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Weak Charge of the Proton

Elastic e-p scattering"
with polarized e⁻ beam
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Standard Model (tree-level)
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where the EW radiative corrections have been absorbed into corrections ρf − 1
and κf − 1, which depend on the fermion f and on the renormalization scheme.
In the on-shell scheme, the quadratic mt dependence is given by ρf ∼ 1 + ρt,

κf ∼ 1 + ρt/ tan2 θW , while in MS, ρ̂f ∼ κ̂f ∼ 1, for f ̸= b (ρ̂b ∼ 1 − 4
3ρt,

κ̂b ∼ 1 + 2
3ρt). In the MS scheme the normalization is changed according

to GF M2
Z/2

√
2π → α̂/4ŝ 2

Z ĉ 2
Z . (If one continues to normalize amplitudes by

GF M2
Z/2

√
2π, as in the 1996 edition of this Review, then ρ̂f contains an additional

factor of ρ̂(1−∆r̂W )α̂/α.) In practice, additional bosonic and fermionic loops, vertex
corrections, leading higher order contributions, etc., must be included. For example,
in the MS scheme one has ρ̂ℓ = 0.9981, κ̂ℓ = 1.0013, ρ̂b = 0.9869, and κ̂b = 1.0067. It
is convenient to define an effective angle s2

f ≡ sin2 θWf ≡ κ̂f ŝ 2
Z = κf s2

W , in terms

of which gf
V and gf

A are given by
√

ρf times their tree-level formulae. Because gℓ
V is

very small, not only A0
LR = Ae, A

(0,ℓ)
FB , and Pτ , but also A

(0,b)
FB , A

(0,c)
FB , A

(0,s)
FB , and

the hadronic asymmetries are mainly sensitive to s2
ℓ . One finds that κ̂f (f ̸= b) is

almost independent of (mt, MH), so that one can write

s2
ℓ ∼ ŝ 2

Z + 0.00029 . (10.18)

Thus, the asymmetries determine values of s2
ℓ and ŝ 2

Z almost independent of mt,
while the κ’s for the other schemes are mt dependent.

Throughout this Review we utilize EW radiative corrections from the program
GAPP [21], which works entirely in the MS scheme, and which is independent of the
package ZFITTER [70]. Another resource is the recently developed modular fitting
toolkit Gfitter [92].

10.3. Low energy electroweak observables

In the following we discuss EW precision observables obtained at low momentum
transfers [6], i.e. Q2 ≪ M2

Z . It is convenient to write the four-fermion interactions
relevant to ν-hadron, ν-e, as well as parity violating e-hadron and e-e neutral-current
processes in a form that is valid in an arbitrary gauge theory (assuming massless
left-handed neutrinos). One has,

−L
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GF√
2

ν γµ(1 − γ5)ν

×
∑

i

[ϵL(i)qi γµ(1 − γ5)qi + ϵR(i)qi γµ(1 + γ5)qi], (10.19)

−L
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GF√
2

νµγµ(1 − γ5)νµ e γµ(gνe
V − gνe

A γ5)e, (10.20)

−L
eh = −

GF√
2

∑

i

[
C1i e γµγ5e qi γµqi + C2i e γµe qi γµγ5qi

]
, (10.21)
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Effective e-q interaction

Qp, tree
W = �2(2C1u + C1d) = 1� 4 sin2 ✓W ⇡ 0.05

Q2



Weak Charge of the Proton: EW corrections

To match the experimental precision - include radiative corrections

Hadronic structure-dependent

Soft-photon dominated: safe

O(↵em)

O(1)

↵em ⇡ 1/137



W. J. Marciano and A. Sirlin, PRD 27, 552 (1983); 29,75 (1984); 31, 213 (1985). 
M.J. Ramsey-Musolf, PRC 60, 015501 (1999).

Weak Charge of the Proton: EW corrections

Qp
W = (1 + �⇢ + �e)(1� 4 sin2 ✓̂W + �0

e) + ⇤WW + ⇤ZZ + ⇤�Z

Hadronic structure effects are under control

2γ-Box: kinematically suppressed

WW,ZZ-Box: perturbative- calculable reliably

γZ: for low energies (atomic PV experiments)"
cancellation between box and crossed"
- not true for -1 GeV energy any more

Vacuum polarization: reconstructed from "
e⁺e⁻➛hadrons with dispersion relations

Corrections due to kinematics, 
t-dependence of form factors - known

Weak Charge of the Proton
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t-dependence of form factors - known
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Energy dependence of the γZ-Correction
MG & C.J. Horowitz, PRL102, 091806 (2009) 

pµ = (M,~0)

q
Q2 = �qµqµ � 0

q
kµ = (E,~k)

W 2 = (p + q)2

ge
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A

Forward dispersion relation for

APV resultCan quantify the energy dependence

Possess different symmetry "
between box and crossed terms:
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Energy dependence of the γZ-Correction

Isospin-rotate the e.-m. data"
Evaluate at E = 1.165 GeV (QWEAK)

PV DIS data "
- not (YET!) available
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The Vector Box Plots 

 

 

 

 

 

 

 

 

 

 

Hall et al. 
PRD 88, 013011 (2013) 

Carlson and Rislow 
PRD 83, 113007 (2011) 

Gorchtein et al. 
PRC 84, 015502 (2011) 
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• Differences come from the treatment of the 

structure functions. 

 



Energy dependence of the γZ-Correction

New SM prediction for the proton’s weak charge

To be compared to the previous prediction

Qp
W + Re⇤�Z(E = 1.165 GeV) = 0.0767± 0.0008± 0.0020�Z

Qp
W = 0.0713± 0.0008

4σ(theory) effect was missed in the original QWEAK analysis;"
Theory uncertainty needs to be further reduced
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FIG. 2: Total (el+res+DIS) axial-vector hadron correction
✷

A
γZ(E) (labeled “A”) and the sum of axial and vector hadron

[8] corrections (labeled “V+A”), together with the E = 0
result of MS [3] (extended to finite E for comparison). The
vertical dashed line indicates the energy at Qweak kinematics.

mind, we consider two models for Q2 < Q2
0.

Model 1 sets

F γZ
3 (x,Q2) =

(

1 + Λ2/Q2
0

1 + Λ2/Q2

)

F γZ
3 (x,Q2

0), (14)

which has the property that F γZ
3 (xmax, Q2) ∼ (Q2)0.3 as

Q2 → 0. Here Λ2 is a parameter that can be adjusted to
examine the model sensitivity of the integral in Eq. (9).
For Λ2 in the range (0.4− 1.0) GeV2, we obtain a ±10%
variation in the values for ✷A

γZ(E) shown in Fig. 1.

Model 2 freezes F γZ
3 at the Q2 = Q2

0 value for all W 2,
which is equivalent to setting F γZ

3 (x,Q2) = F γZ
3 (x0, Q2

0),
with x0 = xQ2

0/
(

(1− x)Q2 + xQ2
0

)

. For this model, F γZ
3

is constant as Q2 → 0, and yields a 15% larger contribu-
tion to ✷

A
γZ(E) than Model 1, as illustrated in Fig. 1.

The total correction to ✷
A
γZ is given by the sum

(el+res+DIS), and is shown in Fig. 2 as a function of
E. As demonstrated, the E dependence arises predomi-
nantly from the elastic and resonance contributions. We
assign a very conservative uncertainty estimate equal to
twice the low-Q2 DIS value. This allows for uncertainties
in the resonance and low-Q2 DIS contributions, and in
the effect of the running coupling constants on the dom-
inant n = 1 contribution. The total contribution to ✷

A
γZ

is 0.0044(4) at E = 0, and 0.0037(4) at E = 1.165 GeV
(the Qweak energy). This should be compared to the
value 0.0052(5) used in Ref. [2], which is assumed to be
energy independent. Also shown in Fig. 2 is the total
✷γZ = ✷

V
γZ +✷

A
γZ using the result for ✷V

γZ from Ref. [8],
which has an uncertainty that grows with E.
Our value shifts the theoretical estimate for Qp

W from
0.0713(8) to 0.0705(8), with a total energy dependent
correction ✷γZ(E) − ✷γZ(0) of 0.0040+0.0011

−0.0004 at E =
1.165 GeV. A similar uncertainty would be obtained us-
ing the estimate of ✷V

γZ from Ref. [9], while a larger un-
certainty on the vector hadron correction was quoted in

Ref. [10]. These uncertainties can be reduced with future
PV structure function measurements at low Q2, such as
those planned at Jefferson Lab. The high precision deter-
mination of Qp

W would then allow more robust extraction
of signals for new physics beyond the Standard Model.
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Uncertainty is dominated by the γZᵥ - asses all the sources of the uncertainty

Evaluate the axial part through a DR "
- check Marciano & Sirlin’s calculation



Saturation of the dispersion integral for γZv-box

W < 2GeV W < 4GeV W < 5GeV W < 10GeV All W

Q² < 1 GeV² 62.6% 79.8% 81.2% 82.8% 83.2%

Q² < 2 GeV² 68.3% 85.8% 87.6% 89.9% 90.4%

Q² < 3 GeV² 69.4% 87.9% 90.0% 92.7% 93.3%

All Q² 70% 91.1% 94.1% 98.6% 100%

Q-Weak: E = 1.165 GeV

Re⇤�ZV (E) =
2E

⇡

1Z

0

dQ2

1Z

W 2
⇡

dW 2
h
AF �Z

1 (W 2, Q2) + BF �Z
2 (W 2, Q2)

i



Saturation of the dispersion integral for γZv-box

W < 2GeV W < 4GeV W < 5GeV W < 10GeV All W

Q² < 1 GeV² 75.0% 86.4% 87.4% 88.6% 88.8%

Q² < 2 GeV² 78.4% 90.3% 91.6% 93.2% 93.5%

Q² < 3 GeV² 79.1% 91.7% 93.2% 95.1% 95.5%

All Q² 79.5% 93.9% 95.9% 99.0% 100%

Mainz/MESA: E = 0.180 GeV

Re⇤�ZV (E) =
2E

⇡

1Z

0

dQ2

1Z

W 2
⇡

dW 2
h
AF �Z

1 (W 2, Q2) + BF �Z
2 (W 2, Q2)

i



Saturation of the dispersion integral for γZv-box

• Input at Q² > 2 GeV² only constrains 10% of the γZv-box"

• Input at Q² < 0.5 GeV² constrains 63% of the γZv-box

For the Q-Weak kinematics

• Input at Q² > 2 GeV² only constrains 6% of the γZv-box"

• Input at Q² < 0.5 GeV² constrains 77% of the γZv-box

For MESA kinematics



Input for the dispersion integral for γZv-box

We also need the rule how to obtain the γZ structure functions"
from the e.-m. ones

Only indirect input available - e.-m. structure functions

Parametrization of the inclusive data by Christy & Bosted

1.1 GeV < W < 3.1 GeV, 0 < Q² < 8 GeV²
M.E. Christy, P.E. Bosted, Phys.Rev. C81 (2010) 055213 

This parametrization is used by all the three groups 
Can be a common bias?

Sibirtsev et al., Phys.Rev. D82 (2010) 013011 

Identification and parameters of resonances should be (critically) assessed
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intermediate hadronic states,

⇤N |T
�
J⇤

emJµ
NCV

⇥
|N⌅ =

⌅
· · ·

⇤

X

⇤N |J⇤
em|X⌅⇤X|Jµ

NCV
|N⌅ (21)

and

⇤N |T [J⇤
emJµ

em] |N⌅ =
⌅

· · ·
⇤

X

⇤N |J⇤
em|X⌅⇤X|Jµ

em|N⌅ (22)

respectively. Calculating such matrix elements in general case represents fundamental di⇧culty, since in QCD, the
basis for intermediate states X is infinite and non-perturbative. Under certain kinematical conditions, one can organize
this basis into leading and subleading (kinematically suppressed) sub-sets. At high energy and Q2, and finite Bjorken
x, the leading set of states is X = q + X ⇥, and to leading order in 1/Q X ⇥ is a spectator, thus e.m. (weak) current
probes directly a single quark within the nucleon, and gives access to the parton distribution functions in DIS. At
high energy and Q2, and small x, however, the picture changes, as the leading set is X = q̄q + N . In this regime, the
photon polarizes the QCD vacuum at the periphery of the hadron, and the resulting q̄q-pair forms a color dipole that
interacts with thte nucleon. This latter picture was first realized in the Vector Meson Dominance model (VDM) that
capitalized on the fact that vector mesons and photon have the some quantum numbers, so the latter can fluctuate
into former ones [8, 9]. With the advent of QCD, one can perform microscopic calculations in the Color Dipole Pisture
(CDP) using perturbative techniques. At low energies, the relevant degrees of freedom are hadronic (that is, highly
non-perturbative), X = N,⌅N,⌅⌅N,N�,� etc.

If data for �Z interference cross section existed throughout all these distinct regimes, we would not need to know
details of any of the aforementioned models. Unfortunately, no or very poor data on PVDIS exist. Instead, one may
try to make use of extensive data sets for real and virtual photoabsorption that exist through vast kinematical region
in energy and Q2. To do this, one has to establish relation between matrix elements ⇤X|Jµ

em|N⌅ and ⇤X|Jµ
NC |N⌅. In

Standard Model, Z and � couplings to the quarks are related by means of a simple isospin rotation,

Jµ
em = qI=0Jµ

I=0 + qI=1Jµ
I=1 + qsJµ

s

Jµ
NCV

= gI=0
V Jµ

I=0 + gI=1
V Jµ

I=1 + gs
V Jµ

s , (23)

with

Jµ
I=0 =

1⌃
2
(ū�µu + d̄�µd)

Jµ
I=1 =

1⌃
2
(ū�µu� d̄�µd)

Jµ
s = s̄�µs (24)

and the e.m. charges given by qI=0 = 1
3
⇤

2
, qI=1 = 1⇤

2
, qs = � 1

3 , qs = 2
3 , whereas the weak charges are gI=0

V =
� 1⇤

2
4
3s2⇥W , gI=1

V = 1⇤
2
(2� 4s2⇥W ), gs

V = �1 + 4
3s2⇥W .

This isospin decomposition is used to relate weak proton form factors to the proton and neutron electromagnetic
form factors,

⇤p|Jµ
NC,V |p⌅ = (1� 4s2⇥W )⇤p|Jµ

em|p⌅ � ⇤n|Jµ
em|n⌅ (25)

where we neglected strangeness contributions. The above relation is valid for I = 1
2 resonances, as well.

⇤X|Jµ
NC,V |p⌅ = (1� 4s2⇥W )⇤X|Jµ

em|p⌅ � ⇤X|Jµ
em|n⌅ (26)

It is then straightforward to relate the contribution of a resonance R with isospin 1/2 to the interference �Z ”cross
section” to its contribution to the electromagnetic cross section:

⇤p|Jµ
em|R⌅⇤R|Jµ

NC,V |p⌅ = (1� 4s2⇥W )|⇤R|Jµ
em|p⌅|2 � ⇤p|Jµ

em|R⌅⇤R|Jµ
em|n⌅ (27)

We next use the definition of the transition helicity amplitudes,

Ap(n)
R,1/2 = ⇤R,⇥R = 1/2|Jµ

em(⇤� = 1)|p(n),⇥N = �1/2⌅

Ap(n)
R,3/2 = ⇤R,⇥R = 3/2|Jµ

em(⇤� = 1)|p(n),⇥N = 1/2⌅

Sp(n)
R,1/2 = ⇤R,⇥R = 1/2|Jµ

em(⇤� = 0)|p(n),⇥N = 1/2⌅ (28)

Isospin 1/2, 3/2 resonances
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Rescale each resonance in C&B parametrization to obtain γZ cross section

Isospin rotation of e.-m. data: resonances
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and the connection ⌃p(n),R
T ⇤ |Ap(n)

R,1/2|2 + |Ap(n)
R,3/2|2 and ⌃p(n),R

L ⇤ |Sp(n)
R,1/2|2 to write

⌅R
Z/� ⇥

⌃�Z,p
T,R

⌃��p
T,R

= (1� 4s2⇤W )�
Ap

R,1/2A
n�
R,1/2 + Ap

R,3/2A
n�
R,3/2

|Ap
R,1/2|2 + |Ap

R,3/2|2 (29)

As we notice, the ratio of the interference and electromagnetic cross sections is sensitive not only to the absolute
value of the transition amplitudes, but also to the relative phase between the proton and neutron transition. The total
cross section fits as in [14, 23] do not access this information, therefore we turn to models of baryons that provide
all the information on the individual helicity channels, in particular the constituent quark model of Isgur-Karl. Ref.
[32] quotes the results of the model for the transition helicity amplitudes as compared to the experimental values (cf.
Table VII). For the resonances of isospin 3/2, the transition is purely isovector, and the ratio of the cross sections is
given by gI=1

V
qI=1 = 2(1 � 2 sin2 ⇤W ). Using the value of the weak mixing angle sin ⇤W = 0.23118 [21] and the helicity

amplitudes from [32] as input, we obtain the following estimates: 1

P33(1232) S11(1535) D13(1520) S11(1665) F15(1680) P11(1440)

⇥R
Z/� 1.075 0.885 0.938 0.473 0.35 0.745

TABLE I: Ratios of interference to electromagnetic cross sections for di�erent resonances.

Vector Meson Dominance Model (VDM) capitalizes on the fact that the photon (Z-boson) has the same quantum
numbers as vector mesons and can be represented as a superposition of a few vector mesons,

|�⌃ =
�

V =⇥,⌅,⇤,...

|V ⌃. (30)

In the naive VDM, these three channels cannot mix among each other, and one obtains a prediction for the ratios
of the cross sections of ⇧/�⌥ production:

⌃��p⇥⇥p : ⌃��p⇥⌅p : ⌃��p⇥⇤p = 1 :
(qI=0)2

(qI=1)2
:

(qs)2

(qI=1)2
= 1 :

1
9

:
2
9

(31)

Apart from the SM isospin decomposition, the above prediction relies on the assumption of the flavor-blindness of
the V N interaction, an assumption supported in the color dipole picture (CDP) that makes a natural connection of
VDM with perturbative QCD and provides a good description of low-x DIS data. The predictions of Eq. (31) were
confronted to the experimental data at high energies and for Q2 that ranged from zero to a few GeV2 [33] and showed
a very good agreement for the �/⇧ ratio, while for the ⌥/⇧ ratio the agreement was not as good.

Accomodating these two assumptions here, we obtain the following ratio of the high energy (”VDM”) contributions
to ��p ⇧ Zp and ��p ⇧ ��p cross sections:

⌃��p⇥Zp

⌃��p⇥��p
⌅ gI=1

V qI=1⌃⇥p + gI=0
V qI=0⌃⌅p + gs

V qs⌃⇤p

(qI=1)2⌃⇥p + (qI=0)2⌃⌅p + (qs)2⌃⇤p

⌅ gI=1
V qI=1 + gI=0

V qI=0 + gs
V qs

(qI=1)2 + (qI=0)2 + (qs)2
=

5
6

+
7
6
(1� 4 sin2 ⇤W ) ⌅ 0.92 (32)

V. RESULTS FOR RE��Z

We are now in the position to present results for ⇥�Z in the forward direction using the sum rule of Eqs. (16,17),
the models I,II, and III for the electromagnetic cross sections along with the isospin considerations provided in the

1 In addition to the resonances quoted in Table I, a broad resonance with mass ⇡ 1.9 GeV was included in the fit of Ref. [23]. It features
a very mild monopole form factor that in principle raises a question of whether this contributions should be considered as part of the
background where monopole form factors arise naturally in the VDM picture. Due to lack of any solid identification, we assign the
isospin 3/2 to this resonance (which also reflects the isovector dominance in the VDM regime).

yR
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FIG. 10: Comparison of the x-dependence of the DIS struc-
ture function F2(x, Q2) at fixed Q2 and as a function of x,
in GVD/CDP model of [37] (solid lines) and the naive GVD
model of [39] (dashed lines) to the low-x DIS data of H1 Col-
laboration [33]. The experimental errors are not shown.

P33(1232) S11(1535) D13(1520) S11(1665) F15(1680) P11(1440) F37(1950)

yR -1.0�0.1
+0.1 -0.51�0.71

+0.35 -0.77�0.125
+0.125 -0.28�0.86

+0.45 -0.27�0.12
+0.1 -0.62�0.2

+0.19 -1�1
+1

TABLE III: Ratios yR with respective uncertainties for seven
resonances.

The above relation is valid for transitions to I = 1
2

resonances, as well:

⇤X|Jµ
NC,V |p⌅ = (1� 4s2⇤W )⇤X|Jµ

em|p⌅ � ⇤X|Jµ
em|n⌅ .(33)

It is then straightforward to relate the contribution of
a resonance R with isospin 1/2 to the interference �Z
cross section entering Eq. (16) to its contribution to the
electromagnetic cross section:

⇤p|Jµ
em|R⌅⇤R|Jµ

NC,V |p⌅ = (1� 4s2⇤W )|⇤R|Jµ
em|p⌅|2

� ⇤p|Jµ
em|R⌅⇤R|Jµ

em|n⌅ (34)

Consequently, for each resonance, we define two ratios
describing the relative strength of its contribution to the
�Z-interference cross sections ⇧�Z,p

T (L),R with respect to the

purely electromagnetic ones ⇧�p
T (L),R as

⌅R
Z/�(Q2) ⇥

⇧�Z,p
T,R

⇧�p
T,R

⇥R
Z/�(Q2) ⇥

⇧�Z,p
L,R

⇧�p
L,R

(35)

In the Appendix A we discuss in detail the Q2-
dependence of these ratios, as well as the ratios of the
longitudinal cross sections ⇥R

Z/� . Basing on the discus-
sion in Appendix A, we will use the value

⌅R
Z/�(Q2) =

�
1� 4s2⇤W (0)

⇥
� yR = const. , (36)

to rescale the contribution of a resonance R to both trans-
verse and longitudinal cross section. Possible discrepan-
cies (which, if known, are model-dependent) from this

Values and uncertainties - from PDG helicity amplitudes values

Based on: quantum numbers & strengths (Christy & Bosted);"
relative size and sign of helicity amplitudes (PDG)

Uncertainty from helicity amplitudes: An and Ap anti-correlated"
Independent measurements - p and d=p+n, not p and n!



 Checking input in γZ-calculation

PDG: 

Christy & Bosted: 
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Eqs. (5,??) are the well-known Baldin and Gerasimov-
Drell-Hearn sum rules, respectively, that were naturally
extended to the case of the �Z interference. The other
equations are new. Eq. (8) connects the product of the
axial charge and magnetic moment of the nucleon to the
�1stmoment of the structure function g5, while the other
two give the newly introduced PV polarizabilities �1 and
�2 to the 0th moment of the structure function F3 and
1st moment of g5, respectively.

The most remarkable sum rule is that of Eq. (8) that
invovles the charge of the proton. Since it is apparently
the only sum rule with this feature, the convergence of
this sum rule has to be examined more closely. The struc-
ture accompanying g5 can come about at high energy
due to an exchange of an axial vector meson. Possi-
ble lowest mass candidates are h1(1170) that belongs to
the ⌘ trajectory, b1(1235) that belongs to the ⇡ trajec-
tory, and a1(1260) that is the lowest representative of
its own trajectory. Due to non-linearity of the Chew-
Frautschi plot for these trajectories the identification is
apparently not unique, and we will give a range for the
intercept of these trajectories. The upper limit stems
from relating an axial vector to the pion trajectory, thus
↵0 ⇡ �↵0m2

⇡

⇡ �0.02. The lower limit results from a lin-
ear extrapolation ↵M

0 = 1 � ↵0m2
M

tat range from �0.2
to �0.4 for the three candidates.

Finally, the finite energy sum rule (FESR) for the spin-
independent amplitude f = f��,�Z results from extract-
ing Regge-behaved part fR of the amplitude f explicitly,
and writing a dispersion relation for the di↵erence f�fR.
At the asymptotically large energy this amplitude can be-
have at most as a constant that is denoted as C1, and
one obtains a dispersion representation for this constant,

C1 = f(0)� 1
2⇡2

NZ

⌫thr

d⌫[�
T

(⌫)� �R

T

(⌫)]. (11)

Above, �R

T

(⌫) = c
P

(⌫/⌫0)↵P�1 + c
R

(⌫/⌫0)↵R�1 is the
high-energy asymptotic part of the total cross section

that is obtained from a Regge fit at ⌫ � N ⇡ 2 GeV
with c

P

= 68.0 µb, c
R

= 99.0 µb, ↵
P

= 1.097, ↵
R

= 0.5
and ⌫0 = 1 GeV.

II. PRACTICAL APPLICATIONS

A. GDH sum rule and parametrization of
resonance data

A parametrization of the inelastic structure functions
F ��

1,2 on the proton target in the resonance region has
been proposed by Christy and Bosted in Ref. [3]. Con-
sequently, this parametrization was used to predict the
interference structure functions F �Z

1,2 that enter the cal-
culation of the dispersive �Z-box correction to the weak
charge of the proton in the kinematics of the QWEAK
experiment [1]. The procedure involves a rotation of the
transition helicity amplitudes for individual resonances
in the weak isospin space [2], and is based on the conser-
vation of the vector current (CVC) and on the identifi-
cation of quantum numbers of the resonances. The lat-
ter was taken from the original parametrization of Ref.
[3]. While the assignment of definite quantum numbers
does not pose any problem for the parametrization of
the resonance data per se, using a wrong identification
of resonance quantum numbers and strength may lead
to a systematical error in predicting the �Z interference
structure functions. The parametrization of Ref. [3] fea-
tures two close resonances in the second resonance region,
S11(1535) and D13(1520), of which the former one dom-
inates carrying ⇡ 90% of the strength in the sum of the
two for the total cross section,

D13(1520) :
q

(Ap

3/2)2 + (Ap

1/2)2 ⇡ 23 GeV�1/2

S11(1535) : Ap

3/2 = 0, Ap

1/2 ⇡ 170 GeV�1/2, (12)

where only information about the total strength for
D13(1520) is available. Above, to relate the parametriza-
tion of Ref. [3] to transition helicity amplitudes we
use the relation �

R

⇠ M((AR

3/2)
2 + (AR

1/2)
2)/(⇡(2J +

1)M
R

�
R

), where M
R

,�
R

, J denote the resonance mass,
width and spin, respectively. On the other hand, PDG
[5] gives

D13(1520) : Ap

3/2 = 150(15)GeV�1/2, (13)

Ap

1/2 = �24(9) GeV�1/2

S11(1535) : Ap

3/2 = 0, Ap

1/2 = 90(30)GeV�1/2,

with the strength of the two resonances in the total cross
section distributed roughly as ⇠ 2 : 1 between D13(1520)
and S11(1535), respectively. This di↵erence has a dra-
matic consequences for the GDH sum rule, if the rela-
tive strengths and the quantum numbers are used. In
fact, S11(1535) being a J = 1/2 resonance cannot be ex-
cited in the A3/2 channel, thus its contribution to the
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Eqs. (5,??) are the well-known Baldin and Gerasimov-
Drell-Hearn sum rules, respectively, that were naturally
extended to the case of the �Z interference. The other
equations are new. Eq. (8) connects the product of the
axial charge and magnetic moment of the nucleon to the
�1stmoment of the structure function g5, while the other
two give the newly introduced PV polarizabilities �1 and
�2 to the 0th moment of the structure function F3 and
1st moment of g5, respectively.

The most remarkable sum rule is that of Eq. (8) that
invovles the charge of the proton. Since it is apparently
the only sum rule with this feature, the convergence of
this sum rule has to be examined more closely. The struc-
ture accompanying g5 can come about at high energy
due to an exchange of an axial vector meson. Possi-
ble lowest mass candidates are h1(1170) that belongs to
the ⌘ trajectory, b1(1235) that belongs to the ⇡ trajec-
tory, and a1(1260) that is the lowest representative of
its own trajectory. Due to non-linearity of the Chew-
Frautschi plot for these trajectories the identification is
apparently not unique, and we will give a range for the
intercept of these trajectories. The upper limit stems
from relating an axial vector to the pion trajectory, thus
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⇡

⇡ �0.02. The lower limit results from a lin-
ear extrapolation ↵M
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tat range from �0.2
to �0.4 for the three candidates.

Finally, the finite energy sum rule (FESR) for the spin-
independent amplitude f = f��,�Z results from extract-
ing Regge-behaved part fR of the amplitude f explicitly,
and writing a dispersion relation for the di↵erence f�fR.
At the asymptotically large energy this amplitude can be-
have at most as a constant that is denoted as C1, and
one obtains a dispersion representation for this constant,
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A. GDH sum rule and parametrization of
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A parametrization of the inelastic structure functions
F ��

1,2 on the proton target in the resonance region has
been proposed by Christy and Bosted in Ref. [3]. Con-
sequently, this parametrization was used to predict the
interference structure functions F �Z

1,2 that enter the cal-
culation of the dispersive �Z-box correction to the weak
charge of the proton in the kinematics of the QWEAK
experiment [1]. The procedure involves a rotation of the
transition helicity amplitudes for individual resonances
in the weak isospin space [2], and is based on the conser-
vation of the vector current (CVC) and on the identifi-
cation of quantum numbers of the resonances. The lat-
ter was taken from the original parametrization of Ref.
[3]. While the assignment of definite quantum numbers
does not pose any problem for the parametrization of
the resonance data per se, using a wrong identification
of resonance quantum numbers and strength may lead
to a systematical error in predicting the �Z interference
structure functions. The parametrization of Ref. [3] fea-
tures two close resonances in the second resonance region,
S11(1535) and D13(1520), of which the former one dom-
inates carrying ⇡ 90% of the strength in the sum of the
two for the total cross section,

D13(1520) :
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where only information about the total strength for
D13(1520) is available. Above, to relate the parametriza-
tion of Ref. [3] to transition helicity amplitudes we
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width and spin, respectively. On the other hand, PDG
[5] gives
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3/2 = 0, Ap
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with the strength of the two resonances in the total cross
section distributed roughly as ⇠ 2 : 1 between D13(1520)
and S11(1535), respectively. This di↵erence has a dra-
matic consequences for the GDH sum rule, if the rela-
tive strengths and the quantum numbers are used. In
fact, S11(1535) being a J = 1/2 resonance cannot be ex-
cited in the A3/2 channel, thus its contribution to theRoper resonance is largely underestimated;"

Δ(1232) width 136 MeV instead of 120 MeV

Look for further input to constrain this change - GDH sum rule

The identification of resonances and relative strength is not the same in 
Christy & Bosted and PDG



 Correcting input in γZ-calculation with the GDH sum rule

Spin-1/2 and spin-3/2 resonances can be distinguished in the "
helicity cross section (g1 with real photons)"
Data - from GDH collaboration (Mainz, Bonn)

200 400 600 800 1000 1200 1400 1600 1800
ν (MeV)

-200

0

200

400

σ(
3/

2)
 - 
σ(

1/
2)

 (μ
 b

ar
n)

GDH collaboration
Model I (Bosted & Christy)
Model II

200 400 600 800 1000 1200 1400 1600 1800
ν (MeV)

0

100

200

300

400

500

σᵗ
ᵒᵗ 

(μ
ba

rn
)

σᵗᵒᵗ GDH collaboration
Model I (Bosted & Christy)
Model II

J. Ahrens et al, PRL 84(2000) 5950; 
J. Ahrens et al, PRL 87(2001) 022003; 
H. Dutz et al, PRL 91(2003) 192001

2

low-energy coe�cients,

(↵ + �){��,�Z} =
1

2⇡2

Z 1

⌫thr

d⌫
�{��,�Z}

T

(⌫)
⌫2

(5)

(�

N

)2 =
2M2

⇡e2

1Z

⌫thr

d⌫
[���

3/2(⌫)� ���

1/2(⌫)]
⌫

(6)

�

N

Z

N

=
2M2

⇡e2

1Z

⌫thr

d⌫
[��Z

3/2(⌫)� ��Z

1/2(⌫)]
⌫

(7)

gN

A

(e�

N

+ �

N

) = 2
Z 1

⌫thr

d⌫

⌫
g�Z

5 (⌫, 0) (8)

��Z

1 =
↵

M

Z 1

⌫thr

d⌫0

⌫02
F �Z

3 (⌫, 0) (9)

��Z

2 =
2↵

M

Z 1

⌫thr

d⌫

⌫3
g�Z

5 (⌫, 0). (10)

Eqs. (5,??) are the well-known Baldin and Gerasimov-
Drell-Hearn sum rules, respectively, that were naturally
extended to the case of the �Z interference. The other
equations are new. Eq. (8) connects the product of the
axial charge and magnetic moment of the nucleon to the
�1stmoment of the structure function g5, while the other
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ture accompanying g5 can come about at high energy
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ble lowest mass candidates are h1(1170) that belongs to
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Above, �R

T

(⌫) = c
P

(⌫/⌫0)↵P�1 + c
R

(⌫/⌫0)↵R�1 is the
high-energy asymptotic part of the total cross section

that is obtained from a Regge fit at ⌫ � N ⇡ 2 GeV
with c

P

= 68.0 µb, c
R

= 99.0 µb, ↵
P

= 1.097, ↵
R

= 0.5
and ⌫0 = 1 GeV.

II. PRACTICAL APPLICATIONS

A. GDH sum rule and parametrization of
resonance data

A parametrization of the inelastic structure functions
F ��

1,2 on the proton target in the resonance region has
been proposed by Christy and Bosted in Ref. [3]. Con-
sequently, this parametrization was used to predict the
interference structure functions F �Z

1,2 that enter the cal-
culation of the dispersive �Z-box correction to the weak
charge of the proton in the kinematics of the QWEAK
experiment [1]. The procedure involves a rotation of the
transition helicity amplitudes for individual resonances
in the weak isospin space [2], and is based on the conser-
vation of the vector current (CVC) and on the identifi-
cation of quantum numbers of the resonances. The lat-
ter was taken from the original parametrization of Ref.
[3]. While the assignment of definite quantum numbers
does not pose any problem for the parametrization of
the resonance data per se, using a wrong identification
of resonance quantum numbers and strength may lead
to a systematical error in predicting the �Z interference
structure functions. The parametrization of Ref. [3] fea-
tures two close resonances in the second resonance region,
S11(1535) and D13(1520), of which the former one dom-
inates carrying ⇡ 90% of the strength in the sum of the
two for the total cross section,

D13(1520) :
q

(Ap

3/2)2 + (Ap

1/2)2 ⇡ 23 GeV�1/2

S11(1535) : Ap

3/2 = 0, Ap

1/2 ⇡ 170 GeV�1/2, (12)

where only information about the total strength for
D13(1520) is available. Above, to relate the parametriza-
tion of Ref. [3] to transition helicity amplitudes we
use the relation �

R

⇠ M((AR

3/2)
2 + (AR

1/2)
2)/(⇡(2J +

1)M
R

�
R

), where M
R

,�
R

, J denote the resonance mass,
width and spin, respectively. On the other hand, PDG
[5] gives

D13(1520) : Ap

3/2 = 150(15)GeV�1/2, (13)

Ap

1/2 = �24(9) GeV�1/2

S11(1535) : Ap

3/2 = 0, Ap

1/2 = 90(30)GeV�1/2,

with the strength of the two resonances in the total cross
section distributed roughly as ⇠ 2 : 1 between D13(1520)
and S11(1535), respectively. This di↵erence has a dra-
matic consequences for the GDH sum rule, if the rela-
tive strengths and the quantum numbers are used. In
fact, S11(1535) being a J = 1/2 resonance cannot be ex-
cited in the A3/2 channel, thus its contribution to the

4

B. Potential of FESR for constraining the
uncertainty of the dispersive �Z-box calculation

The modification of resonance parameters described
in the previous section also a↵ects the description of the
total cross section. Fig. 2 displays the comparison of the
two models and the data on �

tot

obtained by the GDH
collaboration [6]. To improve the description of the data,
we adjusted the value of the width of the �(1232) to the
standard value of 120 MeV [5], while the fit of [3] features
a slightly larger width, 136 MeV. We will now feed these
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FIG. 2: The total photo absorption cross section from the
original parametrization of Ref. [3] (dashed blue line) and
the modified one adjusted in accord with the PDG [5] (solid
red line) in comparison with data by GDH collaboration [6].
In the parametrization of P33(1232) the experimental value
of the width, �P33(1232) = 120 MeV was used for Model II,
whereas Model I uses �P33(1232) = 136 MeV [3].

two parametrizations in the finite energy sum rule, and
in its �Z-interference analogue,
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The numerical evaluation of Eq. (14) with Model II
leads to the extraction

C��

1 = �1.12 µb GeV, (16)

which agrees reasonably well to the recent extraction of
the J = 0 pole [7],

C��

1 = �0.75± 0.35 µb GeV. (17)

The discrepancy has essentially two reasons. Firstly, Ref.
[7] used a di↵erent form of the parametrization and op-
erated with only 5 resonances. Secondly, it used the real

photon data only. On the contrary, Ref. [3] provided
a global fit to real and virtual photon data, therefore a
somewhat worse quality of the fit to real photon data
only, as can be seen in Fig. 2, is only mildly reflected in
the overall �2. The original parametrization of Ref. [3]
gives a larger result, C��

1 = �1.68 µb-GeV.
To summarize the evaluations of Eqs. (16, 17),

C��

1 = �0.97± 0.35(stat.)± 0.35(syst.) µb GeV, (18)

where we introduced a somewhat conservative estimate
of the systematical uncertainty.

Next we evaluate the �Z-interference analog of the J =
0 pole, Eq. (15) using the isospin rotation. Model II leads
to

C�Z

1 = 2.61± 2.02(back.)+0.93
�0.78(res.) µb GeV, (19)

where the first uncertainty is due to the isospin structure
of the background, and the second one due to that of the
resonances. Note that while the latter is obtained from
data (analyzed by PDG) and can be considered reliable,
the former uncertainty is postulated. It is considered
conservative but there is no guarantee that it is true.
The Model I gives a slightly di↵erent value but with a
larger uncertainty due to resonance contributions

C�Z

1 = 2.47± 2.02(back.)+2.17
�1.33(res.) µb GeV, (20)

It is seen that the Model I evaluation, at least in prin-
ciple, may be used to constrain the background contri-
bution since the uncertainty of the latter dominates over
that of the resonances. To do that one, however needs
information about the l.h.s. of Eq. (15). It has been
argued in the literature that the J = 0 pole, if exists,
should be due to an e↵ective two-photon-quark coupling.
Then, knowing the J = 0 pole for Compton scattering,
Eq. (18) we can model the �Z-interference J = 0 pole.
If at asymptotically high energy the proton is seen by
the real photon or massless Z as a symmetric collection
of sea quarks (SU(6) symmetry) one would expect

C�Z

1
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1
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e
qP
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e2
q
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9
5
� 4s2

W

⇡ 0.85, (21)

whereas for the case where the J = 0 pole is due to
coupling to valence quarks one would have
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e
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e
d

)
2e2

u

+ e2
d

=
5
3
� 4s2

W

⇡ 0.71. (22)

These two näıve estimates indicate that the �Z-
interference J = 0 pole is likely to be somewhat smaller
than the electromagnetic one, and to have the same sign.
We can then assume that, conservatively,

C�Z

1 = �0.5± 0.5 µb GeV. (23)

The comparison to the evaluation of Eq. (19) sug-
gests that in order for the two to agree the background

Born part (threshold) - MAID

With parameters from PDG - much better description of both observables"
Not perfect: only 7 resonances, … 

MG, X. Zhang, to be submitted soon
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low-energy coe�cients,
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Eqs. (5,??) are the well-known Baldin and Gerasimov-
Drell-Hearn sum rules, respectively, that were naturally
extended to the case of the �Z interference. The other
equations are new. Eq. (8) connects the product of the
axial charge and magnetic moment of the nucleon to the
�1stmoment of the structure function g5, while the other
two give the newly introduced PV polarizabilities �1 and
�2 to the 0th moment of the structure function F3 and
1st moment of g5, respectively.

The most remarkable sum rule is that of Eq. (8) that
invovles the charge of the proton. Since it is apparently
the only sum rule with this feature, the convergence of
this sum rule has to be examined more closely. The struc-
ture accompanying g5 can come about at high energy
due to an exchange of an axial vector meson. Possi-
ble lowest mass candidates are h1(1170) that belongs to
the ⌘ trajectory, b1(1235) that belongs to the ⇡ trajec-
tory, and a1(1260) that is the lowest representative of
its own trajectory. Due to non-linearity of the Chew-
Frautschi plot for these trajectories the identification is
apparently not unique, and we will give a range for the
intercept of these trajectories. The upper limit stems
from relating an axial vector to the pion trajectory, thus
↵0 ⇡ �↵0m2

⇡

⇡ �0.02. The lower limit results from a lin-
ear extrapolation ↵M

0 = 1 � ↵0m2
M

tat range from �0.2
to �0.4 for the three candidates.

Finally, the finite energy sum rule (FESR) for the spin-
independent amplitude f = f��,�Z results from extract-
ing Regge-behaved part fR of the amplitude f explicitly,
and writing a dispersion relation for the di↵erence f�fR.
At the asymptotically large energy this amplitude can be-
have at most as a constant that is denoted as C1, and
one obtains a dispersion representation for this constant,

C1 = f(0)� 1
2⇡2

NZ

⌫thr

d⌫[�
T

(⌫)� �R

T

(⌫)]. (11)

Above, �R

T

(⌫) = c
P

(⌫/⌫0)↵P�1 + c
R

(⌫/⌫0)↵R�1 is the
high-energy asymptotic part of the total cross section

that is obtained from a Regge fit at ⌫ � N ⇡ 2 GeV
with c

P

= 68.0 µb, c
R

= 99.0 µb, ↵
P

= 1.097, ↵
R

= 0.5
and ⌫0 = 1 GeV.

II. PRACTICAL APPLICATIONS

A. GDH sum rule and parametrization of
resonance data

A parametrization of the inelastic structure functions
F ��

1,2 on the proton target in the resonance region has
been proposed by Christy and Bosted in Ref. [3]. Con-
sequently, this parametrization was used to predict the
interference structure functions F �Z

1,2 that enter the cal-
culation of the dispersive �Z-box correction to the weak
charge of the proton in the kinematics of the QWEAK
experiment [1]. The procedure involves a rotation of the
transition helicity amplitudes for individual resonances
in the weak isospin space [2], and is based on the conser-
vation of the vector current (CVC) and on the identifi-
cation of quantum numbers of the resonances. The lat-
ter was taken from the original parametrization of Ref.
[3]. While the assignment of definite quantum numbers
does not pose any problem for the parametrization of
the resonance data per se, using a wrong identification
of resonance quantum numbers and strength may lead
to a systematical error in predicting the �Z interference
structure functions. The parametrization of Ref. [3] fea-
tures two close resonances in the second resonance region,
S11(1535) and D13(1520), of which the former one dom-
inates carrying ⇡ 90% of the strength in the sum of the
two for the total cross section,

D13(1520) :
q

(Ap

3/2)2 + (Ap

1/2)2 ⇡ 23 GeV�1/2

S11(1535) : Ap

3/2 = 0, Ap

1/2 ⇡ 170 GeV�1/2, (12)

where only information about the total strength for
D13(1520) is available. Above, to relate the parametriza-
tion of Ref. [3] to transition helicity amplitudes we
use the relation �

R

⇠ M((AR

3/2)
2 + (AR

1/2)
2)/(⇡(2J +

1)M
R

�
R

), where M
R

,�
R

, J denote the resonance mass,
width and spin, respectively. On the other hand, PDG
[5] gives

D13(1520) : Ap

3/2 = 150(15)GeV�1/2, (13)

Ap

1/2 = �24(9) GeV�1/2

S11(1535) : Ap

3/2 = 0, Ap

1/2 = 90(30)GeV�1/2,

with the strength of the two resonances in the total cross
section distributed roughly as ⇠ 2 : 1 between D13(1520)
and S11(1535), respectively. This di↵erence has a dra-
matic consequences for the GDH sum rule, if the rela-
tive strengths and the quantum numbers are used. In
fact, S11(1535) being a J = 1/2 resonance cannot be ex-
cited in the A3/2 channel, thus its contribution to the

With the “supplemented” Christy & Bosted’s fit can be evaluated

3

S11(1535) D13(1520) F15(1680) S11(1650) P11(1440)

AI
T (0) 6.335 0.603 2.330 1.979 0.0225

AII
T (0) 3.3 3.5 3.1 2.0 2.422

TABLE I: Values of the parameter AT defined in Ref. [3] for
the 5 of 7 resonances included in the fit of that Ref. In the first
row, we list the original values of this parameter according to
Ref. [3] (denoted as AI

T (0), referred to as Model I in the text).
In the second row, we display the values of this parameter for
the 5 resonances rescaled according to PDG as described in
the text, denoted as AII

T (0) and referred to as Model II)

GDH sum rule is strictly negative, whereas D13(1520)
according to the parametrization of Ref. [3] has no nu-
merical impact on the GDH sum rule. This is in strong
contrast with the contributions of these resonances to
the GDH integral derived from their strengths in PDG
that lead to a positive contribution due to the large A3/2

wave in the D13(1520) excitation. Similarly, we con-
sider the two close resonances in the third resonance
region, S11(1650) and F15(1680), as well as the Roper,
P11(1440). We display in Table I how parameters should
be changed to be in agreement with the helicity di↵erence
cross section �3/2��1/2 without a↵ecting the description
of the data for the total cross section. We illustrate the
e↵ect of these changes on the GDH helicity di↵erence
�3/2 � �1/2 in Fig. 1. The curves are compared to the
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FIG. 1: The helicity di↵erence �3/2 � �1/2 entering the GDH
sum rule for the original parametrization of Ref. [3], Eq.
(12) (dashed blue line) compared to that with the relative
strengths of D13(1520) and S11(1535) resonances adjusted in
accord with the PDG [5], Eq. (13) (solid red line).

data from Ref. [6] that with certainty exclude the blue
dashed curve. The red solid curve compares favorably
to the data. Each curve can be fed in the GDH inte-
gral that needs be compared to the proton’s anomalous
magnetic moment squared. Parametrization correspond-
ing to Eq. (12) leads to 2

p

⇡ 0.9, whereas Eq. (13)
leads to 2

p

⇡ 3.28, a result close to the correct one,
2

p

= 1.7932 ⇡ 3.215. Note that for this evaluation we

Resonance Re�⇤OLD
�ZV

(10�3) Re�⇤NEW
�ZV

(10�3)

S11(1535) 0.29+0.34
�0.17 0.06+0.08

�0.04

D13(1520) 0.18± 0.03 0.31± 0.05

F15(1680) 0.04± 0.01 0.07± 0.02

S11(1650) 0.06+0.14
�0.06 0.06+0.14

�0.06

P11(1440) 0.06± 0.02 0.12± 0.03

⌃ 0.63+0.37
�0.18 0.62+0.17

�0.09

TABLE II: Contributions of individual resonance to the
Re�⇤�ZV in the kinematics of the Q-Weak experiment in
units of 10�3 before (second column) and after (third col-
umn) rescaling the resonances in accord with the GDH sum
rule, using entries of Table I.

supplemented the threshold region with the non-resonant
background contribution from MAID [4] that gives a siz-
able negative contribution. This contribution, being the
helicity-di↵erence cannot be directly obtained from the
parametrization of Ref. [3] which only deals with the
spin-averaged cross sections.

From this exercise we conclude that the resonance iden-
tification in the fit of Ref. [3] disagrees with the com-
monly accepted one, e.g. PDG. It has to be noticed that
the extraction of the resonance properties was not the
goal of that parametrization, so rather than critique, ours
is just a statement that one should use the identification
of various resonant structures found in that work with
definite quantum numbers with care.

We evaluate the PV analogue of the GDH sum rule
with the isospin-rotated cross sections (see, e.g., Ref. [2]
for a detailed description of the procedure). For consis-
tency, this evaluation should also be compared to �

p

Z

p

.
The evaluation with Model I parametrization leads to
�

p

Z

p

⇡ 2.247, and that with Model II gives �

p

Z

p

⇡
3.615, to be compared to �

p

Z

p

= (1�4s2
w

)(�

p

)2��

n

�

p

⇡
3.666, where the strangeness contribution was neglected.
The parametrization of Model II compares well with the
known value, although the uncertainty may be large in
this case.

Now, we are in the position to update the value and the
uncertainty of the dispersion evaluation of the resonance
contribution to the Re ⇤V

�Z

correction to the QWEAK
measurement. As can be seen in Table II, with the new
strength distribution between the resonances, the respec-
tive uncertainty is sizably reduced. We did not include
the two � resonances, P33(1232) and F37(1950) above.
These resonances contribute to both �3/2 and �1/2 and
therefore the GDH sum rule cannot unambiguously con-
strain their overall strength. We leave constraining the
contributions of these two resonances, most notably the
latter, to a separate work.

Sum rule value Christy & Bosted “PDG”
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S11(1535) D13(1520) F15(1680) S11(1650) P11(1440)

AI
T (0) 6.335 0.603 2.330 1.979 0.0225

AII
T (0) 3.3 3.5 3.1 2.0 2.422

TABLE I: Values of the parameter AT defined in Ref. [3] for
the 5 of 7 resonances included in the fit of that Ref. In the first
row, we list the original values of this parameter according to
Ref. [3] (denoted as AI

T (0), referred to as Model I in the text).
In the second row, we display the values of this parameter for
the 5 resonances rescaled according to PDG as described in
the text, denoted as AII

T (0) and referred to as Model II)

GDH sum rule is strictly negative, whereas D13(1520)
according to the parametrization of Ref. [3] has no nu-
merical impact on the GDH sum rule. This is in strong
contrast with the contributions of these resonances to
the GDH integral derived from their strengths in PDG
that lead to a positive contribution due to the large A3/2

wave in the D13(1520) excitation. Similarly, we con-
sider the two close resonances in the third resonance
region, S11(1650) and F15(1680), as well as the Roper,
P11(1440). We display in Table I how parameters should
be changed to be in agreement with the helicity di↵erence
cross section �3/2��1/2 without a↵ecting the description
of the data for the total cross section. We illustrate the
e↵ect of these changes on the GDH helicity di↵erence
�3/2 � �1/2 in Fig. 1. The curves are compared to the
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FIG. 1: The helicity di↵erence �3/2 � �1/2 entering the GDH
sum rule for the original parametrization of Ref. [3], Eq.
(12) (dashed blue line) compared to that with the relative
strengths of D13(1520) and S11(1535) resonances adjusted in
accord with the PDG [5], Eq. (13) (solid red line).

data from Ref. [6] that with certainty exclude the blue
dashed curve. The red solid curve compares favorably
to the data. Each curve can be fed in the GDH inte-
gral that needs be compared to the proton’s anomalous
magnetic moment squared. Parametrization correspond-
ing to Eq. (12) leads to 2

p

⇡ 0.9, whereas Eq. (13)
leads to 2

p

⇡ 3.28, a result close to the correct one,
2

p

= 1.7932 ⇡ 3.215. Note that for this evaluation we

Resonance Re�⇤OLD
�ZV

(10�3) Re�⇤NEW
�ZV

(10�3)

S11(1535) 0.29+0.34
�0.17 0.06+0.08

�0.04

D13(1520) 0.18± 0.03 0.31± 0.05

F15(1680) 0.04± 0.01 0.07± 0.02

S11(1650) 0.06+0.14
�0.06 0.06+0.14

�0.06

P11(1440) 0.06± 0.02 0.12± 0.03

⌃ 0.63+0.37
�0.18 0.62+0.17

�0.09

TABLE II: Contributions of individual resonance to the
Re�⇤�ZV in the kinematics of the Q-Weak experiment in
units of 10�3 before (second column) and after (third col-
umn) rescaling the resonances in accord with the GDH sum
rule, using entries of Table I.

supplemented the threshold region with the non-resonant
background contribution from MAID [4] that gives a siz-
able negative contribution. This contribution, being the
helicity-di↵erence cannot be directly obtained from the
parametrization of Ref. [3] which only deals with the
spin-averaged cross sections.

From this exercise we conclude that the resonance iden-
tification in the fit of Ref. [3] disagrees with the com-
monly accepted one, e.g. PDG. It has to be noticed that
the extraction of the resonance properties was not the
goal of that parametrization, so rather than critique, ours
is just a statement that one should use the identification
of various resonant structures found in that work with
definite quantum numbers with care.

We evaluate the PV analogue of the GDH sum rule
with the isospin-rotated cross sections (see, e.g., Ref. [2]
for a detailed description of the procedure). For consis-
tency, this evaluation should also be compared to �
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Z

p

.
The evaluation with Model I parametrization leads to
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⇡ 2.247, and that with Model II gives �
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3.666, where the strangeness contribution was neglected.
The parametrization of Model II compares well with the
known value, although the uncertainty may be large in
this case.

Now, we are in the position to update the value and the
uncertainty of the dispersion evaluation of the resonance
contribution to the Re ⇤V

�Z

correction to the QWEAK
measurement. As can be seen in Table II, with the new
strength distribution between the resonances, the respec-
tive uncertainty is sizably reduced. We did not include
the two � resonances, P33(1232) and F37(1950) above.
These resonances contribute to both �3/2 and �1/2 and
therefore the GDH sum rule cannot unambiguously con-
strain their overall strength. We leave constraining the
contributions of these two resonances, most notably the
latter, to a separate work.
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AI
T (0) 6.335 0.603 2.330 1.979 0.0225

AII
T (0) 3.3 3.5 3.1 2.0 2.422

TABLE I: Values of the parameter AT defined in Ref. [3] for
the 5 of 7 resonances included in the fit of that Ref. In the first
row, we list the original values of this parameter according to
Ref. [3] (denoted as AI

T (0), referred to as Model I in the text).
In the second row, we display the values of this parameter for
the 5 resonances rescaled according to PDG as described in
the text, denoted as AII

T (0) and referred to as Model II)

GDH sum rule is strictly negative, whereas D13(1520)
according to the parametrization of Ref. [3] has no nu-
merical impact on the GDH sum rule. This is in strong
contrast with the contributions of these resonances to
the GDH integral derived from their strengths in PDG
that lead to a positive contribution due to the large A3/2

wave in the D13(1520) excitation. Similarly, we con-
sider the two close resonances in the third resonance
region, S11(1650) and F15(1680), as well as the Roper,
P11(1440). We display in Table I how parameters should
be changed to be in agreement with the helicity di↵erence
cross section �3/2��1/2 without a↵ecting the description
of the data for the total cross section. We illustrate the
e↵ect of these changes on the GDH helicity di↵erence
�3/2 � �1/2 in Fig. 1. The curves are compared to the
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FIG. 1: The helicity di↵erence �3/2 � �1/2 entering the GDH
sum rule for the original parametrization of Ref. [3], Eq.
(12) (dashed blue line) compared to that with the relative
strengths of D13(1520) and S11(1535) resonances adjusted in
accord with the PDG [5], Eq. (13) (solid red line).

data from Ref. [6] that with certainty exclude the blue
dashed curve. The red solid curve compares favorably
to the data. Each curve can be fed in the GDH inte-
gral that needs be compared to the proton’s anomalous
magnetic moment squared. Parametrization correspond-
ing to Eq. (12) leads to 2

p

⇡ 0.9, whereas Eq. (13)
leads to 2

p

⇡ 3.28, a result close to the correct one,
2

p

= 1.7932 ⇡ 3.215. Note that for this evaluation we

Resonance Re�⇤OLD
�ZV

(10�3) Re�⇤NEW
�ZV

(10�3)

S11(1535) 0.29+0.34
�0.17 0.06+0.08

�0.04

D13(1520) 0.18± 0.03 0.31± 0.05

F15(1680) 0.04± 0.01 0.07± 0.02

S11(1650) 0.06+0.14
�0.06 0.06+0.14

�0.06

P11(1440) 0.06± 0.02 0.12± 0.03

⌃ 0.63+0.37
�0.18 0.62+0.17

�0.09

TABLE II: Contributions of individual resonance to the
Re�⇤�ZV in the kinematics of the Q-Weak experiment in
units of 10�3 before (second column) and after (third col-
umn) rescaling the resonances in accord with the GDH sum
rule, using entries of Table I.

supplemented the threshold region with the non-resonant
background contribution from MAID [4] that gives a siz-
able negative contribution. This contribution, being the
helicity-di↵erence cannot be directly obtained from the
parametrization of Ref. [3] which only deals with the
spin-averaged cross sections.

From this exercise we conclude that the resonance iden-
tification in the fit of Ref. [3] disagrees with the com-
monly accepted one, e.g. PDG. It has to be noticed that
the extraction of the resonance properties was not the
goal of that parametrization, so rather than critique, ours
is just a statement that one should use the identification
of various resonant structures found in that work with
definite quantum numbers with care.

We evaluate the PV analogue of the GDH sum rule
with the isospin-rotated cross sections (see, e.g., Ref. [2]
for a detailed description of the procedure). For consis-
tency, this evaluation should also be compared to �

p

Z

p

.
The evaluation with Model I parametrization leads to
�

p

Z

p

⇡ 2.247, and that with Model II gives �

p

Z

p

⇡
3.615, to be compared to �

p

Z

p

= (1�4s2
w

)(�

p

)2��

n

�

p

⇡
3.666, where the strangeness contribution was neglected.
The parametrization of Model II compares well with the
known value, although the uncertainty may be large in
this case.

Now, we are in the position to update the value and the
uncertainty of the dispersion evaluation of the resonance
contribution to the Re ⇤V

�Z

correction to the QWEAK
measurement. As can be seen in Table II, with the new
strength distribution between the resonances, the respec-
tive uncertainty is sizably reduced. We did not include
the two � resonances, P33(1232) and F37(1950) above.
These resonances contribute to both �3/2 and �1/2 and
therefore the GDH sum rule cannot unambiguously con-
strain their overall strength. We leave constraining the
contributions of these two resonances, most notably the
latter, to a separate work.

Check the γZ-cross section

2

low-energy coe�cients,

(↵ + �){��,�Z} =
1

2⇡2

Z 1

⌫thr

d⌫
�{��,�Z}

T

(⌫)
⌫2

(5)

(�

N

)2 =
2M2

⇡e2

1Z

⌫thr

d⌫
[���

3/2(⌫)� ���

1/2(⌫)]
⌫

(6)

�

N

Z

N

=
2M2

⇡e2

1Z

⌫thr

d⌫
[��Z

3/2(⌫)� ��Z

1/2(⌫)]
⌫

(7)

gN

A

(e�

N

+ �

N

) = 2
Z 1

⌫thr

d⌫

⌫
g�Z

5 (⌫, 0) (8)

��Z

1 =
↵

M

Z 1

⌫thr

d⌫0

⌫02
F �Z

3 (⌫, 0) (9)

��Z

2 =
2↵

M

Z 1

⌫thr

d⌫

⌫3
g�Z

5 (⌫, 0). (10)

Eqs. (5,??) are the well-known Baldin and Gerasimov-
Drell-Hearn sum rules, respectively, that were naturally
extended to the case of the �Z interference. The other
equations are new. Eq. (8) connects the product of the
axial charge and magnetic moment of the nucleon to the
�1stmoment of the structure function g5, while the other
two give the newly introduced PV polarizabilities �1 and
�2 to the 0th moment of the structure function F3 and
1st moment of g5, respectively.

The most remarkable sum rule is that of Eq. (8) that
invovles the charge of the proton. Since it is apparently
the only sum rule with this feature, the convergence of
this sum rule has to be examined more closely. The struc-
ture accompanying g5 can come about at high energy
due to an exchange of an axial vector meson. Possi-
ble lowest mass candidates are h1(1170) that belongs to
the ⌘ trajectory, b1(1235) that belongs to the ⇡ trajec-
tory, and a1(1260) that is the lowest representative of
its own trajectory. Due to non-linearity of the Chew-
Frautschi plot for these trajectories the identification is
apparently not unique, and we will give a range for the
intercept of these trajectories. The upper limit stems
from relating an axial vector to the pion trajectory, thus
↵0 ⇡ �↵0m2

⇡

⇡ �0.02. The lower limit results from a lin-
ear extrapolation ↵M

0 = 1 � ↵0m2
M

tat range from �0.2
to �0.4 for the three candidates.

Finally, the finite energy sum rule (FESR) for the spin-
independent amplitude f = f��,�Z results from extract-
ing Regge-behaved part fR of the amplitude f explicitly,
and writing a dispersion relation for the di↵erence f�fR.
At the asymptotically large energy this amplitude can be-
have at most as a constant that is denoted as C1, and
one obtains a dispersion representation for this constant,

C1 = f(0)� 1
2⇡2

NZ

⌫thr

d⌫[�
T

(⌫)� �R

T

(⌫)]. (11)

Above, �R

T

(⌫) = c
P

(⌫/⌫0)↵P�1 + c
R

(⌫/⌫0)↵R�1 is the
high-energy asymptotic part of the total cross section

that is obtained from a Regge fit at ⌫ � N ⇡ 2 GeV
with c

P

= 68.0 µb, c
R

= 99.0 µb, ↵
P

= 1.097, ↵
R

= 0.5
and ⌫0 = 1 GeV.

II. PRACTICAL APPLICATIONS

A. GDH sum rule and parametrization of
resonance data

A parametrization of the inelastic structure functions
F ��

1,2 on the proton target in the resonance region has
been proposed by Christy and Bosted in Ref. [3]. Con-
sequently, this parametrization was used to predict the
interference structure functions F �Z

1,2 that enter the cal-
culation of the dispersive �Z-box correction to the weak
charge of the proton in the kinematics of the QWEAK
experiment [1]. The procedure involves a rotation of the
transition helicity amplitudes for individual resonances
in the weak isospin space [2], and is based on the conser-
vation of the vector current (CVC) and on the identifi-
cation of quantum numbers of the resonances. The lat-
ter was taken from the original parametrization of Ref.
[3]. While the assignment of definite quantum numbers
does not pose any problem for the parametrization of
the resonance data per se, using a wrong identification
of resonance quantum numbers and strength may lead
to a systematical error in predicting the �Z interference
structure functions. The parametrization of Ref. [3] fea-
tures two close resonances in the second resonance region,
S11(1535) and D13(1520), of which the former one dom-
inates carrying ⇡ 90% of the strength in the sum of the
two for the total cross section,

D13(1520) :
q

(Ap

3/2)2 + (Ap

1/2)2 ⇡ 23 GeV�1/2

S11(1535) : Ap

3/2 = 0, Ap

1/2 ⇡ 170 GeV�1/2, (12)

where only information about the total strength for
D13(1520) is available. Above, to relate the parametriza-
tion of Ref. [3] to transition helicity amplitudes we
use the relation �

R

⇠ M((AR

3/2)
2 + (AR

1/2)
2)/(⇡(2J +

1)M
R

�
R

), where M
R

,�
R

, J denote the resonance mass,
width and spin, respectively. On the other hand, PDG
[5] gives

D13(1520) : Ap

3/2 = 150(15)GeV�1/2, (13)

Ap

1/2 = �24(9) GeV�1/2

S11(1535) : Ap

3/2 = 0, Ap

1/2 = 90(30)GeV�1/2,

with the strength of the two resonances in the total cross
section distributed roughly as ⇠ 2 : 1 between D13(1520)
and S11(1535), respectively. This di↵erence has a dra-
matic consequences for the GDH sum rule, if the rela-
tive strengths and the quantum numbers are used. In
fact, S11(1535) being a J = 1/2 resonance cannot be ex-
cited in the A3/2 channel, thus its contribution to the

Sum rule value Christy & Bosted “PDG”

Re-evaluate the γZ-box with the new resonance parametrization



 Correcting the γZ-calculation with the resonances

Further reduction - mainly F37(1950)"
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proton and neutron strength is very close - quantum numbers OK"
Reasonable to assume that at least 50% of F37 is really F37

Uncertainty on the resonance contribution is halved.
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 Uncertainty of the Background

Main source of the uncertainty: "
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Isospin rotation of e.-m. data: background
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FIG. 10. (Color online) Comparison of the x dependence of the
DIS structure function F2(x, Q2) at fixed Q2 and as a function of x, in
GVD/CDP model of Ref. [37] (solid lines) and the naive GVD model
of [39] (dashed lines) to the low-x DIS data of the H1 Collaboration
[33]. The experimental errors are not shown.

where we neglected strangeness contributions that are
generally small [41].

The above relation is valid for transitions to I = 1
2 reso-

nances as well:

⟨X|Jµ
NC,V |p⟩ = (1 − 4s2θW )⟨X|Jµ

em|p⟩ − ⟨X|Jµ
em|n⟩. (33)

It is then straightforward to relate the contribution of a reso-
nance R with isospin 1/2 to the interference γZ cross section
entering Eq. (16) to its contribution to the electromagnetic
cross section:

⟨p|Jµ
em|R⟩⟨R|Jµ

NC,V |p⟩ = (1 − 4s2θW )
∣∣⟨R|Jµ

em|p⟩
∣∣2

−⟨p|Jµ
em|R⟩⟨R|Jµ

em|n⟩. (34)

Consequently, for each resonance, we define two ratios
describing the relative strength of its contribution to the
γZ-interference cross sections σ

γZ,p
T (L),R with respect to the

purely electromagnetic ones σ
γp
T (L),R as

ξR
Z/γ (Q2) ≡

σ
γZ,p
T ,R

σ
γp
T,R

,

(35)

ζR
Z/γ (Q2) ≡

σ
γZ,p
L,R

σ
γp
L,R

.

In the Appendix we discuss in detail the Q2 dependence of
these ratios, as well as the ratios of the longitudinal cross
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FIG. 11. (Color online) Comparison of the Q2 dependence of
the DIS structure function F2(x,Q2) at fixed x and as a function
of Q2 in the GVD/CDP model of Ref. [37] (solid lines) and the
naive GVD model of Ref. [39] (dashed lines) to the DIS data of the
NMC Collaboration [31] and the E665 Collaboration [32], where the
x-binning corresponds to that of NMC. The experimental errors are
not shown.

sections ζR
Z/γ . Based on the discussion in the Appendix, we

use the value

ξR
Z/γ (Q2) = [1 − 4s2θW (0)] − yR = const. (36)

to rescale the contribution of a resonance R to both transverse
and longitudinal cross section. Possible discrepancies (which,
if known, are model dependent) from this rule are accounted
for by assigning a conservative uncertainty to the ratios ξR

Z/γ .

015502-11

F2(x,Q²)
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FIG. 10. (Color online) Comparison of the x dependence of the
DIS structure function F2(x, Q2) at fixed Q2 and as a function of x, in
GVD/CDP model of Ref. [37] (solid lines) and the naive GVD model
of [39] (dashed lines) to the low-x DIS data of the H1 Collaboration
[33]. The experimental errors are not shown.

where we neglected strangeness contributions that are
generally small [41].

The above relation is valid for transitions to I = 1
2 reso-

nances as well:

⟨X|Jµ
NC,V |p⟩ = (1 − 4s2θW )⟨X|Jµ

em|p⟩ − ⟨X|Jµ
em|n⟩. (33)

It is then straightforward to relate the contribution of a reso-
nance R with isospin 1/2 to the interference γZ cross section
entering Eq. (16) to its contribution to the electromagnetic
cross section:

⟨p|Jµ
em|R⟩⟨R|Jµ

NC,V |p⟩ = (1 − 4s2θW )
∣∣⟨R|Jµ

em|p⟩
∣∣2

−⟨p|Jµ
em|R⟩⟨R|Jµ

em|n⟩. (34)

Consequently, for each resonance, we define two ratios
describing the relative strength of its contribution to the
γZ-interference cross sections σ

γZ,p
T (L),R with respect to the

purely electromagnetic ones σ
γp
T (L),R as

ξR
Z/γ (Q2) ≡

σ
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T ,R
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,

(35)

ζR
Z/γ (Q2) ≡

σ
γZ,p
L,R
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.

In the Appendix we discuss in detail the Q2 dependence of
these ratios, as well as the ratios of the longitudinal cross
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FIG. 11. (Color online) Comparison of the Q2 dependence of
the DIS structure function F2(x,Q2) at fixed x and as a function
of Q2 in the GVD/CDP model of Ref. [37] (solid lines) and the
naive GVD model of Ref. [39] (dashed lines) to the DIS data of the
NMC Collaboration [31] and the E665 Collaboration [32], where the
x-binning corresponds to that of NMC. The experimental errors are
not shown.

sections ζR
Z/γ . Based on the discussion in the Appendix, we

use the value

ξR
Z/γ (Q2) = [1 − 4s2θW (0)] − yR = const. (36)

to rescale the contribution of a resonance R to both transverse
and longitudinal cross section. Possible discrepancies (which,
if known, are model dependent) from this rule are accounted
for by assigning a conservative uncertainty to the ratios ξR

Z/γ .
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B. Potential of FESR for constraining the
uncertainty of the dispersive �Z-box calculation

The modification of resonance parameters described
in the previous section also a↵ects the description of the
total cross section. Fig. 2 displays the comparison of the
two models and the data on �

tot

obtained by the GDH
collaboration [6]. To improve the description of the data,
we adjusted the value of the width of the �(1232) to the
standard value of 120 MeV [5], while the fit of [3] features
a slightly larger width, 136 MeV. We will now feed these
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FIG. 2: The total photo absorption cross section from the
original parametrization of Ref. [3] (dashed blue line) and
the modified one adjusted in accord with the PDG [5] (solid
red line) in comparison with data by GDH collaboration [6].
In the parametrization of P33(1232) the experimental value
of the width, �P33(1232) = 120 MeV was used for Model II,
whereas Model I uses �P33(1232) = 136 MeV [3].

two parametrizations in the finite energy sum rule, and
in its �Z-interference analogue,
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The numerical evaluation of Eq. (14) with Model II
leads to the extraction

C��

1 = �1.12 µb GeV, (16)

which agrees reasonably well to the recent extraction of
the J = 0 pole [7],

C��

1 = �0.75± 0.35 µb GeV. (17)

The discrepancy has essentially two reasons. Firstly, Ref.
[7] used a di↵erent form of the parametrization and op-
erated with only 5 resonances. Secondly, it used the real

photon data only. On the contrary, Ref. [3] provided
a global fit to real and virtual photon data, therefore a
somewhat worse quality of the fit to real photon data
only, as can be seen in Fig. 2, is only mildly reflected in
the overall �2. The original parametrization of Ref. [3]
gives a larger result, C��

1 = �1.68 µb-GeV.
To summarize the evaluations of Eqs. (16, 17),

C��

1 = �0.97± 0.35(stat.)± 0.35(syst.) µb GeV, (18)

where we introduced a somewhat conservative estimate
of the systematical uncertainty.

Next we evaluate the �Z-interference analog of the J =
0 pole, Eq. (15) using the isospin rotation. Model II leads
to

C�Z

1 = 2.61± 2.02(back.)+0.93
�0.78(res.) µb GeV, (19)

where the first uncertainty is due to the isospin structure
of the background, and the second one due to that of the
resonances. Note that while the latter is obtained from
data (analyzed by PDG) and can be considered reliable,
the former uncertainty is postulated. It is considered
conservative but there is no guarantee that it is true.
The Model I gives a slightly di↵erent value but with a
larger uncertainty due to resonance contributions

C�Z

1 = 2.47± 2.02(back.)+2.17
�1.33(res.) µb GeV, (20)

It is seen that the Model I evaluation, at least in prin-
ciple, may be used to constrain the background contri-
bution since the uncertainty of the latter dominates over
that of the resonances. To do that one, however needs
information about the l.h.s. of Eq. (15). It has been
argued in the literature that the J = 0 pole, if exists,
should be due to an e↵ective two-photon-quark coupling.
Then, knowing the J = 0 pole for Compton scattering,
Eq. (18) we can model the �Z-interference J = 0 pole.
If at asymptotically high energy the proton is seen by
the real photon or massless Z as a symmetric collection
of sea quarks (SU(6) symmetry) one would expect
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whereas for the case where the J = 0 pole is due to
coupling to valence quarks one would have
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These two näıve estimates indicate that the �Z-
interference J = 0 pole is likely to be somewhat smaller
than the electromagnetic one, and to have the same sign.
We can then assume that, conservatively,

C�Z

1 = �0.5± 0.5 µb GeV. (23)

The comparison to the evaluation of Eq. (19) sug-
gests that in order for the two to agree the background

FESR: DR for Compton amplitude without Regge-behaved part
COMPTON SCATTERING FROM NUCLEI AND PHOTO- . . . PHYSICAL REVIEW C 84, 065202 (2011)

FIG. 3. (Color online) High energy photoabsorption cross sections per nucleon for six nuclear targets compared to the fit results (solid
lines) using the Breit-Wigner resonance plus background pametrization of Eq. (19). Data are from Ref. [26] for the proton and the deuteron,
and from Refs. [21–23] for heavier nuclei. The Regge plus Pomeron curves are shown by dashed lines. The background fit parameters are
given in Table I.

this relies on a mean-field approach to the target, which we
would expect to become more accurate as the number of
target nucleons increases. For the α = 0 pole contribution,
our new result for the proton is significantly different from
the Thomson term, which is at variance with the original
result of Damashek and Gilman [5]. This discrepancy is
due to our use of the very high energy photoabsorption
data that has become available only recently [27]. As a
result, instead of the high-energy parametrization used in
Ref. [5],

σR+P (ν) ≈
(

96.6 + 70.2

√
1 GeV

ν

)

µb, (23)

we find

σR+P (ν) ≈
[

68.0
( ν

1 GeV

)0.097
+ 99.0

√
1 GeV

ν

]

µb. (24)

At an energy ν = 1 GeV, both formulas give almost identical
results, but at high energies they differ dramatically. At the

same time, the data in the resonance region have not changed
much, so this leads to our new value for the α = 0 contribution
to photoabsorption on the proton.

For heavier nuclei, however, the bottom panel of Fig. 4
and the final row of Table II show that the α = 0 contribution
appears to be consistent with the Thomson term. This result is
due to an interplay of various nuclear effects in the resonance
region that affect the value of the integrated photoabsorption
cross section and also shadowing at medium-to-high energies.
Shadowing at energies below ν = 200 GeV causes the value
of cP to decrease from 68 µb for the proton to approximately
43 µb for lead, respectively. On the other hand, the Pomeron
is a QCD phenomenon that is due to the interaction of
quarks and gluons and should be the leading mechanism of
photoabsorption at extremely high energies. It can be expected
that at asymptotic energies nuclear effects should be negligible,
and the strength of the Pomeron should be the same for
both the proton and heavier nuclei. If in the future nuclear
photoabsorption data above ν = 200 GeV becomes available,
they could shed more light on the asymptotic behavior of

TABLE I. Reggeon and Pomeron parameters in µb

Proton Deuteron 12
6 C 27

13Al 65
29Cu 207

82 Pb

cP (µb) 68.0 ± 0.2 70.08 ± 1.26 57.24 ± 1.13 62.70 ± 6.0 45.88 ± 0.57 42.08 ± 1.96
cR (µb) 99.0 ± 1.15 80.50 ± 2.27 76.49 ± 4.40 53.53 ± 11.6 76.95 ± 3.60 91.43 ± 9.14

065202-5
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B. Potential of FESR for constraining the
uncertainty of the dispersive �Z-box calculation

The modification of resonance parameters described
in the previous section also a↵ects the description of the
total cross section. Fig. 2 displays the comparison of the
two models and the data on �

tot

obtained by the GDH
collaboration [6]. To improve the description of the data,
we adjusted the value of the width of the �(1232) to the
standard value of 120 MeV [5], while the fit of [3] features
a slightly larger width, 136 MeV. We will now feed these
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FIG. 2: The total photo absorption cross section from the
original parametrization of Ref. [3] (dashed blue line) and
the modified one adjusted in accord with the PDG [5] (solid
red line) in comparison with data by GDH collaboration [6].
In the parametrization of P33(1232) the experimental value
of the width, �P33(1232) = 120 MeV was used for Model II,
whereas Model I uses �P33(1232) = 136 MeV [3].

two parametrizations in the finite energy sum rule, and
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The numerical evaluation of Eq. (14) with Model II
leads to the extraction

C��

1 = �1.12 µb GeV, (16)

which agrees reasonably well to the recent extraction of
the J = 0 pole [7],

C��

1 = �0.75± 0.35 µb GeV. (17)

The discrepancy has essentially two reasons. Firstly, Ref.
[7] used a di↵erent form of the parametrization and op-
erated with only 5 resonances. Secondly, it used the real

photon data only. On the contrary, Ref. [3] provided
a global fit to real and virtual photon data, therefore a
somewhat worse quality of the fit to real photon data
only, as can be seen in Fig. 2, is only mildly reflected in
the overall �2. The original parametrization of Ref. [3]
gives a larger result, C��

1 = �1.68 µb-GeV.
To summarize the evaluations of Eqs. (16, 17),

C��

1 = �0.97± 0.35(stat.)± 0.35(syst.) µb GeV, (18)

where we introduced a somewhat conservative estimate
of the systematical uncertainty.

Next we evaluate the �Z-interference analog of the J =
0 pole, Eq. (15) using the isospin rotation. Model II leads
to

C�Z

1 = 2.61± 2.02(back.)+0.93
�0.78(res.) µb GeV, (19)

where the first uncertainty is due to the isospin structure
of the background, and the second one due to that of the
resonances. Note that while the latter is obtained from
data (analyzed by PDG) and can be considered reliable,
the former uncertainty is postulated. It is considered
conservative but there is no guarantee that it is true.
The Model I gives a slightly di↵erent value but with a
larger uncertainty due to resonance contributions

C�Z

1 = 2.47± 2.02(back.)+2.17
�1.33(res.) µb GeV, (20)

It is seen that the Model I evaluation, at least in prin-
ciple, may be used to constrain the background contri-
bution since the uncertainty of the latter dominates over
that of the resonances. To do that one, however needs
information about the l.h.s. of Eq. (15). It has been
argued in the literature that the J = 0 pole, if exists,
should be due to an e↵ective two-photon-quark coupling.
Then, knowing the J = 0 pole for Compton scattering,
Eq. (18) we can model the �Z-interference J = 0 pole.
If at asymptotically high energy the proton is seen by
the real photon or massless Z as a symmetric collection
of sea quarks (SU(6) symmetry) one would expect
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whereas for the case where the J = 0 pole is due to
coupling to valence quarks one would have
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These two näıve estimates indicate that the �Z-
interference J = 0 pole is likely to be somewhat smaller
than the electromagnetic one, and to have the same sign.
We can then assume that, conservatively,

C�Z

1 = �0.5± 0.5 µb GeV. (23)

The comparison to the evaluation of Eq. (19) sug-
gests that in order for the two to agree the background
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The modification of resonance parameters described
in the previous section also a↵ects the description of the
total cross section. Fig. 2 displays the comparison of the
two models and the data on �

tot

obtained by the GDH
collaboration [6]. To improve the description of the data,
we adjusted the value of the width of the �(1232) to the
standard value of 120 MeV [5], while the fit of [3] features
a slightly larger width, 136 MeV. We will now feed these

200 400 600 800 1000 1200 1400 1600 1800
ν (MeV)

0

100

200

300

400

500

σᵗ
ᵒᵗ 

(μ
ba

rn
)

σᵗᵒᵗ GDH collaboration
Model I (Bosted & Christy)
Model II

FIG. 2: The total photo absorption cross section from the
original parametrization of Ref. [3] (dashed blue line) and
the modified one adjusted in accord with the PDG [5] (solid
red line) in comparison with data by GDH collaboration [6].
In the parametrization of P33(1232) the experimental value
of the width, �P33(1232) = 120 MeV was used for Model II,
whereas Model I uses �P33(1232) = 136 MeV [3].

two parametrizations in the finite energy sum rule, and
in its �Z-interference analogue,
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The numerical evaluation of Eq. (14) with Model II
leads to the extraction

C��

1 = �1.12 µb GeV, (16)

which agrees reasonably well to the recent extraction of
the J = 0 pole [7],

C��

1 = �0.75± 0.35 µb GeV. (17)

The discrepancy has essentially two reasons. Firstly, Ref.
[7] used a di↵erent form of the parametrization and op-
erated with only 5 resonances. Secondly, it used the real

photon data only. On the contrary, Ref. [3] provided
a global fit to real and virtual photon data, therefore a
somewhat worse quality of the fit to real photon data
only, as can be seen in Fig. 2, is only mildly reflected in
the overall �2. The original parametrization of Ref. [3]
gives a larger result, C��

1 = �1.68 µb-GeV.
To summarize the evaluations of Eqs. (16, 17),

C��

1 = �0.97± 0.35(stat.)± 0.35(syst.) µb GeV, (18)

where we introduced a somewhat conservative estimate
of the systematical uncertainty.

Next we evaluate the �Z-interference analog of the J =
0 pole, Eq. (15) using the isospin rotation. Model II leads
to

C�Z

1 = 2.61± 2.02(back.)+0.93
�0.78(res.) µb GeV, (19)

where the first uncertainty is due to the isospin structure
of the background, and the second one due to that of the
resonances. Note that while the latter is obtained from
data (analyzed by PDG) and can be considered reliable,
the former uncertainty is postulated. It is considered
conservative but there is no guarantee that it is true.
The Model I gives a slightly di↵erent value but with a
larger uncertainty due to resonance contributions

C�Z

1 = 2.47± 2.02(back.)+2.17
�1.33(res.) µb GeV, (20)

It is seen that the Model I evaluation, at least in prin-
ciple, may be used to constrain the background contri-
bution since the uncertainty of the latter dominates over
that of the resonances. To do that one, however needs
information about the l.h.s. of Eq. (15). It has been
argued in the literature that the J = 0 pole, if exists,
should be due to an e↵ective two-photon-quark coupling.
Then, knowing the J = 0 pole for Compton scattering,
Eq. (18) we can model the �Z-interference J = 0 pole.
If at asymptotically high energy the proton is seen by
the real photon or massless Z as a symmetric collection
of sea quarks (SU(6) symmetry) one would expect
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whereas for the case where the J = 0 pole is due to
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These two näıve estimates indicate that the �Z-
interference J = 0 pole is likely to be somewhat smaller
than the electromagnetic one, and to have the same sign.
We can then assume that, conservatively,

C�Z

1 = �0.5± 0.5 µb GeV. (23)

The comparison to the evaluation of Eq. (19) sug-
gests that in order for the two to agree the background
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obtained by the GDH
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we adjusted the value of the width of the �(1232) to the
standard value of 120 MeV [5], while the fit of [3] features
a slightly larger width, 136 MeV. We will now feed these
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The numerical evaluation of Eq. (14) with Model II
leads to the extraction

C��

1 = �1.12 µb GeV, (16)

which agrees reasonably well to the recent extraction of
the J = 0 pole [7],

C��

1 = �0.75± 0.35 µb GeV. (17)

The discrepancy has essentially two reasons. Firstly, Ref.
[7] used a di↵erent form of the parametrization and op-
erated with only 5 resonances. Secondly, it used the real

photon data only. On the contrary, Ref. [3] provided
a global fit to real and virtual photon data, therefore a
somewhat worse quality of the fit to real photon data
only, as can be seen in Fig. 2, is only mildly reflected in
the overall �2. The original parametrization of Ref. [3]
gives a larger result, C��

1 = �1.68 µb-GeV.
To summarize the evaluations of Eqs. (16, 17),
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1 = �0.97± 0.35(stat.)± 0.35(syst.) µb GeV, (18)

where we introduced a somewhat conservative estimate
of the systematical uncertainty.

Next we evaluate the �Z-interference analog of the J =
0 pole, Eq. (15) using the isospin rotation. Model II leads
to

C�Z

1 = 2.61± 2.02(back.)+0.93
�0.78(res.) µb GeV, (19)

where the first uncertainty is due to the isospin structure
of the background, and the second one due to that of the
resonances. Note that while the latter is obtained from
data (analyzed by PDG) and can be considered reliable,
the former uncertainty is postulated. It is considered
conservative but there is no guarantee that it is true.
The Model I gives a slightly di↵erent value but with a
larger uncertainty due to resonance contributions
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1 = 2.47± 2.02(back.)+2.17
�1.33(res.) µb GeV, (20)

It is seen that the Model I evaluation, at least in prin-
ciple, may be used to constrain the background contri-
bution since the uncertainty of the latter dominates over
that of the resonances. To do that one, however needs
information about the l.h.s. of Eq. (15). It has been
argued in the literature that the J = 0 pole, if exists,
should be due to an e↵ective two-photon-quark coupling.
Then, knowing the J = 0 pole for Compton scattering,
Eq. (18) we can model the �Z-interference J = 0 pole.
If at asymptotically high energy the proton is seen by
the real photon or massless Z as a symmetric collection
of sea quarks (SU(6) symmetry) one would expect
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These two näıve estimates indicate that the �Z-
interference J = 0 pole is likely to be somewhat smaller
than the electromagnetic one, and to have the same sign.
We can then assume that, conservatively,

C�Z

1 = �0.5± 0.5 µb GeV. (23)

The comparison to the evaluation of Eq. (19) sug-
gests that in order for the two to agree the background
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B. Potential of FESR for constraining the
uncertainty of the dispersive �Z-box calculation

The modification of resonance parameters described
in the previous section also a↵ects the description of the
total cross section. Fig. 2 displays the comparison of the
two models and the data on �

tot

obtained by the GDH
collaboration [6]. To improve the description of the data,
we adjusted the value of the width of the �(1232) to the
standard value of 120 MeV [5], while the fit of [3] features
a slightly larger width, 136 MeV. We will now feed these
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FIG. 2: The total photo absorption cross section from the
original parametrization of Ref. [3] (dashed blue line) and
the modified one adjusted in accord with the PDG [5] (solid
red line) in comparison with data by GDH collaboration [6].
In the parametrization of P33(1232) the experimental value
of the width, �P33(1232) = 120 MeV was used for Model II,
whereas Model I uses �P33(1232) = 136 MeV [3].

two parametrizations in the finite energy sum rule, and
in its �Z-interference analogue,
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The numerical evaluation of Eq. (14) with Model II
leads to the extraction

C��

1 = �1.12 µb GeV, (16)

which agrees reasonably well to the recent extraction of
the J = 0 pole [7],

C��

1 = �0.75± 0.35 µb GeV. (17)

The discrepancy has essentially two reasons. Firstly, Ref.
[7] used a di↵erent form of the parametrization and op-
erated with only 5 resonances. Secondly, it used the real

photon data only. On the contrary, Ref. [3] provided
a global fit to real and virtual photon data, therefore a
somewhat worse quality of the fit to real photon data
only, as can be seen in Fig. 2, is only mildly reflected in
the overall �2. The original parametrization of Ref. [3]
gives a larger result, C��

1 = �1.68 µb-GeV.
To summarize the evaluations of Eqs. (16, 17),

C��

1 = �0.97± 0.35(stat.)± 0.35(syst.) µb GeV, (18)

where we introduced a somewhat conservative estimate
of the systematical uncertainty.

Next we evaluate the �Z-interference analog of the J =
0 pole, Eq. (15) using the isospin rotation. Model II leads
to

C�Z

1 = 2.61± 2.02(back.)+0.93
�0.78(res.) µb GeV, (19)

where the first uncertainty is due to the isospin structure
of the background, and the second one due to that of the
resonances. Note that while the latter is obtained from
data (analyzed by PDG) and can be considered reliable,
the former uncertainty is postulated. It is considered
conservative but there is no guarantee that it is true.
The Model I gives a slightly di↵erent value but with a
larger uncertainty due to resonance contributions

C�Z

1 = 2.47± 2.02(back.)+2.17
�1.33(res.) µb GeV, (20)

It is seen that the Model I evaluation, at least in prin-
ciple, may be used to constrain the background contri-
bution since the uncertainty of the latter dominates over
that of the resonances. To do that one, however needs
information about the l.h.s. of Eq. (15). It has been
argued in the literature that the J = 0 pole, if exists,
should be due to an e↵ective two-photon-quark coupling.
Then, knowing the J = 0 pole for Compton scattering,
Eq. (18) we can model the �Z-interference J = 0 pole.
If at asymptotically high energy the proton is seen by
the real photon or massless Z as a symmetric collection
of sea quarks (SU(6) symmetry) one would expect
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whereas for the case where the J = 0 pole is due to
coupling to valence quarks one would have
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These two näıve estimates indicate that the �Z-
interference J = 0 pole is likely to be somewhat smaller
than the electromagnetic one, and to have the same sign.
We can then assume that, conservatively,

C�Z

1 = �0.5± 0.5 µb GeV. (23)

The comparison to the evaluation of Eq. (19) sug-
gests that in order for the two to agree the background

With the parametrization of the γγ data + isospin rotation:

4

B. Potential of FESR for constraining the
uncertainty of the dispersive �Z-box calculation

The modification of resonance parameters described
in the previous section also a↵ects the description of the
total cross section. Fig. 2 displays the comparison of the
two models and the data on �

tot

obtained by the GDH
collaboration [6]. To improve the description of the data,
we adjusted the value of the width of the �(1232) to the
standard value of 120 MeV [5], while the fit of [3] features
a slightly larger width, 136 MeV. We will now feed these
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FIG. 2: The total photo absorption cross section from the
original parametrization of Ref. [3] (dashed blue line) and
the modified one adjusted in accord with the PDG [5] (solid
red line) in comparison with data by GDH collaboration [6].
In the parametrization of P33(1232) the experimental value
of the width, �P33(1232) = 120 MeV was used for Model II,
whereas Model I uses �P33(1232) = 136 MeV [3].

two parametrizations in the finite energy sum rule, and
in its �Z-interference analogue,
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The numerical evaluation of Eq. (14) with Model II
leads to the extraction

C��

1 = �1.12 µb GeV, (16)

which agrees reasonably well to the recent extraction of
the J = 0 pole [7],

C��

1 = �0.75± 0.35 µb GeV. (17)

The discrepancy has essentially two reasons. Firstly, Ref.
[7] used a di↵erent form of the parametrization and op-
erated with only 5 resonances. Secondly, it used the real

photon data only. On the contrary, Ref. [3] provided
a global fit to real and virtual photon data, therefore a
somewhat worse quality of the fit to real photon data
only, as can be seen in Fig. 2, is only mildly reflected in
the overall �2. The original parametrization of Ref. [3]
gives a larger result, C��

1 = �1.68 µb-GeV.
To summarize the evaluations of Eqs. (16, 17),

C��

1 = �0.97± 0.35(stat.)± 0.35(syst.) µb GeV, (18)

where we introduced a somewhat conservative estimate
of the systematical uncertainty.

Next we evaluate the �Z-interference analog of the J =
0 pole, Eq. (15) using the isospin rotation. Model II leads
to

C�Z

1 = 2.61± 2.02(back.)+0.93
�0.78(res.) µb GeV, (19)

where the first uncertainty is due to the isospin structure
of the background, and the second one due to that of the
resonances. Note that while the latter is obtained from
data (analyzed by PDG) and can be considered reliable,
the former uncertainty is postulated. It is considered
conservative but there is no guarantee that it is true.
The Model I gives a slightly di↵erent value but with a
larger uncertainty due to resonance contributions

C�Z

1 = 2.47± 2.02(back.)+2.17
�1.33(res.) µb GeV, (20)

It is seen that the Model I evaluation, at least in prin-
ciple, may be used to constrain the background contri-
bution since the uncertainty of the latter dominates over
that of the resonances. To do that one, however needs
information about the l.h.s. of Eq. (15). It has been
argued in the literature that the J = 0 pole, if exists,
should be due to an e↵ective two-photon-quark coupling.
Then, knowing the J = 0 pole for Compton scattering,
Eq. (18) we can model the �Z-interference J = 0 pole.
If at asymptotically high energy the proton is seen by
the real photon or massless Z as a symmetric collection
of sea quarks (SU(6) symmetry) one would expect
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whereas for the case where the J = 0 pole is due to
coupling to valence quarks one would have
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These two näıve estimates indicate that the �Z-
interference J = 0 pole is likely to be somewhat smaller
than the electromagnetic one, and to have the same sign.
We can then assume that, conservatively,

C�Z

1 = �0.5± 0.5 µb GeV. (23)

The comparison to the evaluation of Eq. (19) sug-
gests that in order for the two to agree the background

4

B. Potential of FESR for constraining the
uncertainty of the dispersive �Z-box calculation

The modification of resonance parameters described
in the previous section also a↵ects the description of the
total cross section. Fig. 2 displays the comparison of the
two models and the data on �

tot

obtained by the GDH
collaboration [6]. To improve the description of the data,
we adjusted the value of the width of the �(1232) to the
standard value of 120 MeV [5], while the fit of [3] features
a slightly larger width, 136 MeV. We will now feed these
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FIG. 2: The total photo absorption cross section from the
original parametrization of Ref. [3] (dashed blue line) and
the modified one adjusted in accord with the PDG [5] (solid
red line) in comparison with data by GDH collaboration [6].
In the parametrization of P33(1232) the experimental value
of the width, �P33(1232) = 120 MeV was used for Model II,
whereas Model I uses �P33(1232) = 136 MeV [3].

two parametrizations in the finite energy sum rule, and
in its �Z-interference analogue,
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The numerical evaluation of Eq. (14) with Model II
leads to the extraction

C��

1 = �1.12 µb GeV, (16)

which agrees reasonably well to the recent extraction of
the J = 0 pole [7],

C��

1 = �0.75± 0.35 µb GeV. (17)

The discrepancy has essentially two reasons. Firstly, Ref.
[7] used a di↵erent form of the parametrization and op-
erated with only 5 resonances. Secondly, it used the real

photon data only. On the contrary, Ref. [3] provided
a global fit to real and virtual photon data, therefore a
somewhat worse quality of the fit to real photon data
only, as can be seen in Fig. 2, is only mildly reflected in
the overall �2. The original parametrization of Ref. [3]
gives a larger result, C��

1 = �1.68 µb-GeV.
To summarize the evaluations of Eqs. (16, 17),

C��

1 = �0.97± 0.35(stat.)± 0.35(syst.) µb GeV, (18)

where we introduced a somewhat conservative estimate
of the systematical uncertainty.

Next we evaluate the �Z-interference analog of the J =
0 pole, Eq. (15) using the isospin rotation. Model II leads
to

C�Z

1 = 2.61± 2.02(back.)+0.93
�0.78(res.) µb GeV, (19)

where the first uncertainty is due to the isospin structure
of the background, and the second one due to that of the
resonances. Note that while the latter is obtained from
data (analyzed by PDG) and can be considered reliable,
the former uncertainty is postulated. It is considered
conservative but there is no guarantee that it is true.
The Model I gives a slightly di↵erent value but with a
larger uncertainty due to resonance contributions

C�Z

1 = 2.47± 2.02(back.)+2.17
�1.33(res.) µb GeV, (20)

It is seen that the Model I evaluation, at least in prin-
ciple, may be used to constrain the background contri-
bution since the uncertainty of the latter dominates over
that of the resonances. To do that one, however needs
information about the l.h.s. of Eq. (15). It has been
argued in the literature that the J = 0 pole, if exists,
should be due to an e↵ective two-photon-quark coupling.
Then, knowing the J = 0 pole for Compton scattering,
Eq. (18) we can model the �Z-interference J = 0 pole.
If at asymptotically high energy the proton is seen by
the real photon or massless Z as a symmetric collection
of sea quarks (SU(6) symmetry) one would expect
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whereas for the case where the J = 0 pole is due to
coupling to valence quarks one would have
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These two näıve estimates indicate that the �Z-
interference J = 0 pole is likely to be somewhat smaller
than the electromagnetic one, and to have the same sign.
We can then assume that, conservatively,

C�Z

1 = �0.5± 0.5 µb GeV. (23)

The comparison to the evaluation of Eq. (19) sug-
gests that in order for the two to agree the background

4

B. Potential of FESR for constraining the
uncertainty of the dispersive �Z-box calculation

The modification of resonance parameters described
in the previous section also a↵ects the description of the
total cross section. Fig. 2 displays the comparison of the
two models and the data on �

tot

obtained by the GDH
collaboration [6]. To improve the description of the data,
we adjusted the value of the width of the �(1232) to the
standard value of 120 MeV [5], while the fit of [3] features
a slightly larger width, 136 MeV. We will now feed these
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FIG. 2: The total photo absorption cross section from the
original parametrization of Ref. [3] (dashed blue line) and
the modified one adjusted in accord with the PDG [5] (solid
red line) in comparison with data by GDH collaboration [6].
In the parametrization of P33(1232) the experimental value
of the width, �P33(1232) = 120 MeV was used for Model II,
whereas Model I uses �P33(1232) = 136 MeV [3].

two parametrizations in the finite energy sum rule, and
in its �Z-interference analogue,
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The numerical evaluation of Eq. (14) with Model II
leads to the extraction

C��

1 = �1.12 µb GeV, (16)

which agrees reasonably well to the recent extraction of
the J = 0 pole [7],

C��

1 = �0.75± 0.35 µb GeV. (17)

The discrepancy has essentially two reasons. Firstly, Ref.
[7] used a di↵erent form of the parametrization and op-
erated with only 5 resonances. Secondly, it used the real

photon data only. On the contrary, Ref. [3] provided
a global fit to real and virtual photon data, therefore a
somewhat worse quality of the fit to real photon data
only, as can be seen in Fig. 2, is only mildly reflected in
the overall �2. The original parametrization of Ref. [3]
gives a larger result, C��

1 = �1.68 µb-GeV.
To summarize the evaluations of Eqs. (16, 17),

C��

1 = �0.97± 0.35(stat.)± 0.35(syst.) µb GeV, (18)

where we introduced a somewhat conservative estimate
of the systematical uncertainty.

Next we evaluate the �Z-interference analog of the J =
0 pole, Eq. (15) using the isospin rotation. Model II leads
to

C�Z

1 = 2.61± 2.02(back.)+0.93
�0.78(res.) µb GeV, (19)

where the first uncertainty is due to the isospin structure
of the background, and the second one due to that of the
resonances. Note that while the latter is obtained from
data (analyzed by PDG) and can be considered reliable,
the former uncertainty is postulated. It is considered
conservative but there is no guarantee that it is true.
The Model I gives a slightly di↵erent value but with a
larger uncertainty due to resonance contributions

C�Z

1 = 2.47± 2.02(back.)+2.17
�1.33(res.) µb GeV, (20)

It is seen that the Model I evaluation, at least in prin-
ciple, may be used to constrain the background contri-
bution since the uncertainty of the latter dominates over
that of the resonances. To do that one, however needs
information about the l.h.s. of Eq. (15). It has been
argued in the literature that the J = 0 pole, if exists,
should be due to an e↵ective two-photon-quark coupling.
Then, knowing the J = 0 pole for Compton scattering,
Eq. (18) we can model the �Z-interference J = 0 pole.
If at asymptotically high energy the proton is seen by
the real photon or massless Z as a symmetric collection
of sea quarks (SU(6) symmetry) one would expect
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whereas for the case where the J = 0 pole is due to
coupling to valence quarks one would have
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These two näıve estimates indicate that the �Z-
interference J = 0 pole is likely to be somewhat smaller
than the electromagnetic one, and to have the same sign.
We can then assume that, conservatively,

C�Z

1 = �0.5± 0.5 µb GeV. (23)

The comparison to the evaluation of Eq. (19) sug-
gests that in order for the two to agree the background

4

B. Potential of FESR for constraining the
uncertainty of the dispersive �Z-box calculation

The modification of resonance parameters described
in the previous section also a↵ects the description of the
total cross section. Fig. 2 displays the comparison of the
two models and the data on �

tot

obtained by the GDH
collaboration [6]. To improve the description of the data,
we adjusted the value of the width of the �(1232) to the
standard value of 120 MeV [5], while the fit of [3] features
a slightly larger width, 136 MeV. We will now feed these
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FIG. 2: The total photo absorption cross section from the
original parametrization of Ref. [3] (dashed blue line) and
the modified one adjusted in accord with the PDG [5] (solid
red line) in comparison with data by GDH collaboration [6].
In the parametrization of P33(1232) the experimental value
of the width, �P33(1232) = 120 MeV was used for Model II,
whereas Model I uses �P33(1232) = 136 MeV [3].

two parametrizations in the finite energy sum rule, and
in its �Z-interference analogue,
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The numerical evaluation of Eq. (14) with Model II
leads to the extraction

C��

1 = �1.12 µb GeV, (16)

which agrees reasonably well to the recent extraction of
the J = 0 pole [7],

C��

1 = �0.75± 0.35 µb GeV. (17)

The discrepancy has essentially two reasons. Firstly, Ref.
[7] used a di↵erent form of the parametrization and op-
erated with only 5 resonances. Secondly, it used the real

photon data only. On the contrary, Ref. [3] provided
a global fit to real and virtual photon data, therefore a
somewhat worse quality of the fit to real photon data
only, as can be seen in Fig. 2, is only mildly reflected in
the overall �2. The original parametrization of Ref. [3]
gives a larger result, C��

1 = �1.68 µb-GeV.
To summarize the evaluations of Eqs. (16, 17),

C��

1 = �0.97± 0.35(stat.)± 0.35(syst.) µb GeV, (18)

where we introduced a somewhat conservative estimate
of the systematical uncertainty.

Next we evaluate the �Z-interference analog of the J =
0 pole, Eq. (15) using the isospin rotation. Model II leads
to

C�Z

1 = 2.61± 2.02(back.)+0.93
�0.78(res.) µb GeV, (19)

where the first uncertainty is due to the isospin structure
of the background, and the second one due to that of the
resonances. Note that while the latter is obtained from
data (analyzed by PDG) and can be considered reliable,
the former uncertainty is postulated. It is considered
conservative but there is no guarantee that it is true.
The Model I gives a slightly di↵erent value but with a
larger uncertainty due to resonance contributions

C�Z

1 = 2.47± 2.02(back.)+2.17
�1.33(res.) µb GeV, (20)

It is seen that the Model I evaluation, at least in prin-
ciple, may be used to constrain the background contri-
bution since the uncertainty of the latter dominates over
that of the resonances. To do that one, however needs
information about the l.h.s. of Eq. (15). It has been
argued in the literature that the J = 0 pole, if exists,
should be due to an e↵ective two-photon-quark coupling.
Then, knowing the J = 0 pole for Compton scattering,
Eq. (18) we can model the �Z-interference J = 0 pole.
If at asymptotically high energy the proton is seen by
the real photon or massless Z as a symmetric collection
of sea quarks (SU(6) symmetry) one would expect

C�Z

1
C��

1
⇠

2
P

q=u,d,s,c,t,b

gq

V

e
qP

q=u,d,s,c,t,b

e2
q

=
9
5
� 4s2

W

⇡ 0.85, (21)

whereas for the case where the J = 0 pole is due to
coupling to valence quarks one would have
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These two näıve estimates indicate that the �Z-
interference J = 0 pole is likely to be somewhat smaller
than the electromagnetic one, and to have the same sign.
We can then assume that, conservatively,

C�Z

1 = �0.5± 0.5 µb GeV. (23)

The comparison to the evaluation of Eq. (19) sug-
gests that in order for the two to agree the background
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FIG. 1. The fixed-pole contribution to the Compton amplitude
may arise due to an effective local two-photon coupling to elementary
constituents within the proton.

QCD partons and we extract the α = 0 pole contribution to
scattering at asymptotic energies for various nuclear targets.
Our summary and conclusions are presented in Sec. IV.

II. NUCLEAR PHOTO-ABSORPTION AT LOW ENERGIES

The spin-averaged forward Compton scattering amplitude
T (ν) satisfies a once-subtracted dispersion relation where the
subtraction constant at ν = 0 is determined by the classical
Thomson limit,

ReT (ν) = −Z2

A2

α

MN

+ ν2

π

∫ ∞

0

dν ′2

ν ′2(ν ′2 − ν2)
ImT (ν ′),

(1)

where the integral in Eq. (1) is understood in terms of
its principal value. To facilitate easier comparison between
different nuclei we have normalized T (ν) by dividing it by A,
the number of nucleons. The nuclear Thomson term, i.e., the
constant on the r.h.s. of Eq. (1) is given in terms of the fine
structure constant α, the net charge Z of the target, and the
mass of the nucleus given by A times the nucleon mass, MN (in
the following we ignore isospin breaking terms). The optical
theorem relates the imaginary part of the Compton amplitude
to the total photoabsorption cross section per nucleon σ (ν),

ImT (ν) = ν

4π
σ (ν), (2)

so that the dispersion relation takes the form

ReT (ν) = −Z2

A2

α

MN

+ ν2

2π2

∫ ∞

0

dν ′

ν ′2 − ν2
σ (ν ′). (3)

To evaluate the dispersive integral, strictly speaking the
photoabsorption cross section should be included all the
way up to infinite energy; however, the scale separation
between the nuclear and hadronic domains allows us to
approximate the integral by using a limited range of nuclear
photoabsorption data. As shown in Fig. 2, for a typical target
nuclear resonances saturate the photoabsorption cross section
for energies below Emax ≈ 30 MeV. The dominant feature
of nuclear photoabsorption in the MeV range is the giant
dipole resonance (GDR) (cf. Ref. [24] for a comprehensive
review of GDR data and theory). As an example, the 207Pb
data in the nuclear range are plotted along with the higher
energy data in Fig. 2, in which the GDR is seen as a sharp
peak with width %GDR ≈ 7 MeV. We evaluate the dispersion
relation at νmax ! 100 MeV, which roughly demarcates the
scale of hadronic physics where single-nucleon resonances

FIG. 2. (Color online) Photoabsorption cross-section data for a
207Pb target. Data in the nuclear range ν " 27 MeV (crosses) are
from Ref. [19]; data in the hadronic and high-energy range 0.2
GeV" ν "100 GeV are from Refs. [20–23]. Nuclear deformations
are responsible for the giant resonance that saturates the cross section
for ν ! 100 MeV (region I). Excitations of individual nucleons are
responsible for the hadronic resonances (region II) in the energy
range between pion production threshold and O (2–3 GeV). Finally,
for energies above a few GeV (region III), the smooth cross section
is the result of partonic scattering via Regge exchanges.

begin contributing to the cross section,

ReT (νmax) ≈ −Z2

A2

α

MN

− 1
2π2

∫ Emax

0
dν ′σ (ν ′). (4)

For an energy that is low compared to the hadronic scale,
the scattering amplitude can be approximated by the sum of
contributions describing photon interactions with point-like
nucleons, i.e., it is given by a sum of Thomson terms on Z
protons,

ReT (νmax) ≈ −Z

A

α

MN

. (5)

Combining Eqs. (4) and (5) leads to the Thomas-Reiche-Kuhn
sum rule [1] (with α/MN ≈ 3.03 mb MeV),

∫ Emax

0
dνσ (ν) = 2π2 NZ

A2

α

MN

≈ 60
NZ

A2
mbMeV. (6)

Furthermore, adopting a Breit-Wigner form for the GDR cross
section,

σ (ν) ≈ σGDR(ν) = M2
GDR%2

GDRσGDR
(
ν2 − M2

GDR

)2 + M2
GDR%2

GDR

, (7)

the integral over the resonance photoabsorption cross section
gives πσGDR%GDR/2, and the TRK sum rule leads to the
relation

σGDR%GDR ≈ 12π
NZ

A2
mb MeV. (8)

In Eq. (8), σGDR is the value of the photoabsorption cross
section at the peak of the GDR resonance, and %GDR is the
resonance half-width. This sum rule has been confronted with
experimental data on a vast number of nuclear targets and is
found to be satisfied to within ∼30%. This level of agreement

065202-2
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B. Potential of FESR for constraining the
uncertainty of the dispersive �Z-box calculation

The modification of resonance parameters described
in the previous section also a↵ects the description of the
total cross section. Fig. 2 displays the comparison of the
two models and the data on �

tot

obtained by the GDH
collaboration [6]. To improve the description of the data,
we adjusted the value of the width of the �(1232) to the
standard value of 120 MeV [5], while the fit of [3] features
a slightly larger width, 136 MeV. We will now feed these
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FIG. 2: The total photo absorption cross section from the
original parametrization of Ref. [3] (dashed blue line) and
the modified one adjusted in accord with the PDG [5] (solid
red line) in comparison with data by GDH collaboration [6].
In the parametrization of P33(1232) the experimental value
of the width, �P33(1232) = 120 MeV was used for Model II,
whereas Model I uses �P33(1232) = 136 MeV [3].

two parametrizations in the finite energy sum rule, and
in its �Z-interference analogue,

C��
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The numerical evaluation of Eq. (14) with Model II
leads to the extraction

C��

1 = �1.12 µb GeV, (16)

which agrees reasonably well to the recent extraction of
the J = 0 pole [7],

C��

1 = �0.75± 0.35 µb GeV. (17)

The discrepancy has essentially two reasons. Firstly, Ref.
[7] used a di↵erent form of the parametrization and op-
erated with only 5 resonances. Secondly, it used the real

photon data only. On the contrary, Ref. [3] provided
a global fit to real and virtual photon data, therefore a
somewhat worse quality of the fit to real photon data
only, as can be seen in Fig. 2, is only mildly reflected in
the overall �2. The original parametrization of Ref. [3]
gives a larger result, C��

1 = �1.68 µb-GeV.
To summarize the evaluations of Eqs. (16, 17),

C��

1 = �0.97± 0.35(stat.)± 0.35(syst.) µb GeV, (18)

where we introduced a somewhat conservative estimate
of the systematical uncertainty.

Next we evaluate the �Z-interference analog of the J =
0 pole, Eq. (15) using the isospin rotation. Model II leads
to

C�Z

1 = 2.61± 2.02(back.)+0.93
�0.78(res.) µb GeV, (19)

where the first uncertainty is due to the isospin structure
of the background, and the second one due to that of the
resonances. Note that while the latter is obtained from
data (analyzed by PDG) and can be considered reliable,
the former uncertainty is postulated. It is considered
conservative but there is no guarantee that it is true.
The Model I gives a slightly di↵erent value but with a
larger uncertainty due to resonance contributions

C�Z

1 = 2.47± 2.02(back.)+2.17
�1.33(res.) µb GeV, (20)

It is seen that the Model I evaluation, at least in prin-
ciple, may be used to constrain the background contri-
bution since the uncertainty of the latter dominates over
that of the resonances. To do that one, however needs
information about the l.h.s. of Eq. (15). It has been
argued in the literature that the J = 0 pole, if exists,
should be due to an e↵ective two-photon-quark coupling.
Then, knowing the J = 0 pole for Compton scattering,
Eq. (18) we can model the �Z-interference J = 0 pole.
If at asymptotically high energy the proton is seen by
the real photon or massless Z as a symmetric collection
of sea quarks (SU(6) symmetry) one would expect

C�Z

1
C��

1
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2
P

q=u,d,s,c,t,b

gq

V

e
qP

q=u,d,s,c,t,b

e2
q

=
9
5
� 4s2

W

⇡ 0.85, (21)

whereas for the case where the J = 0 pole is due to
coupling to valence quarks one would have

C�Z

1
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1
⇠ 2(2gu

V

e
u

+ gd

V

e
d

)
2e2

u

+ e2
d

=
5
3
� 4s2

W

⇡ 0.71. (22)

These two näıve estimates indicate that the �Z-
interference J = 0 pole is likely to be somewhat smaller
than the electromagnetic one, and to have the same sign.
We can then assume that, conservatively,

C�Z

1 = �0.5± 0.5 µb GeV. (23)

The comparison to the evaluation of Eq. (19) sug-
gests that in order for the two to agree the background

If ~ like the Thomson term:
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B. Potential of FESR for constraining the
uncertainty of the dispersive �Z-box calculation

The modification of resonance parameters described
in the previous section also a↵ects the description of the
total cross section. Fig. 2 displays the comparison of the
two models and the data on �

tot

obtained by the GDH
collaboration [6]. To improve the description of the data,
we adjusted the value of the width of the �(1232) to the
standard value of 120 MeV [5], while the fit of [3] features
a slightly larger width, 136 MeV. We will now feed these
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FIG. 2: The total photo absorption cross section from the
original parametrization of Ref. [3] (dashed blue line) and
the modified one adjusted in accord with the PDG [5] (solid
red line) in comparison with data by GDH collaboration [6].
In the parametrization of P33(1232) the experimental value
of the width, �P33(1232) = 120 MeV was used for Model II,
whereas Model I uses �P33(1232) = 136 MeV [3].

two parametrizations in the finite energy sum rule, and
in its �Z-interference analogue,
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The numerical evaluation of Eq. (14) with Model II
leads to the extraction

C��

1 = �1.12 µb GeV, (16)

which agrees reasonably well to the recent extraction of
the J = 0 pole [7],

C��

1 = �0.75± 0.35 µb GeV. (17)

The discrepancy has essentially two reasons. Firstly, Ref.
[7] used a di↵erent form of the parametrization and op-
erated with only 5 resonances. Secondly, it used the real

photon data only. On the contrary, Ref. [3] provided
a global fit to real and virtual photon data, therefore a
somewhat worse quality of the fit to real photon data
only, as can be seen in Fig. 2, is only mildly reflected in
the overall �2. The original parametrization of Ref. [3]
gives a larger result, C��

1 = �1.68 µb-GeV.
To summarize the evaluations of Eqs. (16, 17),

C��

1 = �0.97± 0.35(stat.)± 0.35(syst.) µb GeV, (18)

where we introduced a somewhat conservative estimate
of the systematical uncertainty.

Next we evaluate the �Z-interference analog of the J =
0 pole, Eq. (15) using the isospin rotation. Model II leads
to

C�Z

1 = 2.61± 2.02(back.)+0.93
�0.78(res.) µb GeV, (19)

where the first uncertainty is due to the isospin structure
of the background, and the second one due to that of the
resonances. Note that while the latter is obtained from
data (analyzed by PDG) and can be considered reliable,
the former uncertainty is postulated. It is considered
conservative but there is no guarantee that it is true.
The Model I gives a slightly di↵erent value but with a
larger uncertainty due to resonance contributions

C�Z

1 = 2.47± 2.02(back.)+2.17
�1.33(res.) µb GeV, (20)

It is seen that the Model I evaluation, at least in prin-
ciple, may be used to constrain the background contri-
bution since the uncertainty of the latter dominates over
that of the resonances. To do that one, however needs
information about the l.h.s. of Eq. (15). It has been
argued in the literature that the J = 0 pole, if exists,
should be due to an e↵ective two-photon-quark coupling.
Then, knowing the J = 0 pole for Compton scattering,
Eq. (18) we can model the �Z-interference J = 0 pole.
If at asymptotically high energy the proton is seen by
the real photon or massless Z as a symmetric collection
of sea quarks (SU(6) symmetry) one would expect
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whereas for the case where the J = 0 pole is due to
coupling to valence quarks one would have
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These two näıve estimates indicate that the �Z-
interference J = 0 pole is likely to be somewhat smaller
than the electromagnetic one, and to have the same sign.
We can then assume that, conservatively,

C�Z

1 = �0.5± 0.5 µb GeV. (23)

The comparison to the evaluation of Eq. (19) sug-
gests that in order for the two to agree the background
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B. Potential of FESR for constraining the
uncertainty of the dispersive �Z-box calculation

The modification of resonance parameters described
in the previous section also a↵ects the description of the
total cross section. Fig. 2 displays the comparison of the
two models and the data on �

tot

obtained by the GDH
collaboration [6]. To improve the description of the data,
we adjusted the value of the width of the �(1232) to the
standard value of 120 MeV [5], while the fit of [3] features
a slightly larger width, 136 MeV. We will now feed these
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FIG. 2: The total photo absorption cross section from the
original parametrization of Ref. [3] (dashed blue line) and
the modified one adjusted in accord with the PDG [5] (solid
red line) in comparison with data by GDH collaboration [6].
In the parametrization of P33(1232) the experimental value
of the width, �P33(1232) = 120 MeV was used for Model II,
whereas Model I uses �P33(1232) = 136 MeV [3].

two parametrizations in the finite energy sum rule, and
in its �Z-interference analogue,
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The numerical evaluation of Eq. (14) with Model II
leads to the extraction

C��

1 = �1.12 µb GeV, (16)

which agrees reasonably well to the recent extraction of
the J = 0 pole [7],

C��

1 = �0.75± 0.35 µb GeV. (17)

The discrepancy has essentially two reasons. Firstly, Ref.
[7] used a di↵erent form of the parametrization and op-
erated with only 5 resonances. Secondly, it used the real

photon data only. On the contrary, Ref. [3] provided
a global fit to real and virtual photon data, therefore a
somewhat worse quality of the fit to real photon data
only, as can be seen in Fig. 2, is only mildly reflected in
the overall �2. The original parametrization of Ref. [3]
gives a larger result, C��

1 = �1.68 µb-GeV.
To summarize the evaluations of Eqs. (16, 17),

C��

1 = �0.97± 0.35(stat.)± 0.35(syst.) µb GeV, (18)

where we introduced a somewhat conservative estimate
of the systematical uncertainty.

Next we evaluate the �Z-interference analog of the J =
0 pole, Eq. (15) using the isospin rotation. Model II leads
to

C�Z

1 = 2.61± 2.02(back.)+0.93
�0.78(res.) µb GeV, (19)

where the first uncertainty is due to the isospin structure
of the background, and the second one due to that of the
resonances. Note that while the latter is obtained from
data (analyzed by PDG) and can be considered reliable,
the former uncertainty is postulated. It is considered
conservative but there is no guarantee that it is true.
The Model I gives a slightly di↵erent value but with a
larger uncertainty due to resonance contributions

C�Z

1 = 2.47± 2.02(back.)+2.17
�1.33(res.) µb GeV, (20)

It is seen that the Model I evaluation, at least in prin-
ciple, may be used to constrain the background contri-
bution since the uncertainty of the latter dominates over
that of the resonances. To do that one, however needs
information about the l.h.s. of Eq. (15). It has been
argued in the literature that the J = 0 pole, if exists,
should be due to an e↵ective two-photon-quark coupling.
Then, knowing the J = 0 pole for Compton scattering,
Eq. (18) we can model the �Z-interference J = 0 pole.
If at asymptotically high energy the proton is seen by
the real photon or massless Z as a symmetric collection
of sea quarks (SU(6) symmetry) one would expect

C�Z

1
C��

1
⇠

2
P

q=u,d,s,c,t,b

gq

V

e
qP

q=u,d,s,c,t,b

e2
q

=
9
5
� 4s2

W

⇡ 0.85, (21)

whereas for the case where the J = 0 pole is due to
coupling to valence quarks one would have
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These two näıve estimates indicate that the �Z-
interference J = 0 pole is likely to be somewhat smaller
than the electromagnetic one, and to have the same sign.
We can then assume that, conservatively,

C�Z

1 = �0.5± 0.5 µb GeV. (23)

The comparison to the evaluation of Eq. (19) sug-
gests that in order for the two to agree the background

To bring in accord, adjust the background $
(resonances are fixed by c.s. and GDH)

Continuum contribution:
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exact isoscalar: -1 Supported by the FESR
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FIG. 1: W -dependence of the parity-violating asymmetries in
e⃗−H2 scattering extracted from this experiment. The asymmetries
are scaled by Q2 and compared with calculations from Ref. [24]
(dashed), Ref. [20] (dotted), Ref. [21] (solid) and the DIS esti-
mation (dash-double-dotted) using Eq. (4) with the extrapolated
MSTW2008 PDF. The error bars are statistical uncertainties, while
experimental systematic uncertainties are shown as the shaded band
at the bottom. For each of the four kinematics, calculations were per-
formed at the fixed Eb and Q2 values of Table I and with a variation
in W to match the coverage of the data.
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New data on PV DIS structure functions coming - $
PV DIS, SOLID, MOLLER

Most red points (central values)$
are outside of the theory band - $
is this uncertainty conservative?

FESR suggests that the continuum contribution $
might be largely overestimated

Could this discrepancy support$
the FESR-driven conclusion?



• γZ box in Q-Weak kinematics: uncertainty is due to the 
isospin structure of the background (~66%) and resonance 
excitation of the neutron (~30%)$

• Uncertainty estimate: combining unrelated data sets: total 
cross sections on proton and deuteron, helicity cross section 
on the proton, exp. test of the VDM sum rule$

• Using GDH sum rule - half the resonance uncertainty$

• FESR: continuum overestimated? (at real photon point)$

• VDM sum rule at JLab energies?

SUMMARY & OUTLOOK



GORCHTEIN, HOROWITZ, AND RAMSEY-MUSOLF PHYSICAL REVIEW C 84, 015502 (2011)

1.5 2 2.5 3 3.5 4
0

500
1000
1500
2000
2500
3000

(n
b/

sr
 G

eV
) E94-110 (E=3.118 GeV, =12.45°)

1.5 2 2.5 3 3.5 4
0

200
400

600

800

d
/d

dE
' E94-110 (E=3.118 GeV, =15.95°)

2 3 4 5
0

50
100
150
200
250

E94-110 (E=3.118 GeV, =19.44°)
E002 (E=3.044 GeV, =19.83°)

1.5 2 2.5 3 3.5 4

40
60
80

100

E94-110 (E=3.118 GeV, =22.95°)

2 3 4 5

W  (GeV )

0
100
200
300
400
500
600 E002 (E=5.5 GeV, =11.21°)

FIG. 8. (Color online) Differential cross-section data in the
resonance region from Ref. [29] are shown in comparison with
Models I and II. Notation as in Fig. 4.

The e.m. charges given by

qI=0 = 1

3
√

2
, qI=1 = 1√

2
, qs = −1

3
, (31)

whereas the weak charges are

gI=0
V = − 1√

2

4
3
s2θW,

gI=1
V = 1√

2
(2 − 4s2θW ),

gs
V = −1 + 4

3
s2θW,
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FIG. 9. (Color online) Differential cross-section data in the
resonance region from Ref. [29] are shown in comparison with
Models I and II. Notation as in Fig. 4.

with s2θW being a shorthand for sin2 θW (for purposes of this
argument). This isospin decomposition is used to relate weak
proton form factors to the proton and neutron electromagnetic
form factors,

⟨p|Jµ
NC,V |p⟩ = (1 − 4s2θW )⟨p|Jµ

em|p⟩ − ⟨n|Jµ
em|n⟩, (32)
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FIG. 6. (Color online) Differential cross-section data in the
resonance region from Ref. [29] are shown in comparison with
Models I and II. Notation as in Fig. 4.

Q2. However, this is only applicable at large-enough Q2, and
extrapolating them below Q2 = 1 GeV2 introduces additional
systematic error. In Figs. 10 and 11, the naive GVD model of
Ref. [39] (Model II) is shown along with the GVD/CDP model
of [37] (Model I). One can see that while the GVD/CDP model
reproduces the data in a wide range of x,Q2, the naive GVD
model overshoots the data at large x starting at moderate Q2,
and underestimates the low-x behavior for all Q2. One needs to
keep in mind, however, that both models work reasonably well
at moderate Q2 and large x which give the main contributions
to the dispersion correction.

The following comment is in order here. The authors
of Ref. [15] argued that our description of the data is
unsatisfactory not only in the resonance region but also beyond
(cf. Fig. 1 of [15]). While the model of the resonance form
factors of Ref. [11] was definitely not accurate (one of the
instances on which we improve that calculation in the present
work), the model for the background in [11] is exactly the same
as that of Model I here. We believe that Figs. 4–11 presented
in this section provide abundant evidence of a satisfactory
description of the experimental data by our phenomenological
model. In view of this, we find it puzzling that Ref. [15] quotes
a discrepancy of 40%–50% at Q2 as low as 0.6 GeV2 just
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FIG. 7. (Color online) Differential cross-section data in the
resonance region from Ref. [29] are shown in comparison with
Models I and II. Notation as in Fig. 4.

above the resonance region (cf. the top left panel of Fig. 1 of
that reference).

B. Isospin rotation of the resonance contributions

In the Standard Model, the Z and γ hadronic currents are
related by means of a simple isospin rotation,

Jµ
em = qI=0J

µ
I=0 + qI=1J

µ
I=1 + qsJµ

s ,
(29)

J
µ
NCV

= gI=0
V J

µ
I=0 + gI=1

V J
µ
I=1 + gs

V Jµ
s ,

with

J
µ
I=0 = 1√

2
(ūγ µu + d̄γ µd),

J
µ
I=1 = 1√

2
(ūγ µu − d̄γ µd), (30)

Jµ
s = s̄γ µs.
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FIG. 4. (Color online) Differential cross-section data in the
resonance region from Ref. [30] are shown in comparison with the
two models. The experimental errors are not shown. The thick solid
line is the result of Model I, and the thick dashed line is the result of
Model II. Thin solid lines show the error bar owing to the uncertainties
in helicity amplitudes for the photoexcitation of the resonances on
the proton, according to Ref. [40].

including the experimental errors. At the same time, we note
that just above the resonance region, in the limited range
4 GeV2 ! W 2 ! 6 GeV2, and at moderate values of Q2, the
background systematically lacks strength. However, we stress
that this lack of strength is observed only in very limited
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FIG. 5. (Color online) Differential cross-section data in the
resonance region from Ref. [30] are shown in comparison with
Models I and II. Notation as in Fig. 4.

range of energies, and the deficit is less than 20%, which
makes the impact of this effect on the dispersion correction
small.

We next turn to the deep inelastic (DIS) data. For DIS, a
natural choice would be to use the PDF parametrizations from
MRST or CTEQ, DGLAP-evolved to the necessary value of
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