## The continuum contribution



The simple model (VDM + Continuum) works very well at  $Q^2 \leq 1.5 \text{ GeV}^2$ Deviates afterwards; Continuum Longitudinal part stays small at low  $Q^2$ 

## Saturation of the continuum contribution

Evaluate the continuum contribution (= uncertainty!) to  $\gamma$ Z-box alone

Q-Weak kinematics - in % of 1.92 × 10<sup>-3</sup> (continuum)

|                         | W < 2GeV | W < 4GeV | W < 5GeV | W < 10GeV | All W |
|-------------------------|----------|----------|----------|-----------|-------|
| $Q^2 < 1 \text{ GeV}^2$ | 27.6%    | 42.7%    | 44.3%    | 46.4%     | 46.6% |
| $Q^2 < 2 \text{ GeV}^2$ | 33.3%    | 55.7%    | 58.2%    | 61.5%     | 62.2% |
| $Q^2 < 3 \text{ GeV}^2$ | 34.9%    | 61.5%    | 65.0%    | 69.3%     | 70.4% |
| All Q <sup>2</sup>      | 37.5%    | 74.5%    | 81.5%    | 94.8%     | 100%  |

About 38% comes from  $Q^2 > 2 \text{ GeV}^2$ 

- we don't believe the model there!

Compare Kc=0.65 by Hall et al.



## Saturation of the continuum contribution

Tame the continuum above some "critical"  $Q^2=1.25$  GeV<sup>2</sup>

Following Alwall, Ingelman  $(Q^2 c/Q^2)^a$ 

Without taming:  $1.92 \times 10^{-3}$ 

With taming:  $a = 2: 1.92 \times 10^{-3} \rightarrow 1.19 \times 10^{-3} (62.0\%)$  $a = 4: 1.92 \times 10^{-3} \rightarrow 1.10 \times 10^{-3} (57.3\%)$ 



in % of 1.92 × 10<sup>-3</sup>

|                         | W < 2GeV | W < 4GeV      | W < 5GeV | W < 10GeV | All W         |
|-------------------------|----------|---------------|----------|-----------|---------------|
| $Q^2 < 1 \text{ GeV}^2$ | 27.6%    | 42.7 <b>%</b> | 44.3%    | 46.4%     | 46. <b>6%</b> |
| $Q^2 < 2 \text{ GeV}^2$ | 33.3%    | 55.7%         | 58.2%    | 61.5%     | 62.2%         |
| $Q^2 < 3 \text{ GeV}^2$ | 34.9%    | 61.5%         | 65.0%    | 69.3%     | 70.4 <b>%</b> |
| All Q <sup>2</sup>      | 37.5%    | 74.5%         | 81.5%    | 94.8%     | 100%          |

## Isospin of the continuum contribution

Some limiting cases:

- Pure isoscalar (like  $\omega$ )  $\sigma_{\gamma} z / \sigma_{\gamma\gamma} = -4 \sin^2 \theta \approx -1$
- Pure isovector (like  $\varrho$ )  $\sigma_{\gamma} z / \sigma_{\gamma\gamma} = 2 4 \sin^2 \theta \approx 1$
- Pure strange (like  $\phi$ )  $\sigma_{\gamma} z / \sigma_{\gamma\gamma} = 3 4 \sin^2 \theta \approx 2$

At present:  $\sigma_{\gamma} z / \sigma_{\gamma\gamma} = I + I$  between 2(=strange) and 0 (I=0 + I=I)

It is clear what it should be in DIS:  $\sigma_{\gamma} z / \sigma_{\gamma\gamma} = 0.65 + 0.14$  (Hall et al.)

What about real photons?