

γZ box(ing) Workshop Jefferson Lab, Dec. 16-17, 2013

γZ box (ing) discussion

What we agree on

- γZ corrections are important & we know (more or less) how to calculate them (in principle)!
- Main uncertainty from poor knowledge of γZ structure functions
 - \rightarrow most important contributions from low W, low Q^2

Should use available empirical information to constrain γZ corrections

What we disagree on

- How to constrain γZ structure functions in low *W*, low Q^2 region
- How (whether?) to match structure functions across boundaries
 - → match onto "DIS" region, where (leading twist) structure functions understood
- How to use information from other observables (*d* PVDIS, PDFs) to constrain unknown structure functions
- How to add errors
 - → Gaussian, square, ... distributions

Integration region

Integration region

Integration region

Region I and II matching

Region I and III matching

Q-Weak:	E = 1.165 (GeV			
	W < 2GeV	W < 4GeV	W < 5GeV	W < 10GeV	All W

$Q^2 < 1 \text{ GeV}^2$	62.6%	79.8%	81.2%	82.8%	83.2%
$Q^2 < 2 \text{ GeV}^2$	68.3%	85.8%	87.6%	89.9%	90.4%
$Q^2 < 3 \text{ GeV}^2$	69.4%	87.9%	90.0%	92.7%	93.3%
All Q ²	70%	91.1%	94.1%	98.6%	100%

 $\sim 30\%$ from "DIS" region

	W < 2GeV	W < 4GeV	W < 5GeV	W < 10GeV	All W
$Q^2 < 1 \text{ GeV}^2$	62.6%	79.8%	81.2%	82.8%	83.2%
$Q^2 < 2 \text{ GeV}^2$	8.3%	85.8%	87.6%	89.9%	90.4%
$Q^2 < 3 \text{ GeV}^2$	69.4%	87.9%	90.0%	92.7%	93.3%
All Q ²	70 %	91.1%	94.1%	98.6%	100%

 $\sim 40\%$ from "DIS" region with duality

 Can higher twists in γZ be very large & very different from those in γγ?
 (isospin dependence of HTs?)

- → Tim Hobbs asked question how large $\gamma Z / \gamma \gamma$ HTs (in the form of $R^{\gamma Z} / R^{\gamma \gamma}$) would impact PVDIS measurement
- → Mantry, Ramsey-Musolf, Sacco recomputed HTs in MIT bag model (earlier Mulders), found to be "small"
- → "designer" corrections that (mysteriously) affect some observables but not others

Wang et al. PRL 111, 082501 (2013)

Quark-hadron duality in F_2^p

→ higher twists < 10-15% for $Q^2 > 1~{
m GeV}^2$

Accidental cancellations of charges?

S. Brodsky (2000)

proton HT ~ 1 -
$$\left(2 \times \frac{4}{9} + \frac{1}{9}\right) = 0$$
!
neutron HT ~ 0 - $\left(\frac{4}{9} + 2 \times \frac{1}{9}\right) \neq 0$

→ duality in proton a *coincidence!*→ should <u>not</u> hold for neutron !!

Quark-hadron duality in neutron

- → "theory": fit to W > 2 GeV data Alekhin et al., 0908.2762 [hep-ph]
- → *locally*, violations of duality in resonance regions < 15-20% (largest in ∆ region)

$$\rightarrow$$
 globally, violations < 10%

Malace, Kahn, WM, Keppel PRL **104**, 102001 (2010)

use resonance region data to learn about leading twist structure functions?

Kinematic cuts

- Systematically reduce $Q^2 \& W$ cuts
- Fit includes TMCs, HT term, nuclear corrections

What should we do?

- Try to agree on error estimate that is not too wildly optimistic or too wildly pessimistic?
 - What PV (not so?)DIS measurements will best constrain the calculation? What kinematics, how many points, and to what accuracy?
 - Homework
 - for theorists?
 - for experimentalists?

Vector *h* correction

- $F_{1,2}^{\gamma Z}$ structure functions
 - ★ for <u>background</u> at low Q^2 , weak isospin rotation uses VMD

$$\sigma_V^{\gamma Z} = \kappa_V \sigma_V^{\gamma \gamma}$$

$$\kappa_\rho = 2 - 4 \sin^2 \theta_W, \ \kappa_\omega = -4 \sin^2 \theta_W, \ \kappa_\phi = 3 - 4 \sin^2 \theta_W$$

$$\frac{\sigma^{\gamma Z}}{\sigma^{\gamma \gamma}} = \frac{\kappa_{\rho} + \kappa_{\omega} R_{\omega} + \kappa_{\phi} R_{\phi} + \kappa_{C} R_{C}}{1 + R_{\omega} + R_{\phi} + R_{C}}$$

$$R_V = \frac{\sigma^{\gamma^* p \to V p}}{\sigma^{\gamma^* p \to \rho p}} \quad \text{product} \quad \text{for vertex}$$

production cross section ratio for vector meson V to ρ meson

- \rightarrow continuum parameter κ_C not constrained in VMD
- → GHRM assume $\kappa_C = 1 \pm 1$ ← largest source of error!

- Region where continuum contributions are relevant overlaps with typical reach of global PDF fits
 - → constrain κ_C using PDF parametrizations by requiring matching of $F_{1,2}^{\gamma Z}$ to DIS structure functions

(small contribution to asymmetry)

* continuum uncertainty only

* continuum uncertainty only

PVDIS asymmetry

$$A_{\rm PV} = g_A^e \left(\frac{G_F Q^2}{2\sqrt{2}\pi\alpha}\right) \frac{xy^2 F_1^{\gamma Z} + (1-y)F_2^{\gamma Z} + \frac{g_V^e}{g_A^e}(y-y^2/2)xF_3^{\gamma Z}}{xy^2 F_1^{\gamma \gamma} + (1-y)F_2^{\gamma \gamma}}$$

significantly smaller uncertainties (at typical JLab kinematics)
 for constrained model

Inclusive PV asymmetries

Procedure can be tested by comparing with new JLab data on PV asymmetries on deuteron (E08-011*)

→ agrees well with resonance region PVDIS data (question about △ region datum)

* X. Zheng, P. Reimer, R. Michaels et al.

Inclusive PV asymmetries

Can also use PVDIS-resonance data themselves as constraint, to test consistency of model

→ slightly larger uncertainties than with PDF constraint, but still ~ 3-4 times smaller (at $W \gtrsim 1.8$ GeV) than GHRM

→ Region I dominates correction & its uncertainty

→ Region I dominates correction & its uncertainty

 \rightarrow resonance & background similar at $E \sim 1 \text{ GeV}$

Expected inelastic asymmetry from Qweak *

* R. Carlini, M. Dalton et al.

Expected inelastic asymmetry from E08-011 *

* X. Zheng, P. Reimer, R. Michaels

Summary

- γZ box corrections computed via dispersion relations from inclusive γZ interference structure functions
 - new formulation in terms of moments puts on firmer footing earlier estimates within free-quark model
- Axial-vector hadron γZ corrections to APV in ¹³³Cs
 - → shift relative to MS value for $Q_W(Cs)$ of -0.16% ($\Delta \sin^2 \theta_W \approx 4 \times SM$ uncertainty)
- Significant constraints on vector hadron correction from new "PVDIS" asymmetry data & global PDF fits
 - \rightarrow reduces uncertainty on $\Re e \Box_{\gamma Z}^V$ by factor ~ 2.5 5
 - → additional "PVDIS" data (E08-011, Qweak, SOLID) will further constrain $\Re e \square_{\gamma Z}^V$