 86, 054009 (2012))

Evaluation in resonance region

- All later calculations modify Christy-Bosted electromagnetic fits. (May also use MAID.)
- CB fit have 7 resonances and a smooth background

- Resonances modified by corrective ratio:

$$
F_{1}^{\gamma Z}=\sum_{r e s} C_{r e s} \times\left. F_{1}^{\gamma \gamma}\right|_{r e s} \quad ; \quad C_{r e s}=\left.\frac{F_{1}^{\gamma Z}}{F_{1}^{\gamma \gamma}}\right|_{r e s}
$$

Vector $C_{\text {res }}$

- Definition of structure functions:

$$
\begin{aligned}
\left.F_{1}^{\gamma \gamma(\gamma Z)}\right|_{N \rightarrow r e s} & =\varepsilon_{+}^{\mu *} \varepsilon_{+}^{v} W_{\mu \nu}^{\gamma \gamma(\gamma Z)} \\
& =(2) \sum_{\lambda} \int \mathrm{d}^{4} \mathrm{z} e^{i q z}\langle N, s| \varepsilon_{+}^{*} \cdot J^{\gamma(Z, V) \dagger}(z)|r e s, \lambda\rangle \\
& \times\langle\operatorname{res}, \lambda| \varepsilon_{+} \cdot J^{\gamma}(0)|N, s\rangle
\end{aligned}
$$

- $C_{\text {res }}$ in terms of helicity amplitudes:

$$
C_{\text {res }}=\frac{2 \sum_{\lambda} A_{\lambda}^{\gamma} A_{\lambda}^{Z}}{\sum_{\lambda}\left(A_{\lambda}^{\gamma}\right)^{2}}
$$

Vector $C_{\text {res }}$

- We constructed helicity amplitudes using $\operatorname{SU}(6)$ wave functions:

$$
\begin{aligned}
&\langle\text { res, } \lambda| \epsilon_{+} \cdot J^{\gamma(Z, V)}|N, s\rangle=3 \times e_{q}^{(3)}\left(g_{V}^{q(3)}\right) \\
& \times\left\langle\psi_{\text {res }} \phi_{r e s} \chi_{\lambda}\right| \bar{u}\left(k^{\prime}, \lambda^{\prime}\right) \epsilon_{+} \cdot \gamma u\left(k, s^{\prime}\right)\left|\psi_{N} \phi_{N} \chi_{s}\right\rangle
\end{aligned}
$$

- Phenomenological constraints used to fit A and B :

$$
\frac{\left|A_{1 / 2}^{\gamma}\right|^{2}-\left|A_{3 / 2}^{\gamma}\right|^{2}}{\left|A_{1 / 2}^{\gamma}\right|^{2}+\left|A_{3 / 2}^{\gamma}\right|^{2}}=\left\{\begin{array}{l}
-1 \text { for } \mathrm{Q}^{2}=0 \\
+1 \text { for high } \mathrm{Q}^{2}
\end{array}\right.
$$

$C_{\text {res }}$ for D I $3(I 520)$

- $\operatorname{SU}(6)$ wave function for proton:
- Helicity amplitudes

$$
\begin{array}{rlrl}
A_{\lambda=1 / 2}^{\gamma(Z)}= & 3 & \times e_{q}^{(3)}\left(g_{V}^{q(3)}\right)\left\langle\psi_{\mathrm{res}} \phi_{\mathrm{res}} \chi_{+1 / 2}\right. & A_{\lambda=3 / 2}^{\gamma(Z)}= \\
& \left.\times \mid\left[A L_{+}+B S_{+}\right] \psi_{N}^{(3)} \psi_{N}^{\left(q_{V}^{(3)} \chi_{s}\right\rangle}\right) & \left.\times\left|\left[A L_{+}+B S_{+}\right]\right| \psi_{N} \phi_{N} \phi_{\mathrm{res}} \chi_{+3 / 2}\right\rangle \\
= & \frac{1}{\sqrt{6}}\left(-A_{10}\left[e_{u}\left(g_{V}^{u}\right)-e_{d}\left(g_{V}^{d}\right)\right]\right. & = & -\frac{1}{\sqrt{2}} A_{10}\left[e_{u}\left(g_{V}^{u}\right)-e_{d}\left(g_{V}^{d}\right)\right] . \\
& \left.\left.-\sqrt{2} B_{10}\left[\frac{5}{3} e_{u}\left(g_{V}^{u}\right)+\frac{1}{3} e_{d} g_{V}^{d}\right)\right]\right) & &
\end{array}
$$

$C_{\text {res }}$ for $D_{13}(I 520)$

- A and B relations for $D_{13}(I 520)$:

$$
\begin{gathered}
A_{10}\left(Q^{2}=0\right)=-\sqrt{2} B_{10}\left(Q^{2}=0\right) \\
\frac{A_{10}\left(Q^{2}\right)}{B_{10}\left(Q^{2}\right)}=-\sqrt{2} f_{1}\left(Q^{2}\right)=-\sqrt{2} \frac{1}{1+Q^{2} / \Lambda_{1}^{2}}
\end{gathered}
$$

- Λ found by comparing amplitudes to MAID:

Our vector $C_{\text {res }}$

resonance	proton electroproduction amplitudes	$C_{r e s}^{p}$	$C_{r e s}^{d}$
$P_{33}(1232)$	$A_{1 / 2}^{\gamma} \propto\left(e_{u}-e_{d}\right)$	$1+Q_{W}^{p, L O}$	$1+Q_{W}^{p, L O}$
$S_{11}(1535)$	$A_{1 / 2}^{\gamma}=\frac{1}{\sqrt{6}}\left(\sqrt{2} A_{10}\left(e_{u}-e_{d}\right)-B_{10}\left(\frac{5}{3} e_{u}+\frac{1}{3} e_{d}\right)\right)$	$\frac{1 / 3+2 f_{1}}{1+2 f_{1}}+Q_{W}^{p, L O}$	$2 \frac{\left(1+2 f_{1}\right)\left(1 / 3+2 f_{1}\right)}{\left(1+2 f_{1}\right)^{2}+\left(1 / 3+2 f_{1}\right)^{2}}+Q_{W}^{p, L O}$
$D_{13}(1520)$	$A_{1 / 2}^{\gamma}=\frac{1}{\sqrt{6}}\left(A_{10}\left(e_{u}-e_{d}\right)+\sqrt{2} B_{10}\left(\frac{5}{3} e_{u}+\frac{1}{3} e_{d}\right)\right)$	$\frac{\left(1-f_{1}\right)\left(1 / 3-f_{1}\right)+3 f_{1}^{2}}{\left(1-f_{1}\right)^{2}+3 f_{1}^{2}}+Q_{W}^{p, L O}$	$\frac{2\left(1-f_{1}\right)\left(1 / 3-f_{1}\right)+6 f_{1}^{2}}{\left(1-f_{1}\right)^{2}+\left(1 / 3-f_{1}\right)^{2}+6 f_{1}^{2}}+Q_{W}^{p, L O}$
	$A_{3 / 2}^{\gamma}=\frac{1}{\sqrt{2}} A_{10}\left(e_{u}-e_{d}\right)$		
$F_{15}(1680)$	$A_{1 / 2}^{\gamma}=\sqrt{\frac{2}{5}} A_{20}\left(2 e_{u}+e_{d}\right)+\sqrt{\frac{3}{5}} B_{20}\left(\frac{4}{3} e_{u}-\frac{1}{3} e_{d}\right)$	$\frac{2 / 3\left(1-f_{2}\right)}{\left(1-f_{2}\right)^{2}+2 f_{2}^{2}}+Q_{W}^{p, L O}$	$4 \frac{1-f_{2}}{3\left(1-f_{2}\right)^{2}+6 f_{2}^{2}+4 / 3}+Q_{W}^{p, L O}$
	$A_{3 / 2}^{\gamma}=\frac{2}{\sqrt{5}} A_{20}\left(2 e_{u}+e_{d}\right)$	$\frac{1 / 3+2 f_{1}}{1+2 f_{1}}+Q_{W}^{p, L O}$	$2 \frac{\left(1+2 f_{1}\right)\left(1 / 3+2 f_{1}\right)}{\left(1+2 f_{1}\right)^{2}+\left(1 / 3+2 f_{1}\right)^{2}}+Q_{W}^{p, L O}$
$S_{11}(1650)$	$A_{1 / 2}^{\gamma}=-\sqrt{\frac{2}{27}} B_{10}\left(e_{u}+2 e_{d}\right)$	$2 / 3+Q_{W}^{p, L O}$	$12 / 13+Q_{W}^{p, L O}$
$P_{11}(1440)$	$A_{1 / 2}^{\gamma}=B_{00}\left(\frac{4}{3} e_{u}-\frac{1}{3} e_{d}\right)$		$1+Q_{W}^{p, L O}$
$F_{37}(1950)$	$A_{1 / 2}^{\gamma} \propto\left(e_{u}-e_{d}\right)$	$\frac{5}{6}+Q_{W}^{p, L O}$	$1+Q_{W}^{p, L O}$
Background			$\frac{9}{10}+Q_{W}^{p, L O}$

R \& C Background Correction

- In limit where all light quarks (u, d, s) are equally likely:

$$
\frac{F_{2}^{\gamma Z}}{F_{2}^{\gamma \gamma}}=\frac{\sum_{q=u, d, s} 2 e_{q} g_{V}^{q} x f(x)}{\sum_{q=u, d, s}\left(e_{q}\right)^{2} x f(x)}=1+Q_{W}^{p, L O}
$$

- In valence quark limit (d and 2 u's):

$$
\frac{F_{2}^{\gamma Z}}{F_{2}^{\gamma \gamma}}=\frac{\sum_{q=d, u, u} 2 e_{q} g_{V}^{q} x f(x)}{\sum_{q=d, u, u}\left(e_{q}\right)^{2} x f(x)}=\frac{2}{3}+Q_{W}^{p, L O}
$$

- We took their average as the correction:

$$
A v g=\frac{5}{6}+Q_{W}^{p, L O}
$$

Alternative resonance analysis

- Isospin rotate neutron amplitudes:

$$
\begin{aligned}
& \left\langle N_{n}^{*}\right| J_{\mu}^{\gamma}|n\rangle=e_{u}\left\langle N_{n}^{*}\right| \bar{u} \gamma_{\mu} u|n\rangle+e_{d}\left\langle N_{n}^{*}\right| \bar{d} \gamma_{\mu} d|n\rangle \\
& \left\langle N_{n}^{*}\right| J_{\mu}^{\gamma}|n\rangle=e_{u}\left\langle N_{p}^{*}\right| \bar{d} \gamma_{\mu} d|p\rangle+e_{d}\left\langle N_{p}^{*}\right| \bar{u} \gamma_{\mu} u|p\rangle .
\end{aligned}
$$

- Rewrite neutral current

$$
\begin{gathered}
\left\langle N_{p}^{*}\right| J_{\mu}^{\gamma(Z, V)}|p\rangle=\frac{2}{3}\left(g_{u}^{V}\right)\left\langle N_{p}^{*}\right| \bar{u} \gamma_{\mu} u|p\rangle-\frac{1}{3}\left(g_{d}^{V}\right)\left\langle N_{p}^{*}\right| \bar{d} \gamma_{\mu} d|p\rangle \\
\left\langle N_{p}^{*}\right| J_{\mu}^{Z, V}|p\rangle=\frac{1}{2}\left(1-4 \sin ^{2} \theta_{W}(0)\right)\left\langle N_{p}^{*}\right| J_{\mu}^{\gamma}|p\rangle-\frac{1}{2}\left\langle N_{n}^{*}\right| J_{\mu}^{\gamma}|n\rangle
\end{gathered}
$$

$$
\begin{aligned}
C_{\text {res }} & =2 \frac{\sum_{\lambda} A_{\lambda}^{\gamma, p} A_{\lambda}^{Z, p}}{\sum_{\lambda}\left(A_{\lambda}^{\gamma, p}\right)^{2}} \\
& =Q_{W}^{p, L O}-\frac{\sum_{\lambda} A_{\lambda}^{\gamma, p} A_{\lambda}^{\gamma, n}}{\sum_{\lambda}\left(A_{\lambda}^{\gamma, p}\right)^{2}}
\end{aligned}
$$

- $C_{\text {res }}$ calculated using PDG photoproduction data
- GHRM used PDG data at $Q^{2}=0$, dropped relative Q^{2} dependence.
- Can also use MAID to obtain neutron amplitudes, at all Q^{2}.

$C_{\text {res }}$ Effect on YZ Box

- Solid: Constituent Quark Model of Carlson and Rislow
- Blue: PDG (used by Gorchtein et al. and Hall et al.)
- Red: MAID (Eur.Phys.J.ST I98, I4I (201I))
- Green: MAID without Roper Resonance

Axial Box Analyses

Axial Box Calculations

Carlson and Rislow PRD 88, 013018 (2013)

$$
\begin{aligned}
& \operatorname{Re} \square_{\gamma Z}^{A}(E=1.165 \mathrm{GeV}) \\
(3.7 \pm 0.4) \times 10^{-3} & (4.0 \pm 0.5) \times 10^{-3}
\end{aligned}
$$

Comments on $\square r z^{\mathrm{A}}$

- The $\square \gamma Z^{\vee} \approx 0.005$ just discussed compares to $\square \gamma Z \approx$ 0.005 I quoted on "old days". Pure coincidence. This was just for $\square \gamma Z^{\mathrm{A}}$.
- $\square r z^{A}$ can be calculated anew. With the DR treatment there are no logs to guess arguments of.

$$
\square_{\gamma Z}^{A}(E)=\frac{2}{\pi} \int_{E^{\prime}>0} \frac{E^{\prime} d E^{\prime}}{E^{\prime 2}-E^{2}} \operatorname{Im} \square_{\gamma Z}^{A}\left(E^{\prime}\right)
$$

- Notes
- Not zero at threshold
- The E' makes high energies important
- Most of result comes from scaling region for $\mathrm{F}_{3}{ }^{r^{Z}}$, where it can be obtained reliably

Current Axial Box Results

Carlson and Rislow PRD 88, 013018 (2013)

$$
\begin{gathered}
{\operatorname{Re} \square_{\gamma Z}^{A}(E=1.165 \mathrm{GeV})}^{(3.7 \pm 0.4) \times 10^{-3}} \quad(4.0 \pm 0.5) \times 10^{-3}
\end{gathered}
$$

Same split of regions

Evaluation of Axial Structure Function

- Scaling region

$$
F_{3}^{\gamma Z}\left(x, Q^{2}\right)=\sum_{q} 2 e_{q} g_{q}^{A}\left(q\left(x, Q^{2}\right)-\bar{q}\left(x, Q^{2}\right)\right)
$$

- High W, low Q^{2},

$$
\begin{gathered}
F_{3}^{\gamma Z}\left(x, Q^{2}\right)=\left.\left(\frac{1+\Lambda^{2} / Q_{0}^{2}}{1+\Lambda^{2} / Q^{2}}\right) F_{3}^{\gamma Z}\left(x, Q_{0}^{2}\right)\right|_{\mathrm{CTEQ}} \\
Q_{0}^{2}=1 \mathrm{GeV}^{2} \\
\Lambda^{2}=0.7 \mathrm{GeV}^{2}
\end{gathered}
$$

- Resonance Region:
- Blunden et al. use Lalakulich et al. (PRD74,014009) for F_{3}
- Fewer resonances than the Christy Bosted fit: fits for $D_{13}(I 520), P_{I I}(1440), P_{33}(I 232)$, and $S_{I I}(I 535)$
- We continue modifying the Christy Bosted fit.

$$
\begin{gathered}
C_{r e s}=\frac{F_{3}^{\gamma Z}}{F_{1}^{\gamma \gamma}} \\
\left.F_{3}^{\gamma Z}\right|_{N \rightarrow r e s}= \\
3\left(2 g_{A}^{q(3)}\right) \frac{2 v}{q_{z}}\left\langle\psi_{N} \phi_{N} \chi_{s}\right|\left[\frac{2 m_{q}}{q_{z}} B S_{+}\right]^{\dagger}\left|\psi_{r e s} \phi_{r e s} \chi_{\lambda}\right\rangle \\
\times 3 e_{q}^{(3)}\left\langle\psi_{r e s} \phi_{\text {res }} \chi_{\lambda}\right|\left[A L_{+}+B S_{+}\right]\left|\psi_{N} \phi_{N} \chi_{s}\right\rangle,
\end{gathered}
$$

Rislow \& Carlson Axial $C_{\text {res }}$

resonance	proton axial current amplitudes	$C_{\text {res }}^{p}$	$C_{\text {res }}^{d}$
$P_{33}(1232)$	$A_{1 / 2}^{Z, A} \propto\left(g_{A}^{u}-g_{A}^{d}\right) \frac{4 m_{q} v}{q_{z}^{2}}$	$2 \frac{4 m_{q} v}{q_{z}^{2}}$	$2 \frac{4 m_{q} v}{q_{z}^{2}}$
$S_{11}(1535)$	$A_{1 / 2}^{Z, A}=-\frac{1}{\sqrt{6}} B_{10}\left(\frac{5}{3} g_{A}^{u}+\frac{1}{3} g_{A}^{d}\right) \frac{4 m_{q} v}{q_{z}^{2}}$	$\frac{1}{3\left(2 f_{1}+1\right)} \frac{16 m_{q} v}{3 q_{z}^{2}}$	$\frac{\left(1+2 f_{1}\right)+\left(1 / 3+2 f_{1}\right)}{\left(1+2 f_{1}\right)^{2}+\left(1 / 3+2 f_{1}\right)^{2}} \frac{16 m_{q} v}{3 q_{z}^{2}}$
$D_{13}(1520)$	$\begin{aligned} & A_{1 / 2}^{Z, A}=\sqrt{\frac{2}{6}} B_{10}\left(\frac{5}{3} g_{A}^{u}+\frac{1}{3} g_{A}^{d}\right) \frac{4 m_{q} v}{q_{z}^{2}} \\ & A_{3 / 2}^{Z, A}=0 \end{aligned}$	$\frac{1-f_{1}}{\left(f_{1}-1\right)^{2}+3 f_{1}^{2}} \frac{16 m_{q} v}{3 q_{z}^{2}}$	$\frac{\left(1-f_{1}\right)-\left(f_{1}-1 / 3\right)}{\left(1-f_{1}\right)^{2}+\left(f_{1}-1 / 3\right)^{2}+6 f_{1}^{1}} \frac{16 m_{q} v}{3 q_{z}^{2}}$
$F_{15}(1680)$	$\begin{aligned} & A_{1 / 2}^{Z, A}=\sqrt{\frac{3}{5}} B_{20}\left(\frac{4}{3} g_{A}^{u}-\frac{1}{3} g_{A}^{d}\right) \frac{4 m_{q} v}{q_{z}^{2}} \\ & A_{3 / 2}^{Z, A}=0 \end{aligned}$	$\frac{\left(1-f_{2}\right)}{\left(1-f_{2}\right)^{2}+2 f_{2}^{2}} \frac{20 m_{q} v}{3 q_{z}^{2}}$	$\frac{\left(1-f_{2}\right)+2 / 3}{\left(1-f_{2}\right)^{2}+2 f_{2}^{2}+4 / 9} \frac{20 m_{q} v}{3 q_{z}^{2}}$
$S_{11}(1650)$	$A_{1 / 2}^{\gamma}=-\sqrt{\frac{2}{27}} B_{10}\left(g_{A}^{u}+2 g_{A}^{d}\right) \frac{4 m_{q} v}{q_{z}^{2}}$	$\frac{1}{3\left(2 f_{1}+1\right)} \frac{16 m_{q} v}{3 q_{z}^{2}}$	$\frac{\left(1+2 f_{1}\right)+\left(1 / 3+2 f_{1}\right)}{\left(1+2 f_{1}\right)^{2}+\left(1 / 3+2 f_{1}\right)^{2}} \frac{16 m_{q} v}{3 q_{z}^{2}}$
$P_{11}(1440)$	$A_{1 / 2}^{Z, A}=B_{00}\left(\frac{4}{3} g_{A}^{u}-\frac{1}{3} g_{A}^{d}\right) \frac{4 m_{q} v}{q_{z}^{2}}$	$\frac{20 m_{q} v}{3 q_{z}^{2}}$	$\frac{100 m_{q} v}{13 q_{z}^{2}}$
$F_{37}(1950)$	$A_{1 / 2}^{Z, A} \propto\left(g_{A}^{u}-g_{A}^{d} \frac{4 m_{q} v}{q_{z}^{2}}\right.$	$2 \frac{4 m_{q} v}{q_{z}^{2}}$	$2 \frac{4 m_{q} v}{q_{z}^{2}}$
Background		$\frac{5}{3}$	$\frac{9}{5}$

R \& C Background Correction

- Smooth background

$$
\begin{gathered}
\left.C_{b k g d}\right|_{x \rightarrow 0}=\frac{\sum_{q=u, d, s} 2 e_{q} g_{q}^{A} f_{q}(x)}{\frac{1}{2} \sum_{q=u, d, s}\left(e_{q}\right)^{2} f_{q}(x)}=0 \\
\left.C_{b k g d}\right|_{\text {valence quarks }}=\frac{\sum_{q=u, u, d} 2 e_{q} g_{q}^{A} f_{q}(x)}{\frac{1}{2} \sum_{q=u, u, d}\left(e_{q}\right)^{2} f_{q}(x)}=\frac{10}{3}
\end{gathered}
$$

- Average $5 / 3$

Axial Box Contributions

Blunden et al.
PRL 107, 081801 (2011)

Carlson and Rislow
PRD 88, 013018 (2013)

(Overall results already given)

Summary

- The world is saved (almost), regarding the $\gamma \mathrm{Z}$ corr. to $\mathrm{Qw}_{\text {weak }}$.
- I.e., $\square \gamma z^{\vee}$ now calculated.
- About (8.I $\pm 1.4) \%$ of $Q_{w}{ }^{p}$ at $E_{\text {elec }}=1.165 \mathrm{GeV}$. Proportional to $E_{\text {elec. }}$.
- $\square z^{A}$ also now calculated w/o guesswork on logs
- About $(6.3 \pm 0.6 \%)$ of $Q_{w}{ }^{p}$ at $E_{\text {elec }}$ threshold. Small dependence on Eelec.
- For goal of I\% or better measurement of $Q_{\text {Weak }}$ (P2 at Mesa), energy is about I/6 of JLab experiment, and corrections and error in $\square \gamma z$ scale with energy.
- Would like to improve $\square \gamma z^{A}$ but believe this is very manageable

Post summary: Apv

- With one-photon exchange,

$$
A_{\mathrm{PV}}^{\mathrm{Born}}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}}=-\frac{G_{F} Q^{2}}{4 \pi \alpha \sqrt{2}} \frac{A_{E}^{\text {Born }}+A_{M}^{\text {Born }}+A_{A}^{\text {Born }}}{\left[\epsilon\left(G_{E p}^{\gamma}\right)^{2}+\tau\left(G_{M p}^{\gamma}\right)^{2}\right]}
$$

where

$$
\begin{aligned}
& A_{E}^{\mathrm{Born}}=-2 g_{A}^{e} \epsilon G_{E p}^{Z} G_{E p}^{\gamma}, \quad A_{M}^{\mathrm{Born}}=-2 g_{A}^{e} \tau G_{M p}^{Z} G_{M p}^{\gamma} \\
& A_{A}^{\mathrm{Born}}=2 g_{V}^{e} \sqrt{\tau(1+\tau)\left(1-\epsilon^{2}\right)} G_{A}^{Z} G_{M p}^{\gamma}
\end{aligned}
$$

May also have 2-photon exchange

(c)

(b)
(d)

- whence,

$$
A_{\mathrm{PV}}=-\frac{G_{F} Q^{2}}{4 \pi \alpha \sqrt{2}} \frac{A_{E}+A_{M}+A_{A}+A_{M}^{\prime}+A_{A}^{\prime}}{\epsilon\left|G_{E p}^{\prime}\right|^{2}+\tau\left|G_{M p}^{\prime}\right|^{2}+2 \sqrt{\tau(1+\tau)\left(1-\epsilon^{2}\right)} G_{M p}^{\gamma} \operatorname{Re}\left(G_{A p}^{\prime}\right)}
$$

where

$$
\begin{aligned}
A_{A}^{\prime} & =2 g_{V}^{e}(1+\tau) G_{A}^{Z} \operatorname{Re}\left(G_{A p}^{\prime}\right) \\
A_{M}^{\prime} & =-2 g_{A}^{e} \sqrt{\tau(1+\tau)\left(1-\epsilon^{2}\right)} G_{M}^{Z} \operatorname{Re}\left(G_{A p}^{\prime}\right)
\end{aligned}
$$

plot

- I.e., there are effective modifications to electromagnetic G_{E} and G_{M}, plus a new e.m. form factor, here called $G_{A}{ }^{\prime}$
- Calculated (estimated) mid-last-decade,

- Reference:Afanasev and me, PRL 94, 2 I230I (2005).

