

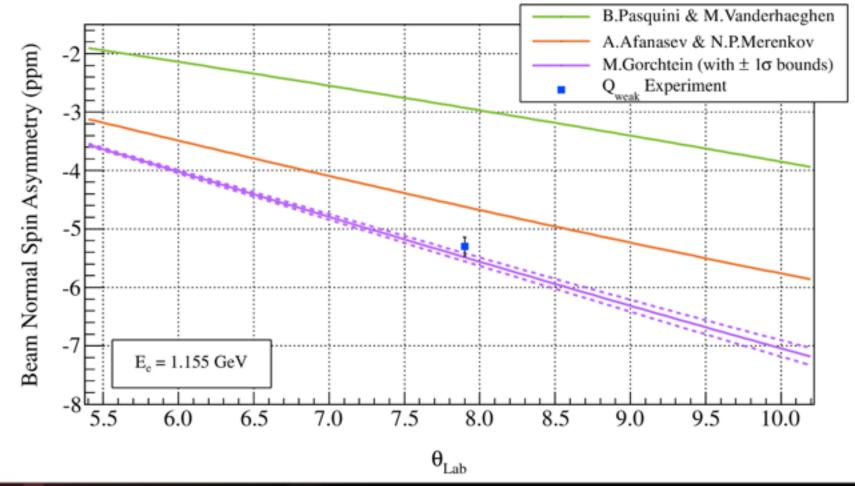
New data in transverse beam asymmetries

Mark Dalton

Aims

Advertise new transverse asymmetry results.

Solicit new or improved calculations.

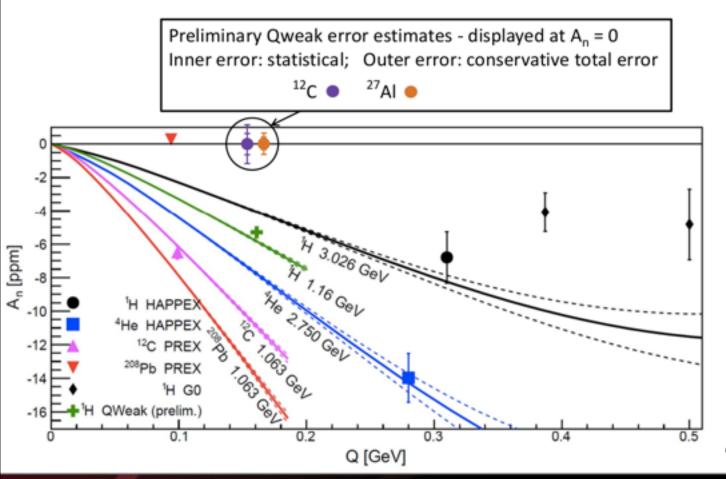


Hydrogen Elastic Transverse

Preliminary data released at CIPANP 12.

Very precise result, ~3% uncertainty.

Publication currently being drafted.



Nuclei Elastic Transverse

Qweak will produce new transverse asymmetries for ¹²C and ²⁷Al nuclei.

Sits in the gap between ¹²C and ²⁰⁸Pb.

 $E = 1165 \text{ MeV}, Q^2 = 0.025 \text{ GeV}^2$

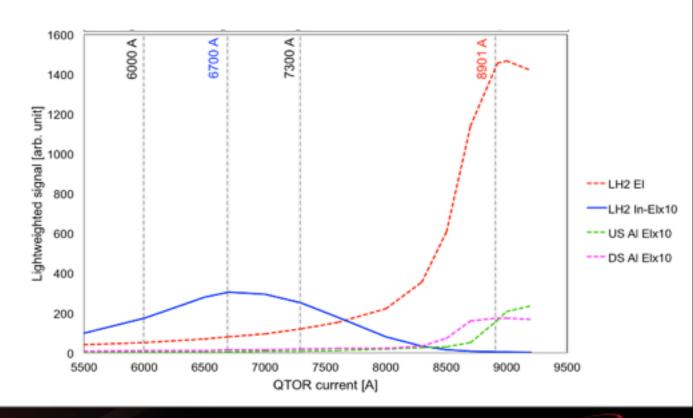
Calculations are under control except ²⁷Al is not spin-parity 0+ (5/2+).

PhysRevLett.109.192501 Gorchtein calculations

Mark Dalton

Inelastic (resonance region)

Inelastic transverse asymmetries from ¹H, ¹²C and ²⁷Al at Delta resonance.

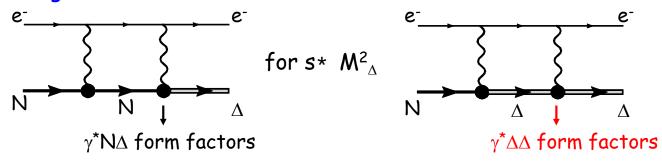

How to interpret this data?

Time reversal symmetry arguments no longer hold.

Interpretation proportional to 2-gamma exchange is no longer valid.

Uncertainty is dominated by the separation of elastic and inelastic signals.

Expect ~20% uncertainty for ¹H.

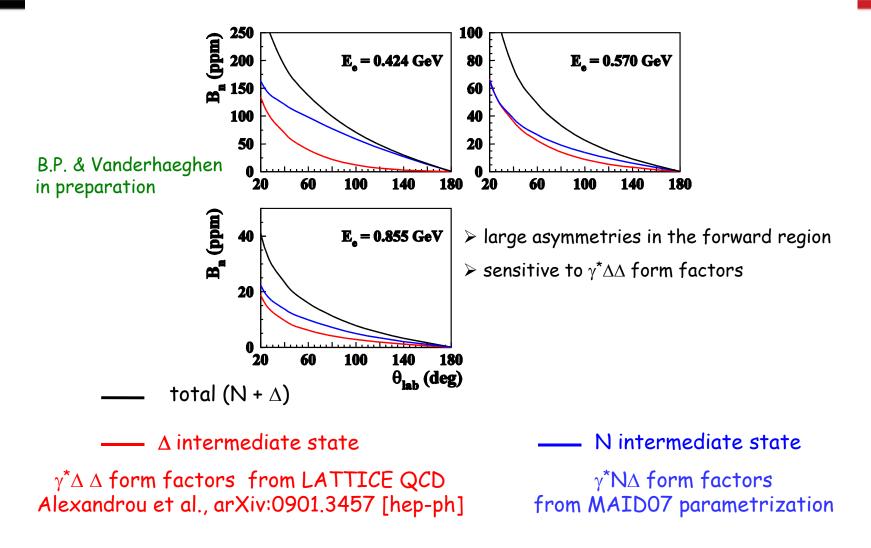

Beam Spin Asymmetry in inelastic eN scattering with Δ in the final state

$$B_n = \frac{\text{Im}(T_{f1}^{*1\gamma} \text{Abs} T_{fi}^{2\gamma})}{|T_{fi}^{1\gamma}|^2}$$

 $> 1\gamma$ exchange

 $N \longrightarrow \Delta$ $\gamma^*N\Delta$ form factors

 \geq 2 γ exchange



unique tool to learn about the $\gamma^*\Delta\Delta$ form factors

Barbara Pasquini, MAMI and Beyond, 30 March-3 April 2009 http://wwwkph.kph.uni-mainz.de/T//MAMIandBeyond/02%20Dienstag/08%20Pasquini.pdf

Beam asymmetry in inelastic electron scattering

Barbara Pasquini, MAMI and Beyond, 30 March-3 April 2009 http://www.kph.kph.uni-mainz.de/T//MAMIandBeyond/02%20Dienstag/08%20Pasquini.pdf

Non-resonant Inelastic

 $E = 3350 \text{ MeV}, Q^2 = 0.08 \text{ GeV}^2, W = 2.23 \text{ GeV}$

Transverse asymmetry in electron scattering to 40%

Transverse asymmetry in pion production to 30% (dominated by photo-production.)

PVDIS

Transverse asymmetry in electron DIS at $Q^2 = 1.09$ to 60%

Summary

New transverse asymmetry results from the Qweak experiment will be available in the next couple of years.

New calculations are needed, to interpret these data, for transverse asymmetry:

Delta production from Hydrogen, Carbon and Aluminum

Inelastic electron scattering at W=2.23 GeV

