SFB콜

THE LOW-ENERGY FRONTIER OF THE STANDARD MODEL

γ Z-Box from

 Dispersion Relations Misha GorshteynIn collaboration with:
C.J. Horowitz, M.J. Ramsey-Musolf, X. Zhang

Weak Charge of the Proton

Elastic e-p scattering with polarized e^{-}beam

$$
A^{P V}=\frac{\sigma_{\uparrow}-\sigma_{\downarrow}}{\sigma_{\uparrow}+\sigma_{\downarrow}}=-\frac{G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha_{e m}} Q_{W}^{p}+\mathcal{O}\left(Q^{4}\right)
$$

Effective e-q interaction

$$
-\mathscr{L}^{e h}=-\frac{G_{F}}{\sqrt{2}} \sum_{i}\left[C_{1 i} \bar{e} \gamma_{\mu} \gamma^{5} e \bar{q}_{i} \gamma^{\mu} q_{i}+C_{2 i} \bar{e} \gamma_{\mu} e \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i}\right]
$$

Standard Model (tree-level)

$$
Q_{W}^{p, \text { tree }}=-2\left(2 C_{1 u}+C_{1 d}\right)=1-4 \sin ^{2} \theta_{W} \approx 0.05
$$

Weak Charge of the Proton: EW corrections

To match the experimental precision - include radiative corrections

Weak Charge of the Proton: EW corrections

Hadronic structure effects are under control
$Q_{W}^{p}=\left(1+\Delta_{\rho}+\Delta_{e}\right)\left(1-4 \sin ^{2} \hat{\theta}_{W}+\Delta_{e}^{\prime}\right)+\square_{W W}+\square_{Z Z}+\square_{\gamma Z}$
W. J. Marciano and A. Sirlin, PRD 27, 552 (1983); 29,75 (1984); 31, 213 (1985). M.J. Ramsey-Musolf, PRC 60, 015501 (1999).

Vacuum polarization: reconstructed from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons with dispersion relations
2γ-Box: kinematically suppressed

WW,ZZ-Box: perturbative- calculable reliably
γZ : for low energies (atomic PV experiments) cancellation between box and crossed

- not true for - I GeV energy any more

WW, ZZ exchange

$\gamma-Z$ box + crossed

Energy dependence of the γZ-Correction

MG \& C.J. Horowitz, PRL102, 091806 (2009)

$$
Q^{2}=-q_{\mu} q^{\mu} \geq 0
$$

Forward dispersion relation for

$$
\square_{\gamma Z}=g_{V}^{e} \square_{\gamma Z_{A}}+g_{A}^{e} \square_{\gamma Z_{V}}
$$

Possess different symmetry between box and crossed terms:
$\operatorname{Re} \square_{\gamma Z_{A}}(E)=\frac{2}{\pi} \int_{\nu_{0}}^{\infty} \frac{E^{\prime} d E^{\prime}}{E^{\prime 2}-E^{2}} \operatorname{Im} \square_{\gamma Z_{A}}\left(E^{\prime}\right)$
$\operatorname{Re} \square_{\gamma Z_{V}}(E)=\frac{2 E}{\pi} \int_{\nu_{0}}^{\infty} \frac{d E^{\prime}}{E^{\prime 2}-E^{2}} \operatorname{Im} \square_{\gamma Z_{V}}\left(E^{\prime}\right)$
$\operatorname{Re} \square_{\gamma Z_{A}}(0) \neq 0$
$\operatorname{Re} \square_{\gamma Z_{V}}(0)=0$

Can quantify the energy dependence

Energy dependence of the $\gamma \mathrm{Z}$-Correction

$$
\begin{aligned}
& \qquad \operatorname{Re} \square_{\gamma Z_{V}}(E)=\frac{2 E}{\pi} \int_{0}^{\infty} d Q^{2} \int_{W_{\pi}^{2}}^{\infty} d W^{2}[A \underbrace{F_{2}^{\gamma Z}\left(W^{2}, Q^{2}\right)}_{F_{1}^{\gamma Z}\left(W^{2}, Q^{2}\right.}] \\
& \text { Isospin-rotate the e.-m. data } \\
& \text { Evaluate at } \mathrm{E}=\mathrm{I} .165 \mathrm{GeV} \text { (QWEAK) }
\end{aligned}
$$

Hall et al.
PRD 88, 013011 (2013)

| Carlson and Rislow |
| :---: | :---: | :---: | :---: |
| PRD 83, 113007 (2011) |

PRC 84, 015502 (2011)

Energy dependence of the $\gamma \mathrm{Z}$-Correction

Evaluate the axial part through a DR

- check Marciano \& Sirlin's calculation

Blunden et al., PRL 107 (2011) 081801

New SM prediction for the proton's weak charge

$$
Q_{W}^{p}+\operatorname{Re} \square_{\gamma Z}(E=1.165 \mathrm{GeV})=0.0767 \pm 0.0008 \pm 0.0020_{\gamma Z}
$$

To be compared to the previous prediction $\quad Q_{W}^{p}=0.0713 \pm 0.0008$ 4σ (theory) effect was missed in the original QWEAK analysis;

Theory uncertainty needs to be further reduced

Uncertainty is dominated by the $\gamma Z_{v}-$ asses all the sources of the uncertainty

Saturation of the dispersion integral for $\gamma \mathrm{Zv}$-box

$$
\operatorname{Re} \square_{\gamma Z_{V}}(E)=\frac{2 E}{\pi} \int_{0}^{\infty} d Q^{2} \int_{W_{\pi}^{2}}^{\infty} d W^{2}\left[A F_{1}^{\gamma Z}\left(W^{2}, Q^{2}\right)+B F_{2}^{\gamma Z}\left(W^{2}, Q^{2}\right)\right]
$$

Q-Weak: $\mathrm{E}=\mathrm{I} .165 \mathrm{GeV}$

	$W<2 \mathrm{GeV}$	$\mathrm{W}<4 \mathrm{GeV}$	$\mathrm{W}<5 \mathrm{GeV}$	$\mathrm{W}<10 \mathrm{GeV}$	All W
$\mathrm{Q}^{2}<1 \mathrm{GeV}^{2}$	62.6%	79.8%	$8 \mathrm{I} .2 \%$	82.8%	83.2%
$\mathrm{Q}^{2}<2 \mathrm{GeV}^{2}$	68.3%	85.8%	87.6%	89.9%	90.4%
$\mathrm{Q}^{2}<3 \mathrm{GeV}^{2}$	69.4%	87.9%	90.0%	92.7%	93.3%
All Q^{2}	70%	91.1%	$94 . \mathrm{I} \%$	98.6%	100%

Saturation of the dispersion integral for $\gamma \mathrm{Zv}$-box

$$
\operatorname{Re} \square_{\gamma Z_{V}}(E)=\frac{2 E}{\pi} \int_{0}^{\infty} d Q^{2} \int_{W_{\pi}^{2}}^{\infty} d W^{2}\left[A F_{1}^{\gamma Z}\left(W^{2}, Q^{2}\right)+B F_{2}^{\gamma Z}\left(W^{2}, Q^{2}\right)\right]
$$

Mainz/MESA: $\mathrm{E}=0.180 \mathrm{GeV}$

	$W<2 \mathrm{GeV}$	$\mathrm{W}<4 \mathrm{GeV}$	$\mathrm{W}<5 \mathrm{GeV}$	$\mathrm{W}<10 \mathrm{GeV}$	All W
$\mathrm{Q}^{2}<1 \mathrm{GeV}^{2}$	75.0%	86.4%	87.4%	88.6%	88.8%
$\mathrm{Q}^{2}<2 \mathrm{GeV}^{2}$	78.4%	90.3%	91.6%	93.2%	93.5%
$\mathrm{Q}^{2}<3 \mathrm{GeV}^{2}$	79.1%	91.7%	93.2%	95.1%	95.5%
All^{2}	79.5%	93.9%	95.9%	99.0%	100%

Saturation of the dispersion integral for $\gamma \mathrm{Zv}$-box

For the Q-Weak kinematics

- Input at $\mathrm{Q}^{2}>2 \mathrm{GeV}^{2}$ only constrains 10% of the $\gamma \mathrm{Zv}$-box
- Input at $\mathrm{Q}^{2}<0.5 \mathrm{GeV}^{2}$ constrains 63% of the $\gamma \mathrm{Zv}$-box

For MESA kinematics

- Input at $\mathrm{Q}^{2}>2 \mathrm{GeV}^{2}$ only constrains 6% of the $\gamma \mathrm{Zv}$-box
- Input at $\mathrm{Q}^{2}<0.5 \mathrm{GeV}^{2}$ constrains 77% of the $\gamma \mathrm{Zv}$-box

Input for the dispersion integral for $\gamma \mathrm{Zv}$-box

Only indirect input available - e.-m. structure functions
We also need the rule how to obtain the γZ structure functions from the e.-m. ones
Parametrization of the inclusive data by Christy \& Bosted

$$
\text { I.I } \mathrm{GeV}<\mathrm{W}<3 . \mathrm{I} \mathrm{GeV}, \mathrm{o}<\mathrm{Q}^{2}<8 \mathrm{GeV}^{2}
$$

M.E. Christy, P.E. Bosted, Phys.Rev. C81 (2010) 055213

This parametrization is used by all the three groups

Can be a common bias?

Sibirtsev et al., Phys.Rev. D82 (2010) 013011

$$
\left(4.7_{-0.4}^{+1.1}\right) \times 10^{-3} \leftrightarrow(5.4 \pm 2.0) \times 10^{-3}
$$

Identification and parameters of resonances should be (critically) assessed

Isospin rotation of e.-m. data: resonances

Based on: quantum numbers \& strengths (Christy \& Bosted); relative size and sign of helicity amplitudes (PDG)

Isospin I/2, $3 / 2$ resonances $\quad\langle X| J_{N C, V}^{\mu}|p\rangle=\left(1-4 s^{2} \theta_{W}\right)\langle X| J_{e m}^{\mu}|p\rangle-\langle X| J_{e m}^{\mu}|n\rangle$

$$
\left.\langle p| J_{e m}^{\mu}|R\rangle\langle R| J_{N C, V}^{\mu}|p\rangle=\left(1-4 s^{2} \theta_{W}\right)\left|\langle R| J_{e m}^{\mu}\right| p\right\rangle\left.\right|^{2}-\langle p| J_{e m}^{\mu}|R\rangle\langle R| J_{e m}^{\mu}|n\rangle
$$

Rescale each resonance in $C \& B$ parametrization to obtain γZ cross section

$$
\xi_{Z / \gamma}^{R} \equiv \frac{\sigma_{T, R}^{\gamma Z, p}}{\sigma_{T, R}^{\gamma \gamma p}}=\left(1-4 s^{2} \theta_{W}\right)-\frac{A_{R, 1 / 2}^{p} A_{R, 1 / 2}^{n *}+A_{R, 3 / 2}^{p} A_{R, 3 / 2}^{n *}}{\left|A_{R, 1 / 2}^{p}\right|^{2}+\left|A_{R, 3 / 2}^{p}\right|^{2}}
$$

Values and uncertainties - from PDG helicity amplitudes values

	$P_{33}(1232)$	$S_{11}(1535)$	$D_{13}(1520)$	$S_{11}(1665)$	$F_{15}(1680)$	$P_{11}(1440)$	$F_{37}(1950)$
y_{R}	$-1.0_{+0.1}^{-0.1}$	$-0.51_{+0.35}^{-0.71}$	$-0.77_{+0.125}^{-0.125}$	$-0.28_{+0.45}^{-0.86}$	$-0.27_{+0.1}^{-0.12}$	$-0.62_{+0.19}^{-0.2}$	-1_{+1}^{-1}

Uncertainty from helicity amplitudes: An and Ap anti-correlated Independent measurements -p and $\mathrm{d}=\mathrm{p}+\mathrm{n}$, not p and n !

Checking input in γ Z-calculation

The identification of resonances and relative strength is not the same in Christy \& Bosted and PDG

PDG:

$$
\begin{aligned}
D_{13}(1520): & A_{3 / 2}^{p}=150(15) \mathrm{GeV}^{-1 / 2}, \\
& A_{1 / 2}^{p}=-24(9) \mathrm{GeV}^{-1 / 2} \\
S_{11}(1535): & A_{3 / 2}^{p}=0, \quad A_{1 / 2}^{p}=90(30) \mathrm{GeV}^{-1 / 2} \\
& \\
D_{13}(1520): & \sqrt{\left(A_{3 / 2}^{p}\right)^{2}+\left(A_{1 / 2}^{p}\right)^{2}} \approx 23 \mathrm{GeV}^{-1 / 2} \\
S_{11}(1535): & A_{3 / 2}^{p}=0, \quad A_{1 / 2}^{p} \approx 170 \mathrm{GeV}^{-1 / 2},
\end{aligned}
$$

Roper resonance is largely underestimated; Δ (1232) width 136 MeV instead of 120 MeV

Look for further input to constrain this change - GDH sum rule

Correcting input in $\gamma \mathrm{Z}$-calculation with the GDH sum rule

MG, X. Zhang, to be submitted soon Spin-I/2 and spin-3/2 resonances can be distinguished in the helicity cross section (gi with real photons) Data - from GDH collaboration (Mainz, Bonn)
J. Ahrens et al, PRL 84(2000) 5950;
J. Ahrens et al, PRL 87(2001) 022003;
H. Dutz et al, PRL 91(2003) 192001

$$
\left[\sigma_{3 / 2}^{\gamma \gamma}(\nu)-\sigma_{1 / 2}^{\gamma \gamma}(\nu)\right]
$$

With parameters from PDG - much better description of both observables Not perfect: only 7 resonances, ...

Correcting input in $\gamma \mathrm{Z}$-calculation with the GDH sum rule

GDH sum rule

$$
\left(\kappa_{N}^{\gamma}\right)^{2}=\frac{2 M^{2}}{\pi e^{2}} \int_{\nu t h r}^{\infty} d \nu \frac{\left[\sigma_{3 / 2}^{\gamma \gamma}(\nu)-\sigma_{1 / 2}^{\gamma \gamma}(\nu)\right]}{\nu}
$$

With the "supplemented" Christy \& Bosted's fit can be evaluated

Sum rule value
$\kappa_{p}^{2}=1.793^{2} \approx 3.215$

Christy \& Bosted

$$
\kappa_{p}^{2} \approx 0.9
$$

$$
\kappa_{N}^{\gamma} \kappa_{N}^{Z}=\frac{2 M^{2}}{\pi e^{2}} \int_{\nu t h r}^{\infty} d \nu \frac{\left[\sigma_{3 / 2}^{\gamma Z}(\nu)-\sigma_{1 / 2}^{\gamma Z}(\nu)\right]}{\nu}
$$

Sum rule value
$\kappa_{p}^{\gamma} \kappa_{p}^{Z}=\left(1-4 s_{W}^{2}\right)\left(\kappa_{p}^{\gamma}\right)^{2}-\kappa_{p}^{\gamma} \kappa_{n}^{\gamma} \approx 3.666$

Christy \& Bosted
"PDG"

$$
\kappa_{p}^{\gamma} \kappa_{p}^{Z} \approx 2.247 \quad \kappa_{p}^{\gamma} \kappa_{p}^{Z} \approx 3.615
$$

Re-evaluate the γZ-box with the new resonance parametrization

Correcting the γZ-calculation with the resonances

$\left(\times 10^{-3}\right)$	$P_{33}(1232)$	$P_{11}(1440)$	$D_{13}(1520)$	$S_{11}(1535)$	$S_{11}(1650)$	$F_{15}(1680)$	$F_{37}(1950)$
C \& B	1.23 ± 0.12	0.06 ± 0.02	0.18 ± 0.03	$0.29_{-0.17}^{+0.34}$	$0.06_{-0.06}^{+0.14}$	0.04 ± 0.01	0.40 ± 0.36
PDG	1.23 ± 0.12	0.12 ± 0.03	0.31 ± 0.05	$0.06_{-0.04}^{+0.08}$	$0.06_{-0.06}^{+0.14}$	0.04 ± 0.02	0.39 ± 0.36

$$
0.53_{-0.17}^{+0.34} \rightarrow 0.50_{-0.07}^{+0.10}
$$

Further reduction - mainly F_{37} (I950) Should be possible: it is in the right place, strength about right, proton and neutron strength is very close - quantum numbers OK Reasonable to assume that at least 50% of F_{37} is really F_{37}

$$
\Sigma_{\text {res }}^{O L D}=2.24_{-0.43}^{+0.53}
$$

$$
\Sigma_{\text {res }}^{N E W}=2.21_{-0.23}^{+0.25}
$$

Uncertainty on the resonance contribution is halved.

Uncertainty of the Background

Main source of the uncertainty:
background in the resonance region and above

- how does a gamma/Z polarize vacuum in the target's proximity?

Isospin rotation of e.-m. data: background
Vector Dominance Model (VDM)

$$
\left|\gamma^{*}\right\rangle=\sum_{V} C_{\gamma^{*} V}|V\rangle \quad V=\rho, \omega, \phi
$$

VDM sum rule: $\quad \sigma_{\text {tot }}(\gamma p)=\sum_{V=\rho, \omega, \phi} \sqrt{16 \pi \frac{4 \pi \alpha}{f_{V}^{2}} \frac{d \sigma^{\gamma p \rightarrow V_{p}}}{d t}(t=0)}$
Measured experimentally

$$
\begin{aligned}
& \text { HERA: NPB' O2 ZEUS: Z.Phys.'95,'96, PLB'96 } \\
& 139 \pm 4(\mu b) \leftrightarrow 111 \pm 13(\mu b) \text { at } W=70 \mathrm{GeV}
\end{aligned}
$$

Generalized VDM - continuum contribution $\sigma_{\text {tot }}^{\gamma p}=\sum_{V=\rho, \omega, \phi} \frac{4 \pi \alpha}{f_{V}^{2}} \sigma_{V p}+\sigma_{C p}$ The 21% for continuum at $\mathbf{Q}^{2}=0$ is the main limitation on $\gamma \mathbf{Z}$-box

Isospin rotation of e.-m. data: background

Rescale the background according to

$$
\frac{\sigma^{\gamma^{*}} p \rightarrow Z p}{\sigma^{\gamma^{*} p \rightarrow \gamma^{*} p}}=\frac{\frac{g_{V}^{I=1}}{e_{I=1}}+\frac{g_{V}^{I=0}}{e_{I=0}} \frac{\sigma^{\gamma^{*} p \rightarrow \omega p}}{\sigma \gamma^{*} p \rightarrow \rho p}}{1+\frac{g_{V}^{s}}{e_{s}} \frac{\sigma^{\gamma^{*} p \rightarrow \phi p}}{\sigma^{*} p \rightarrow \omega p}+\frac{X^{\prime}}{\sigma^{\gamma^{*} p \rightarrow \rho p}}+\frac{\frac{\sigma \gamma^{*} p \rightarrow \phi p}{\sigma \gamma^{*} p \rightarrow \rho p}}{\sigma} \frac{X}{\sigma \gamma^{*} p \rightarrow \rho p}}
$$

VDM: identify $\mathrm{X}\left(\mathrm{X}^{\prime}\right)$ with continuum

$$
\frac{\sigma^{\gamma^{*} p \rightarrow V p}}{\sigma^{\gamma^{*} p \rightarrow \rho p}}=\frac{r_{V}}{r_{\rho}} \frac{m_{V}^{4}}{m_{\rho}^{4}} \frac{\left(m_{\rho}^{2}+Q^{2}\right)^{2}}{\left(m_{V}^{2}+Q^{2}\right)^{2}}
$$

Uncertainty estimate - from data!
$\Delta \xi_{Z / \gamma}^{V, \text { Model } A}=\left[\left(\frac{\sigma^{\gamma^{*} \rightarrow V}}{\sigma^{\gamma^{*} \rightarrow \rho}}\right)^{\text {exp }}-\left(\frac{\sigma^{\gamma^{*} \rightarrow V}}{\sigma^{\gamma^{*} \rightarrow \rho}}\right)^{\text {Model } A}\right] \sigma^{\gamma^{*} \rightarrow V \rightarrow Z}$
Continuum-100\% uncertainty
Pure isovector:

$$
r_{C}^{\gamma Z} / r_{C}^{\gamma \gamma} \approx 1
$$

Pure isoscalar:

$$
r_{C}^{\gamma Z} / r_{C}^{\gamma \gamma} \approx-1
$$

Isospin rotation of e.-m. data: background

Generalized VDM - virtual photons
$\sigma_{T}^{\gamma}\left(\nu, Q^{2}\right)=\sigma_{T}^{\text {Regge }}(\nu)\left[\frac{0.67}{\left(1+Q^{2} / m_{\rho}^{2}\right)^{2}}+\frac{0.061}{\left(1+Q^{2} / m_{\omega}^{2}\right)^{2}}+\frac{0.059}{\left(1+Q^{2} / m_{\phi}^{2}\right)^{2}}+\frac{0.21}{1+Q^{2} / m_{0}^{2}}\right]$

How to extrapolate VDM sum rule down to JLab energies?
How to extend it to virtual photons without losing predicting power?

Constrain the background: Finite Energy Sum Rule

FESR: DR for Compton amplitude without Regge-behaved part
$C_{\infty}^{\gamma \gamma}=-\frac{\alpha}{M}-\frac{1}{2 \pi^{2}} \int_{\nu_{t h r}}^{N} d \nu \sigma_{T}^{\gamma \gamma}(\nu)+\frac{\nu_{0}}{2 \pi^{2}} \sum_{i} c_{i}^{\gamma \gamma} \frac{N^{\alpha_{i}(0)}}{\alpha_{i}(0)}$
Recent extraction:
$C_{\infty}^{\gamma \gamma}=-0.72 \pm 0.35 \mu \mathrm{~b} \mathrm{GeV}$

MG, T. Hobbs, A. Szczepaniak, PRC 84 (2011) 065202 Fit to real photon data only; 5 resonances
With Christy \& Bosted based parametrization: new evaluation

$$
\begin{array}{cc}
\text { "PDG" } & \text { Christy \& Bosted } \\
C_{\infty}^{\gamma \gamma}=-1.12 \mu \mathrm{bGeV} & C_{\infty}^{\gamma \gamma}=-1.68 \mu \mathrm{~b}-\mathrm{GeV}
\end{array}
$$

Indicate a possibly underestimated systematical error (fit form)
New extraction:

$$
C_{\infty}^{\gamma \gamma}=-0.97 \pm 0.35(\text { stat. }) \pm 0.35 \text { (syst.) } \mu \mathrm{b} \mathrm{GeV}
$$

Constrain the background: Finite Energy Sum Rule

Similar for the γ Z-interference

$$
C_{\infty}^{\gamma Z}=-\frac{\alpha Q_{W}^{p}}{M}-\frac{1}{2 \pi^{2}} \int_{t h r}^{N} d \nu \sigma_{T}^{\gamma Z}(\nu)+\frac{\nu_{0}}{2 \pi^{2}} \sum_{i} c_{i}^{\gamma Z} \frac{N^{\alpha_{i}(0)}}{\alpha_{i}(0)}
$$

With the parametrization of the $\gamma \gamma$ data + isospin rotation:

$$
\begin{gathered}
\text { "PDG" } \\
C_{\infty}^{\gamma Z}=2.61 \pm 2.02(\text { back. })_{-0.78}^{+0.93} \text { res.) } \mu \mathrm{b} \mathrm{GeV}
\end{gathered}
$$

Christy \& Bosted

$$
C_{\infty}^{\gamma Z}=2.47 \pm 2.02(\text { back. })_{-1.33}^{+2.17} \text { (res.) } \mu \mathrm{b} \mathrm{GeV}
$$

What is the 1.h.s likely to be?

If - like the Thomson term: $\quad \frac{C_{\infty}^{\gamma Z}}{C_{\infty}^{\gamma}}=Q_{W}^{p}(0) \approx 0.05$
Asymptotically: effective point-like two-boson coupling

Valence only

$$
\frac{C_{\alpha}^{\gamma Z}}{C_{\infty}^{\gamma}} \sim \frac{2\left(2 g_{V}^{u} e_{u}+g_{V}^{d} e_{d}\right)}{2 e_{u}^{2}+e_{d}^{Z}}=\frac{5}{3}-4 s_{W}^{2} \approx 0.71
$$

Only sure thing: same sign as $\gamma \gamma$, slightly smaller:

$$
C_{\infty}^{\gamma Z}=-0.5 \pm 0.5 \mu \mathrm{~b} \mathrm{GeV}
$$

Constrain the background: Finite Energy Sum Rule

"Extracted from data"
$C_{\infty}^{\gamma Z}=-0.5 \pm 0.5 \mu \mathrm{~b} \mathrm{GeV}$
Continuum contribution:
It was assumed that
Equally possible exact isovector: -1
exact isoscalar: -1

$$
\begin{gathered}
\text { "PDG" } \\
C_{\infty}^{\gamma Z}=2.61 \pm 2.02(\text { back. })_{-0.78}^{+0.93}(\text { res. }) \mu \mathrm{b} \mathrm{GeV}
\end{gathered}
$$

$$
\begin{aligned}
& 2.02 \pm 2.02 \mu \mathrm{~b} \mathrm{GeV} \\
& r_{C}^{\gamma Z}=r_{C}^{\gamma \gamma}(1 \pm 1)
\end{aligned}
$$

$$
r_{C}^{\gamma Z}=r_{C}^{\gamma \gamma}(0 \pm 1)
$$

Supported by the FESR
To bring in accord, adjust the background (resonances are fixed by c.s. and GDH)

$$
(5.4 \pm 2.0) \times 10^{-3} \rightarrow(3.5 \pm 1.9 \pm 0.25) \times 10^{-3}
$$

Impact of PVDIS data

FESR suggests that the continuum contribution might be largely overestimated

> Most red points (central values) are outside of the theory band is this uncertainty conservative?

Could this discrepancy support the FESR-driven conclusion?

New data on PV DIS structure functions coming PV DIS, SOLID, MOLLER

SUMMARY \& OUTLOOK

- $\gamma \mathrm{Z}$ box in Q-Weak kinematics: uncertainty is due to the isospin structure of the background (-66%) and resonance excitation of the neutron (-30%)
- Uncertainty estimate: combining unrelated data sets: total cross sections on proton and deuteron, helicity cross section on the proton, exp. test of the VDM sum rule
- Using GDH sum rule - half the resonance uncertainty
- FESR: continuum overestimated? (at real photon point)
- VDM sum rule at JLab energies?

SUMMARY \& OUTLOOK

	$\mathrm{W}<$ 2 GeV	$\mathrm{W}<$ 4 GeV	$\mathrm{W}<$ 5 GeV	$\mathrm{W}<$ 10 GeV	All W
$\mathrm{Q}^{2}<1$ GeV^{2}	62.6%	79.8%	$8 \mathrm{I} .2 \%$	82.8%	83.2%
$\mathrm{Q}^{2}<2$ GeV^{2}	68.3%	85.8%	87.6%	89.9%	90.4%
$\mathrm{Q}^{2}<3$ GeV^{2}	69.4%	87.9%	90.0%	92.7%	93.3%
All Q					
70%	91.1%	94.1%	98.6%	100%	

