The E158 and MOLLER Experiments

Krishna S. Kumar
University of Massachusetts, Amherst

Gamma-Z Workshop, JLab, December 16-17, 2013

Outline

- Review of SLAC E158
- extraction of result including radiative corrections
- inelastic e-p scattering data
- MOLLER at JLab
- theoretical issues
- Standard Model prediction with full detector effects
- two-loop uncertainties
- kinematics of e-p inelastic $A_{P V}$ measurements

SLAC E158 Result

SLAC E158 Result

E/HWP state		
45/IN	1	-147 ± 27
45/OUT	-1	-129 ± 28
48/IN		-119 ± 26
48/OUT		-137 ± 26
Run I-III	-1	-131 ± 14
Moller Asymmetry (ppb		

SLAC E158 Result

SLAC E158 Layout

~ 11 ppb raw statistical error at highest $E_{\text {beam, }} \sim 0.4 \%$ error on weak mixing angle

- 4 quadrupoles
- focus Mollers and separate from ep's
- full range of the azimuth
- 3 dipole chicane
- entire beam bent and then rebent
- shields detector rings from target line of sight
- natural 10 GeV momentum cutoff

- Precision collimation

- Tungsten edges
- movable "pin-hole" calibration collimators

E158: Detector Concept

Scale (cm)

BEAM AXIS

Luminosity

* 4 integrating detectors
* profile detectors for calibration

E158: Apparatus Acceptance

- Detailed calibration scans of radial distributions
- Monte Carlo with full detector geometry and QED radiative corrections - Adjust collimators, spectrometer optics and physics to reproduce data
- Three physics processes
- Moller and elastic e-p scattering from first principles
- inelastic e-p scattering using SLAC code that incorporates world data

$$
A_{\mathrm{phys}}=\frac{1}{P_{b} \epsilon} \frac{A_{\mathrm{raw}}-\Sigma f_{i} A_{i}}{1-\Sigma f_{i}}
$$

Extraction of Result

E158 procedure: documented in Zykunov et al, arXiv:hep-ph/0507287

$$
\begin{gathered}
A_{\mathrm{phys}}=\mathcal{A}^{0}\left(Q^{2}, y\right) \rho\left(Q^{2}\right)\left(1+\delta A\left(Q^{2}, y\right)\right)\left(1-4 \sin ^{2} \theta_{W}\left(Q^{2}\right)+\Delta\left(Q^{2}\right)\right) \\
\sin ^{2} \theta_{W}\left(Q^{2}\right)=\kappa\left(Q^{2}\right) \overline{M S} \sin ^{2} \theta\left(m_{Z}^{2}\right) \overline{M S}
\end{gathered}
$$

δA contained QED corrections including hard bremßtrahlung and γY and IR divergent pieces of the $\mathrm{Y} Z$ boxes that factorize, and depend on the details of the experimental configuration and acceptance cutoffs
$\Delta\left(Q^{2}\right)$ contains heavy boson boxes as well as leading logarithmic contribution to the $Y Z$ box

$$
\delta A\left(Q^{2}, y\right)=0.006 \pm 0.005 \quad \Delta\left(Q^{2}\right)=-0.0007 \pm 0.0009
$$

size of corrections small due to accidental cancellations
$\mathrm{K}\left(Q^{2}\right)$ contains vacuum polarization and heavy boson vertex corrections

Extraction of Result

E158 procedure: documented in Zykunov et al, arXiv:hep-ph/0507287

$$
\begin{gathered}
A_{\mathrm{phys}}=\mathcal{A}^{0}\left(Q^{2}, y\right) \rho\left(Q^{2}\right)\left(1+\delta A\left(Q^{2}, y\right)\right)\left(1-4 \sin ^{2} \theta_{W}\left(Q^{2}\right)+\Delta\left(Q^{2}\right)\right) \\
\sin ^{2} \theta_{W}\left(Q^{2}\right)=\kappa\left(Q^{2}\right) \overline{M S} \sin ^{2} \theta\left(m_{Z}^{2}\right) \overline{M S}
\end{gathered}
$$

סA contained QED corrections including hard bremßtrahlung and YY and IR divergent pieces of the $Y Z$ boxes that factorize, and depend on the details of the experimental configuration and acceptance cutoffs
$\Delta\left(Q^{2}\right)$ contains heavy boson boxes as well as leading logarithmic contribution to the γZ box

$$
\delta A\left(Q^{2}, y\right)=0.006 \pm 0.005
$$

size of corrections small due to accidental cancellations

- Issues for JLab MOLLER
- Expect a 3-4\% correction for 11 GeV
- Robust prediction for \mathbf{Q}^{p} w for 11 GeV (done? We assumed 4\% error)
- full two-loop calculation with careful scrutiny for double-counting
- error on $\Delta\left(Q^{2}\right)$ must be reduced by a factor of 4 to 5 (related to 2-loop)
- need to develop collaboration between experimentalists and theorists more scrutiny of error going from $\mathrm{k}(0) \rightarrow \mathrm{K}\left(\mathrm{Q}^{2}\right)$

E158 ep Detector Data

Apv $($ ee) $=-152$ ppb for E158-specific kinematics (average 45 \& 48 GeV) Apv(e-p elastic) ~ 500 ppb (at forward angle: $-1 \times 10^{-5} \times \mathrm{Q}^{2}$)

E158 ep Detector Data

Apv(ee) $=-152$ ppb for E158-specific kinematics (average $45 \& 48 \mathrm{GeV}$) Apv(e-p elastic) ~ 500 ppb (at forward angle: $-1 \times 10^{-5} \times$ Q 2)

30% strength in e-p detector from inelastic scattering

E158 ep Detector Data

Apv $(\mathrm{ee})=-152$ ppb for E158-specific kinematics (average 45 \& 48 GeV) Apv(e-p elastic) ~ 500 ppb (at forward angle: $-1 \times 10^{-5} \times \mathrm{Q}^{2}$)

E158 ep Detector Data

Apv $(\mathrm{ee})=-152$ ppb for E158-specific kinematics (average $45 \& 48 \mathrm{GeV}$) Apv(e-p elastic) ~ 500 ppb (at forward angle: $-1 \times 10^{-5} \times \mathrm{Q}^{2}$)

30 \% strength in e-p detector from inelastic scattering

Data consistent with: Apv(inelastic) $=-8 \times 10^{-5} \times Q^{2}$ elastic ep $Q^{2}=0.05 \mathrm{GeV}^{2}$ inelastic ep $Q^{2}=0.07 \mathrm{GeV}^{2}$

Apv inelastic ~ 5 ppm
W range: Delta to 8 GeV correction to $A_{\text {phys }}$ was - 22 +/- 4 ppb: $\sim 20 \%$ error on correction

E158 ep Detector Data

Apv $(\mathrm{ee})=-152$ ppb for E158-specific kinematics (average $45 \& 48 \mathrm{GeV}$) Apv(e-p elastic) ~ 500 ppb (at forward angle: $-1 \times 10^{-5} \times \mathrm{Q}^{2}$)

30 \% strength in e-p detector from inelastic scattering

Data consistent with: Apv(inelastic) $=-8 \times 10^{-5} \times Q^{2}$ elastic ep $Q^{2}=0.05 \mathrm{GeV}^{2}$ inelastic ep $Q^{2}=0.07 \mathrm{GeV}^{2}$

Apv inelastic ~ 5 ppm
W range: Delta to 8 GeV
correction to $A_{\text {phys }}$ was -22 +/- 4 ppb: $\sim 20 \%$ error on correction For JLab MOLLER, prediction is $-4 \%+/-0.4 \%$: want to achieve 10\% correction error

MOLLER@ JLab

An ultra-precise measurement of the weak mixing angle using Møller scattering

Spectrometer Concept

Spectrometer Concept

Radial Distributions both elastic and inelastic ep scattering are important

Detector Plane Radial Diatributions

Radial Distributions both elastic and inelastic ep scattering are important

Detector Plane Radial Diatributions

Detector Systems

Detector Systems

Integrating Detectors:

- Moller and e-p Electrons:
- radial and azimuthal segmentation
- quartz with air lightguides \& PMTs
- pions and muons:
- quartz sandwich behind shielding
- luminosity monitors
- beam \& target density fluctuations

Moller and ep electrons ($\mathrm{GHz} / \mathrm{cm}^{2}$)

Detector Systems

Integrating Detectors:

- Moller and e-p Electrons:
- radial and azimuthal segmentation
- quartz with air lightguides \& PMTs
- pions and muons:
- quartz sandwich behind shielding
- luminosity monitors
- beam \& target density fluctuations
- Auxiliary Detectors
- Tracking detectors
- 3 planes of GEMs/Straws
- Critical for systematics/ calibration/debugging
- Integrating Scanners
- quick checks on stability

Moller and ep electrons ($\mathrm{GHz} / \mathrm{cm}^{2}$)

Latest Configuration

Radial Distributions color code same as slide 11 for first 3 plots

Radial distribution - Full

Phi Segmentation

Initial and final state radiation effects in target

15

Rate and $A_{p v}$ vs Phi

Q^{2}-weighted \mathbf{W}^{2} distributions
 Ansatz: $\operatorname{Apv}(e p \rightarrow e X) / Q^{2}=B(W)$

Assume $B(W)$ is constant for $M_{\Delta}, M_{\Delta}<W<2$, and $W>2$ cross-check with measured asymmetries in rings 2, 3 and 4

Projected Precision Example segmentation

Needs optimization and input from theorists

Summary

- Unpublished E158 data supports the notion that Apv in inelastic e-p scattering is roughly constant with \mathbf{W}^{2}, and roughly consistent with the QPM prediction
- MOLLER needs a dedicated effort of phenomenologists working with experimentalists to set up the framework to extract the weak charge measurement with full treatment of 2-loop effects
- MOLLER will make measurements of Apv in inelastic e-p scattering in several interesting regions of (\mathbf{Q}^{2}, W^{2}) space with significant contribution from the diffractive region
- useful for reduction of error in $\square \mathrm{yz}$ prediction?
- MOLLER needs theory and phenomenology input to come up with an optimum strategy (combination of parasitic measurements, theory and phenomenology) to constrain the roughly 4\% correction from the irreducible background due to inelastic electron-proton scattering to 10\% of itself

