Experiment E08-011 PVDIS: Parity Violation in DIS

Spokespersons: Xiaochao Zheng, Paul Reimer, Robert Michaels Postoc: Ramesh Subedi. Students: Diancheng Wang, Xiaoyan Deng, Kai Pan, Haibo Ding

Results :

- C_{2q} precision improved by factor of ~5; agreement with Standard Model; new mass limits on C2 contact interactions (J. Erler)
- First PV data covering the full resonance region, duality holds at the current precision

Publications

- DAQ, Detectors, PID : R. Subedi et al., NIM-A 724, 90 (2013)
- PV in resonance region: D. Wang et al, PRL 111, 082501 (2013)
- PVDIS main result: Nature, in press

Robert Michaels for E08-011 December, 2013

R. Michaels, Dec 2013

Experimental Details: PVDIS at 6 GeV (Jlab E08-011)

- Ran Oct-Dec 2009
- 100uA, 90% polarized electron beam, 20-cm liquid deuterium target

Custom counting mode DAQ

• Experimental challenges: High event rate (600 kHz) Achieve pion background < 4 x 10⁻⁴ $A_{meas} = f_{\pi/e} A_{\pi} + (1 - f_{\pi/e} A_{e})$

Deadtime uncertainty < 0.4% Beam polarimetry uncertainty 1.2-1.8%

Quality of Asymmetry Measurement

R. Michaels, Dec 2013

E08011 DIS Results

Article accepted by Nature, in press

Kinematic I E = 6.067 GeV < x > = 0.241 $Y_3 = 0.44 < Q^2 > = 1.085 (GeV/c)^2$

Kinematic II E = 6.067 GeV < x > = 0.295 $Y_3 = 0.69 < Q^2 > = 1.901 (GeV/c)^2$

Asymmetry results removed for now, due to publisher rules in Nature article. Please see the Nature article.

Finding the C_{2q} couplings

Inputs:

- C_{1q} from Androic, D. *et al* [Qweak Collab.] PRL 111, 141803 (2013).
- Atomic Parity Violation
- SLAC E122
- And this experiment

C2q results removed for now, due to publisher rules in Nature article. Please see the Nature article.

> Also: Mass limits for new contact interactions (thanks J. Erler) -- see our Nature draft article

Resonances : a Background Correction

Our Data: PRL 111, 0825011 (2013)

Kinematic I	II	III	IV
E = 4.867GeV	4.867	4.867	6.067
$Q^2 = 0.950 \text{ GeV}^2$	0.831	0.757	1.472
W = 1.263 GeV	1.591	1.857	1.981
A _{phys} = -68.97 ppm	-74.12	-61.80	-119.56
Tot. uncertainty 9.09 ppm	7.43	5.50	18.42

E08-011 Resonance Results PRL 111, 0825011 (2013)

SUMMARY : Experiment E08-011 PVDIS: Parity Violation in DIS

Results :

- C_{2q} precision improved by factor of ~5; agreement with Standard Model; new mass limits on C2 contact interactions (J. Erler)
- First PV data covering the full resonance region, duality holds at the current precision

Publications

- DAQ, Detectors, PID : R. Subedi et al., NIM-A 724, 90 (2013)
- PV in resonance region: D. Wang et al, PRL 111, 082501 (2013)
- PVDIS main result: Nature, accepted Dec 13. In press.

Robert Michaels for E08-011 December, 2013

Backups

Beam Polarization (Compton/Moller)

Moller: 88.47% +/- 2.0% (syst, rel) (6.0GeV) 90.4% +/- 1.7% (syst, rel) (4.8GeV) Compton: 89.45% +/- 1.92% (syst, rel)

Correction Due to Pion Contamination (work of K. Pan and D. Wang)

Pion asymmetry is observed to be non-zero:

	Left Kine#1	Left Kine#2	Right Kine#2
Al pion (ppm)	-48.01(7.54)	-14.00(14.89)	-9.51(4.22)
electron fraction	0.56 (0.16)	0.04(0.04)	0.011(0.001)
A Pion, corrected (ppm)	-30.85(12.84)	-8.91(16.31)	-8.04(4.27)

Pion correction uncertainty is the combination of:

$$\frac{\Delta A_e}{A_e} = \Delta f \oplus f \frac{\Delta A_{\pi}}{A_e}$$

Kine#1

Kine#2

Correction to Ae

1.00019(0.00014) 1.00024(0.00003)

DAQ Deadtime Correction

(work of D. Wang)

Deadtime correction to asymmetry: A_{measured} = A_{phys} (1 - deadtime loss)

Deadtime Decomposition:

- Group Deadtime: proportional to group rate; narrow/wide.
- Veto Deadtime: T1/GC rate; the same for all groups.
- Final OR.
- Overall Deadtime: Veto DT + Group DT + Final OR DT

DAQ Timing Simulation (HATS) (work of D. Wang)

Inputs:

- 1) Signal amplitude and shape (from data)
- 2) Rates and position-dependence (from data)
- 3) DAQ electronic diagram, model spec., cable delays... ...

Right arm preshower PMTs:

All Other Leadglass PMTs:

December 2013

How Do We Know It Works?

(work of D. Wang)

Deadtime Decomposition:

Group DT: measured by "tagger" data

Veto DT: Using FADC data as input/proof;

OR (final) DT: no direct data, but can estimate in theory reliably.

December 2013

PID Performance - Single Run

(work of K. Pan)

<u>We extract detector efficiencies from VDC-on runs, which</u> <u>were taken daily</u>

December 2013