The E158 and MOLLER Experiments

Krishna S. Kumar University of Massachusetts, Amherst

Gamma-Z Workshop, JLab, December 16-17, 2013

Outline

Review of SLAC E158

- extraction of result including radiative corrections
- inelastic e-p scattering data
- MOLLER at JLab
 - theoretical issues
 - Standard Model prediction with full detector effects
 - two-loop uncertainties
 - kinematics of e-p inelastic A_{PV} measurements

SLAC E158 Result 2002-3

SLAC E158 Result 2002-3

SLAC E158 Result 2002-3

SLAC E158 Layout

~ 11 ppb raw statistical error at highest E_{beam} , ~ 0.4% error on weak mixing angle

• 4 quadrupoles

- focus Mollers and separate from ep's
- full range of the azimuth

• 3 dipole chicane

- entire beam bent and then rebent
- shields detector rings from target line of sight
- natural 10 GeV momentum cutoff
- Precision collimation
 - Tungsten edges
 - movable "pin-hole" calibration collimators

E158: Detector Concept

E158: Apparatus Acceptance

• Detailed calibration scans of radial distributions

- Monte Carlo with full detector geometry and QED radiative corrections
- Adjust collimators, spectrometer optics and physics to reproduce data

Three physics processes

- Møller and elastic e-p scattering from first principles
- inelastic e-p scattering using SLAC code that incorporates world data

$$A_{\rm phys} = \frac{1}{P_b \epsilon} \frac{A_{\rm raw} - \Sigma f_i A_i}{1 - \Sigma f_i}$$

Extraction of Result

E158 procedure: documented in Zykunov et al, arXiv:hep-ph/0507287

$$A_{\rm phys} = \mathcal{A}^0(Q^2, y)\rho(Q^2)(1 + \delta A(Q^2, y))(1 - 4\sin^2\theta_W(Q^2) + \Delta(Q^2))$$
$$\sin^2\theta_W(Q^2) = \kappa(Q^2)_{\overline{MS}}\sin^2\theta(m_Z^2)_{\overline{MS}}$$

δA contained QED corrections including hard bremßtrahlung and γγ and IR divergent pieces of the YZ boxes that factorize, and depend on the details of the experimental configuration and acceptance cutoffs

 Δ (Q²) contains heavy boson boxes as well as leading logarithmic contribution to the YZ box

κ(Q²) contains vacuum polarization and heavy boson vertex corrections

 $\delta A(Q^2,y) = 0.006 \pm 0.005 \qquad \Delta(Q^2) = -0.0007 \pm 0.0009$ size of corrections small due to accidental cancellations

Extraction of Result

E158 procedure: documented in Zykunov et al, arXiv:hep-ph/0507287

$$A_{\text{phys}} = \mathcal{A}^0(Q^2, y)\rho(Q^2)(1 + \delta A(Q^2, y))(1 - 4\sin^2\theta_W(Q^2) + \Delta(Q^2))$$
$$\sin^2\theta_W(Q^2) = \kappa(Q^2)_{\overline{MS}}\sin^2\theta(m_Z^2)_{\overline{MS}}$$

δA contained QED corrections including hard bremßtrahlung and γγ and IR divergent pieces of the YZ boxes that factorize, and depend on the details of the experimental configuration and acceptance cutoffs

 Δ (Q²) contains heavy boson boxes as well as leading logarithmic contribution to the YZ box

 $\kappa(Q^2)$ contains vacuum polarization and heavy boson vertex corrections

 $\delta A(Q^2,y) = 0.006 \pm 0.005 \qquad \Delta(Q^2) = -0.0007 \pm 0.0009$ size of corrections small due to accidental cancellations

Issues for JLab MOLLER

- Expect a 3-4% correction for 11 GeV
- Robust prediction for Q^p_W for 11 GeV (done? We assumed 4% error)
- full two-loop calculation with careful scrutiny for double-counting
- error on $\Delta(Q^2)$ must be reduced by a factor of 4 to 5 (related to 2-loop)
- need to develop collaboration between experimentalists and theorists

Krishna S. Kumar Kumar

 $A_{PV}(ee) = -152 \text{ ppb for E158-specific kinematics (average 45 & 48 GeV)}$ $A_{PV}(e-p \text{ elastic}) \sim 500 \text{ ppb (at forward angle: -1 x 10^{-5} x Q^2)}$

 $A_{PV}(ee) = -152 \text{ ppb for E158-specific kinematics (average 45 & 48 GeV)}$ $A_{PV}(e-p \text{ elastic}) \sim 500 \text{ ppb (at forward angle: -1 x 10⁻⁵ x Q²)}$

30 % strength in e-p detector from inelastic scattering

 $A_{PV}(ee) = -152 \text{ ppb for E158-specific kinematics (average 45 & 48 GeV)}$ $A_{PV}(e-p \text{ elastic}) \sim 500 \text{ ppb (at forward angle: -1 x 10⁻⁵ x Q²)}$

30 % strength in e-p detector from inelastic scattering

Data consistent with: $A_{PV}(inelastic) = -8 \times 10^{-5} \times Q^2$

elastic ep $Q^2 = 0.05 \text{ GeV}^2$ inelastic ep $Q^2 = 0.07 \text{ GeV}^2$

A_{PV} inelastic ~ 5 ppm

W range: Delta to 8 GeV

 $A_{PV}(ee) = -152 \text{ ppb for E158-specific kinematics (average 45 & 48 GeV)}$ $A_{PV}(e-p \text{ elastic}) \sim 500 \text{ ppb (at forward angle: -1 x 10⁻⁵ x Q²)}$

30 % strength in e-p detector from inelastic scattering

Data consistent with: $A_{PV}(inelastic) = -8 \times 10^{-5} \times Q^2$

elastic ep $Q^2 = 0.05 \text{ GeV}^2$ inelastic ep $Q^2 = 0.07 \text{ GeV}^2$

A_{PV} inelastic ~ 5 ppm

W range: Delta to 8 GeV

correction to A_{phys} was -22 +/- 4 ppb: ~ 20% error on correction

 $A_{PV}(ee) = -152 \text{ ppb for E158-specific kinematics (average 45 & 48 GeV)}$ $A_{PV}(e-p \text{ elastic}) \sim 500 \text{ ppb (at forward angle: -1 x 10⁻⁵ x Q²)}$

30 % strength in e-p detector from inelastic scattering

Data consistent with: $A_{PV}(inelastic) = -8 \times 10^{-5} \times Q^2$

elastic ep $Q^2 = 0.05 \text{ GeV}^2$ inelastic ep $Q^2 = 0.07 \text{ GeV}^2$

A_{PV} inelastic ~ 5 ppm

W range: Delta to 8 GeV

correction to A_{phys} was -22 +/- 4 ppb: ~ 20% error on correction

For JLab MOLLER, prediction is -4% +/- 0.4%: want to achieve 10% correction error

MOLLER (a) JLab

An ultra-precise measurement of the weak mixing angle using Møller scattering

Spectrometer Concept

Spectrometer Concept

Radial Distributions both elastic and inelastic ep scattering are important

Radial Distributions both elastic and inelastic ep scattering are important

Detector Systems

Detector Systems

Integrating Detectors:

- Moller and e-p Electrons:
 - radial and azimuthal segmentation
 - quartz with air lightguides & PMTs
- pions and muons:
 - quartz sandwich behind shielding
- luminosity monitors
 - beam & target density fluctuations

optimized for robust background subtraction

Detector Systems

Integrating Detectors:

- Moller and e-p Electrons:
 - radial and azimuthal segmentation
 - quartz with air lightguides & PMTs
- pions and muons:
 - quartz sandwich behind shielding
- luminosity monitors
 - beam & target density fluctuations

Auxiliary Detectors

- Tracking detectors
 - 3 planes of GEMs/Straws
 - Critical for systematics/ calibration/debugging

- Integrating Scanners

• quick checks on stability

optimized for robust background subtraction

Latest Configuration

Radial Distributions color code same as slide 11 for first 3 plots

Radial distribution - Full

Phi Segmentation Initial and final state radiation effects in target

Rate and Apy vs Phi

Radial distribution - Closed

Radial distribution - Transition

Radial distribution - Open

Q^2 -weighted W^2 distributions Ansatz: Apv(ep \to eX)/Q^2 = B(W)

Assume B(W) is constant for M_{Δ} , M_{Δ} <W<2, and W > 2 cross-check with measured asymmetries in rings 2, 3 and 4

Projected Precision Example segmentation

Needs optimization and input from theorists

Summary

- Unpublished E158 data supports the notion that A_{PV} in inelastic e-p scattering is roughly constant with W², and roughly consistent with the QPM prediction
 - MOLLER needs a dedicated effort of phenomenologists working with experimentalists to set up the framework to extract the weak charge measurement with full treatment of 2-loop effects
- MOLLER will make measurements of A_{PV} in inelastic e-p scattering in several interesting regions of (Q², W²) space with significant contribution from the diffractive region
 - useful for reduction of error in YZ prediction?

 MOLLER needs theory and phenomenology input to come up with an optimum strategy (combination of parasitic measurements, theory and phenomenology) to constrain the roughly 4% correction from the irreducible background due to inelastic electron-proton scattering to 10% of itself