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Review of SLAC E158
extraction of result including radiative corrections
inelastic e-p scattering data

MOLLER at JLab
theoretical issues

Standard Model prediction with full detector effects
two-loop uncertainties

kinematics of e-p inelastic APV measurements

LH2 5-20 mrad
11 GeV Beam

50 GeV Beam 4.5-10 mrad
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45 GeV: 14.0 revs

g-2 spin precession

48 GeV: 14.5 revs

2002-3
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SLAC E158 Result
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45 GeV: 14.0 revs

g-2 spin precession

48 GeV: 14.5 revs

APV =  (-131 ± 14 ± 10) x 10-9

Phys. Rev. Lett. 95 081601 (2005)

2002-3
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SLAC E158 Layout
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~ 11 ppb raw statistical error at highest Ebeam, ~ 0.4% error on weak mixing angle

• 4 quadrupoles
– focus Mollers and separate from ep’s

– full range of the azimuth

• 3 dipole chicane
– entire beam bent and then rebent

– shields detector rings from target line of 
sight

– natural 10 GeV momentum cutoff

• Precision collimation
– Tungsten edges

– movable “pin-hole” calibration collimators
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E158: Detector Concept

Data from Profile Detectors
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E158: Apparatus Acceptance

6

! 
!

! 
!

Detailed calibration scans of radial distributions
Monte Carlo with full detector geometry and QED radiative corrections
Adjust collimators, spectrometer optics and physics to reproduce data

Three physics processes
Møller and elastic e-p scattering from first principles
inelastic e-p scattering using SLAC code that incorporates world data

example scan
central radial value 

of  Moller peak vs 
azimuthal angle

Aphys =
1

Pb✏

Araw � ⌃fiAi

1� ⌃fi
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Extraction of  Result
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Aphys = A0(Q2, y)⇢(Q2)(1 + �A(Q2, y))(1� 4 sin2 ✓W (Q2) +�(Q2))

sin2 ✓W (Q2) = (Q2)MS sin2 ✓(m2
Z)MS

δA contained QED corrections including hard bremßtrahlung and γγ and IR 
divergent pieces of  the ΥZ boxes that factorize, and depend on the details of  the 

experimental configuration and acceptance cutoffs

Δ(Q2)  contains heavy boson boxes as well as 
leading logarithmic contribution to the ΥZ box

κ(Q2)  contains vacuum polarization 
and heavy boson vertex corrections

�A(Q2, y) = 0.006± 0.005 �(Q2) = �0.0007± 0.0009
size of corrections small due to accidental cancellations

E158 procedure: documented in Zykunov et al, arXiv:hep-ph/0507287 

http://arxiv.org/abs/hep-ph/0507287
http://arxiv.org/abs/hep-ph/0507287
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divergent pieces of  the ΥZ boxes that factorize, and depend on the details of  the 

experimental configuration and acceptance cutoffs

Δ(Q2)  contains heavy boson boxes as well as 
leading logarithmic contribution to the ΥZ box

κ(Q2)  contains vacuum polarization 
and heavy boson vertex corrections

�A(Q2, y) = 0.006± 0.005 �(Q2) = �0.0007± 0.0009
size of corrections small due to accidental cancellations

Issues for JLab MOLLER
Expect a 3-4% correction for 11 GeV
Robust prediction for Qp

W for 11 GeV (done? We assumed 4% error)
full two-loop calculation with careful scrutiny for double-counting
error on Δ(Q2) must be reduced by a factor of 4 to 5 (related to 2-loop)

need to develop collaboration between experimentalists and theorists
more scrutiny of error going from 𝝹(0) → 𝝹(Q2)

E158 procedure: documented in Zykunov et al, arXiv:hep-ph/0507287 

http://arxiv.org/abs/hep-ph/0507287
http://arxiv.org/abs/hep-ph/0507287
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E158 ep Detector Data
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APV(ee) = -152 ppb for E158-specific kinematics (average 45 & 48 GeV)

• Radiative tail of elastic ep scattering  is dominant background!
• 8% under Moller peak!
• Additional 1% from inelastic e-p scattering!
• Coupling is large: similar to 3 incoherent quarks!
• Reduced in Run II with additional collimation!

APV(e-p elastic) ~ 500 ppb (at forward angle: -1 x 10-5 x Q2)
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APV(ee) = -152 ppb for E158-specific kinematics (average 45 & 48 GeV)

• Radiative tail of elastic ep scattering  is dominant background!
• 8% under Moller peak!
• Additional 1% from inelastic e-p scattering!
• Coupling is large: similar to 3 incoherent quarks!
• Reduced in Run II with additional collimation!
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30 % strength in e-p detector 
from inelastic scattering
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APV(ee) = -152 ppb for E158-specific kinematics (average 45 & 48 GeV)

• Radiative tail of elastic ep scattering  is dominant background!
• 8% under Moller peak!
• Additional 1% from inelastic e-p scattering!
• Coupling is large: similar to 3 incoherent quarks!
• Reduced in Run II with additional collimation!

APV(e-p elastic) ~ 500 ppb (at forward angle: -1 x 10-5 x Q2)

30 % strength in e-p detector 
from inelastic scattering

Data consistent with:
 APV(inelastic) = -8 x 10-5 x Q2

elastic ep Q2 = 0.05 GeV2

inelastic ep Q2 = 0.07 GeV2

W range: Delta to 8 GeV

APV inelastic ~ 5 ppm
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APV(ee) = -152 ppb for E158-specific kinematics (average 45 & 48 GeV)

• Radiative tail of elastic ep scattering  is dominant background!
• 8% under Moller peak!
• Additional 1% from inelastic e-p scattering!
• Coupling is large: similar to 3 incoherent quarks!
• Reduced in Run II with additional collimation!

APV(e-p elastic) ~ 500 ppb (at forward angle: -1 x 10-5 x Q2)

30 % strength in e-p detector 
from inelastic scattering

correction to Aphys was -22 +/- 4 ppb: ~ 20% error on correction

Data consistent with:
 APV(inelastic) = -8 x 10-5 x Q2

elastic ep Q2 = 0.05 GeV2

inelastic ep Q2 = 0.07 GeV2

W range: Delta to 8 GeV

APV inelastic ~ 5 ppm
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APV(ee) = -152 ppb for E158-specific kinematics (average 45 & 48 GeV)

• Radiative tail of elastic ep scattering  is dominant background!
• 8% under Moller peak!
• Additional 1% from inelastic e-p scattering!
• Coupling is large: similar to 3 incoherent quarks!
• Reduced in Run II with additional collimation!

APV(e-p elastic) ~ 500 ppb (at forward angle: -1 x 10-5 x Q2)

30 % strength in e-p detector 
from inelastic scattering

correction to Aphys was -22 +/- 4 ppb: ~ 20% error on correction

Data consistent with:
 APV(inelastic) = -8 x 10-5 x Q2

elastic ep Q2 = 0.05 GeV2

inelastic ep Q2 = 0.07 GeV2

W range: Delta to 8 GeV

APV inelastic ~ 5 ppm

For JLab MOLLER, prediction is -4% +/- 0.4%: 
want to achieve 10% correction error
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28 m

liquid 
hydrogen
target

upstream
toroid

hybrid
toroid

detector
systems

electron
beam
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MOLLER @ JLab

Ebeam = 11 GeV
APV = 35.6 ppb

δ(APV) = 0.73 parts per billion

δ(QeW) = ± 2.1 % (stat.) ± 1.0 % (syst.) 

75 μA 80% polarized

An ultra-precise measurement of the weak mixing angle using Møller scattering

Luminosity: 3x1039 cm2/s!

LH2 5-20 mrad11 GeV Beam
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identical particles!

odd number of  coils: 
100% azimuthal acceptance
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Radial Distributions
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both elastic and inelastic ep scattering are important

rate vs radius 
at detector 

plane

rate vs radius 
at detector 

plane

APV-weighted rate vs radius 
at detector plane

APV-weighted rate vs radius 
at detector plane
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Radial Distributions
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both elastic and inelastic ep scattering are important

ep elastic: 8 +/- 0.3%

ep inelastic 4 +/- 0.4%

rate vs radius 
at detector 

plane

rate vs radius 
at detector 

plane

APV-weighted rate vs radius 
at detector plane

APV-weighted rate vs radius 
at detector plane
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Detector Systems

neutrals

‘pion’

luminosity

Moller Peak 
Detectors

ee’s

ep’s

optimized for robust background 
subtraction
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Detector Systems
• Integrating Detectors:

– Moller and e-p Electrons:
• radial and azimuthal segmentation
• quartz with air lightguides & PMTs

– pions and muons:
• quartz sandwich behind shielding

– luminosity monitors
• beam & target density fluctuations

Moller Peak 
Detectors

ee’s

ep’s

optimized for robust background 
subtraction

12
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• Auxiliary Detectors
– Tracking detectors

• 3 planes of GEMs/Straws
• Critical for systematics/

calibration/debugging

– Integrating Scanners
• quick checks on stability
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Latest Configuration
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Radial Distributions
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Rate APV

Q2
W2

color code same as slide 11 for first 3 plots
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Phi Segmentation
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Initial and final state radiation effects in target
3 different phi distributions
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Rate and APV vs Phi
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Q2-weighted W2 distributions
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Ansatz: APV(ep→eX)/Q2 = B(W) 
Assume B(W) is constant for MΔ, MΔ<W<2, and W > 2 

cross-check with measured asymmetries in rings 2, 3 and 4

Ring 3
Closed

Ring 3
Transition

Ring 3
Open

Ring 4
Closed

Ring 4
Transition

Ring 4
Open

Ring 5
Closed

Ring 5
Transition

Ring 5
Open
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Projected Precision
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Example segmentation

Needs optimization and input from theorists
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Summary
Unpublished E158 data supports the notion that APV in 
inelastic e-p scattering is roughly constant with W2, and 
roughly consistent with the QPM prediction
MOLLER needs a dedicated effort of phenomenologists 
working with experimentalists to set up the framework to 
extract the weak charge measurement with full treatment of 
2-loop effects
MOLLER will make measurements of APV in inelastic e-p 
scattering in several interesting regions of (Q2, W2) space 
with significant contribution from the diffractive region

useful for reduction of error in ▢γZ prediction? 

MOLLER needs theory and phenomenology input to come up 
with an optimum strategy (combination of parasitic 
measurements, theory and phenomenology) to constrain the 
roughly 4% correction from the irreducible background due 
to inelastic electron-proton scattering to 10% of itself

19


