Baryon spectroscopy from lattice QCD

- Long-term goal: Solve QCD to determine the hadron mass spectrum.
- Part I. Recent progress on N, Δ , Ω excited state spectra
 - J. M. Bulava, R. G. Edwards, E. Engelson, B. Joó, H.-W. Lin, C. Morningstar, D. G. Richards and S. J. Wallace, Phys. Rev. D82, 014507 (2010)
- Part II. Spin identification for baryon states
 - R. G. Edwards, D. G. Richards and S. J. Wallace, in preparation.
- Phenomenology
- Conclusions

Matrices of correlation functions and smearing of quark fields

$$C_{ij}(t,t') = \sum_{\mathbf{x}\mathbf{y}} \left\langle B_i(\mathbf{x},t) B_j^{\dagger}(\mathbf{y},t') \right\rangle$$
$$B_i(\mathbf{x},t) = C_i^{\alpha\beta\gamma} \epsilon^{abc} q_{\alpha}^{af_1}(\mathbf{x},t) q_{\beta}^{bf_2}(\mathbf{x},t) q_{\gamma}^{cf_3}(\mathbf{x},t).$$

Smearing: Project to eigenvectors of Laplacian

$$\begin{aligned} q^a_{\alpha}(\mathbf{x},t) &\longrightarrow \sum_k v^{(k)}_{a\mathbf{x}} \widetilde{q}^{(k)}_{\alpha}(t). \\ & \left(-\nabla^2 \right)^{ab}_{\mathbf{x}\mathbf{y}} v^{(k)}_{b,\mathbf{y}} = \lambda_k v^{(k)}_{a\mathbf{x}} \end{aligned}$$
$$\begin{aligned} C_{ij}(t,t') &= \Phi^{\alpha\beta\gamma}_{i,k\ell m}(t) \; \left\langle \widetilde{q}^{(k)}_{\alpha}(t) \widetilde{q}^{(\ell)}_{\beta}(t) \widetilde{q}^{(m)}_{\gamma}(t) \right. \\ & \left. \overline{\widetilde{q}}^{(\bar{k})}_{\bar{\alpha}}(t') \overline{\widetilde{q}}^{(\bar{\ell})}_{\bar{\beta}}(t') \overline{\widetilde{q}}^{(\bar{m})}_{\gamma}(t') \right\rangle \; \Phi^{\bar{\alpha}\bar{\beta}\bar{\gamma}\dagger}_{j,\bar{k}\bar{\ell}\bar{m}}(t') \end{aligned}$$

Determine energies

Calculate eigenvectors at $t^* = t_0 + 1$

$$\overline{C}(t^*)V(t^*) = \overline{C}(t_0)V(t^*)\Lambda(t^*)$$

Rotate matrices to basis of eigenvectors, calculate diagonal elements

$$\widetilde{\lambda}_n(t) = \left(V^{\dagger}(t^*) C(t) V(t^*) \right)_{nn}$$

Two-exponential fits of diagonal elements

$$\lambda_{fit}(t) = (1 - A)e^{-\mathbf{E}(t - t_0)} + Ae^{-E'(t - t_0)}$$

Nucleon G_{1g} effective energies: $m_{\pi} = 392(4)$ MeV

Excited Hadronic States & Deconfinement Transition Workshop, Jlab, 2/24/11

Excited Hadronic States & Deconfinement Transition Workshop, Jlab, 2/24/11

Excited Hadronic States & Deconfinement Transition Workshop, Jlab, 2/24/11

Excited Hadronic States & Deconfinement Transition Workshop, Jlab, 2/24/11

Excited Hadronic States & Deconfinement Transition Workshop, Jlab, 2/24/11

Excited Hadronic States & Deconfinement Transition Workshop, Jlab, 2/24/11

Patterns of Nucleon Spectra

Excited Hadronic States & Deconfinement Transition Workshop, Jlab, 2/24/11

Patterns of Delta Spectra

Excited Hadronic States & Deconfinement Transition Workshop, Jlab, 2/24/11

Patterns of Omega Spectra

Excited Hadronic States & Deconfinement Transition Workshop, Jlab, 2/24/11

Part II. Spin identification

- Rotational symmetry is broken at $\mathcal{O}(a^2)$ by lattice action
- Typical lattice spacing is 0.1 fm
- Typical hadron size is 1 fm
- $\mathcal{O}(a^2) \approx \left(\frac{0.1 fm}{1.0 fm}\right)^2 \approx 0.01$
- For hadrons, rotational symmetry should be broken weakly.

Fresh start: Construction of operators with good J in continuum

- Mesons: Dudek, et al., Phys.Rev.D80:054506,2009
- Baryons: Color singlet structure for 3 quarks, symmetric in space & spin
- $\mathbf{J} = \mathbf{L} + \mathbf{S}$ with
 - S = $\frac{1}{2}$ or $\frac{3}{2}$ from quark spins - L = 1 or 2 from covariant derivatives - J = $\frac{1}{2}$, $\frac{3}{2}$, $\frac{5}{2}$ and $\frac{7}{2}$
- Lots of operators $\mathcal{O}^{[J,M]}$ with good spin in continuum limit
- Feynman, Kislinger and Ravndal formalism for quark states applied to operator construction.

Subduction to IRs of cubic group

- Why? Because lattice IRs provide orthogonal basis, not the J,M IRs
- In quantum mechanics, subduction is a change of basis $|J,M\rangle \rightarrow |\Lambda,r;J\rangle$.

•
$$|\Lambda, r; J\rangle = \sum_{M} |J, M\rangle \langle J, M | \Lambda, r; J\rangle$$

= $\sum_{M} |J, M\rangle \ S^{J,M}_{\Lambda,r}.$

- Subduction coefficients: $S_{\Lambda,r}^{J,M}$
- Operators: $\mathcal{O}^{[\Lambda,r;J]} = \sum_M \mathcal{O}^{[J,M]} S^{J,M}_{\Lambda,r}$
- If rotational symmetry is broken weakly,

 $\langle 0|\mathcal{O}^{[\Lambda,r;J]}(t)\mathcal{O}^{[\Lambda,r;J']\dagger}(0)|0\rangle \approx \delta_{J,J'}$

is block diagonal in J.

Figure 4: Magnitude of matrix elements in a matrix of correlation functions at timeslice 5.

Test 2 for 28 G_{1g} energies

Test 2 for 48 H_g energies

Test 2 for 20 G_{2g} energies

Excited Hadronic States & Deconfinement Transition Workshop, Jlab, 2/24/11

How were the spins identified? $C_{ik}(t) = \sum_{n} \langle 0 | \mathcal{O}_{i}(0) | n \rangle \mathbf{e}^{-\mathbf{E_n t}} \langle n | \mathcal{O}_{k}^{\dagger}(0) | 0 \rangle$

$$=\sum_{n} Z_{ni}^{*} \mathbf{e}^{-\mathbf{E_nt}} Z_{nk}$$

Spin weights

$$W_{nJ} = \frac{\sum_{k \in J} |Z_{nk}|^2}{\sum_k |Z_{nk}|^2}$$

 W_{nJ} is the relative weight for operators subduced from spin J in the creation of state $|n\rangle$:

How well do weights identify the spins?

	Table 1: Spir	n weigh	its i	n %	for ten	G_{1g} energy	levels.
	E_n	$\frac{1}{2}$	$\frac{3}{2}$	$\frac{5}{2}$	$\frac{7}{2}$		
G_{1g} -0	0.2081(16)	99.9	Ō	Ō	Ō		
G_{1g} -1	0.3752(52)	99.9	0	0	0		
G_{1g}^{-2}	0.3830(66)	99.6	0	0	0.3		
G_{1g}^{-} -3	0.3922(78)	99.9	0	0	0		
G_{1g}^{-} -4	0.3944(71)	99.7	0	0	0.2		
G_{1g} -5	0.4263(103)	99.6	0	0	0.3		
G_{1g} -6	0.4398(41)	0.5	0	0	99.4		
G_{1g} -7	0.5003(166)	97.9	0	0	2		
G_{1g} -8	0.5020(114)	80.2	0	0	19.7		
G_{1g} -9	0.5060(167)	99.7	0	0	0.2		

Positive parity nucleon spectrum

Negative parity nucleon spectrum

Excited Hadronic States & Deconfinement Transition Workshop, Jlab, 2/24/11

Nucleon states similar to 'quark-model' pattern

<u>Phenomenology</u>. Nucleon spectrum

Discern structure: wave-function overlaps

1

Δ states also similar to 'quark-model' pattern

Spin identified ¢ spectrum

1

Conclusions

- The patterns of lattice baryonic states are similar to the patterns of physical resonance states.
- Spin identification based on subduction of continuum J works well.
- Lots of baryonic states, but no sign of chiral restoration.

The path forward

- Multiparticle operators are needed to include scattering states (e.g, πN).
- Multiple volumes are needed for determination of phase shifts using Luscher's formalism.
- Lower m_{π} is needed in order to approach the physical limit.

Lattice parameters

- $N_f = 2 + 1 \text{ QCD}$
 - Gauge action: Symanzik-improved
 - Fermion action: Clover-improved Wilson
- Anisotropic: $a_s = 0.122$ fm, $a_t = 0.035$ fm

ensemble	1	2	3
m_ℓ	0840	0830	0808
m_s	0743	0743	0743
Volume	$16^3 imes 128$	$16^3 imes 128$	$16^3 \times 128$
$N_{ m cfgs}$	344	570	481
$t_{ m sources}$	4	4	4
m_{π}	0.0691(6)	0.0797(6)	0.0996(6)
m_K	0.0970(5)	0.1032(5)	0.1149(6)
m_{Ω}	0.2951(22)	0.3040(8)	0.3200(7)
m_{π} (MeV)	392(4)	438(3)	521(3)

Part I. N , Δ and Ω spectra

- Many interpolating field operators in each IR of octahedral group: Prune to ≈ 10
- "Distillation" technology for smearing: Peardon, *et al.*, Phys. Rev. D80, 054506 (2009) Use 32 eigenvectors of Laplacian
- Matrices of correlation functions: Diagonalize them at $t^* \approx 8$, Fix eigenvectors at t^* .
- Diagonal correlation functions: Fit them & extract six energies
- Lattice spectra: Compare patterns with experimental resonance spectra.

Limitations

- Three-quark operators:
 - No multiparticle operators
 - Scant evidence for scattering states
- One (small) volume: No extrapolations or δ 's
- $m_{\pi} =$ 392, 438, 521 MeV : Energies generally are high.
- Spins: A single $J^P = \frac{5}{2}^-$ pattern is seen. Patterns for higher spins are ambiguous.

Computational Resources

- USQCD allocations
- Jefferson Laboratory clusters
- Fermi National Accelerator Lab clusters
- and the Chroma software system (Edwards *et al.*)

Subduction of J to \mathcal{O}_D

		Dimen		J		
IR	Parity	sion	$\frac{1}{2}$	$\frac{3}{2}$	$\frac{5}{2}$	$\frac{7}{2}$
G_{1g}	+1	2	1			1
H_{g}	+1	4		1	1	1
G_{2g}	+1	2			1	1
G_{1u}	-1	2	1			1
H_u	-1	4		1	1	1
G_{2u}	-1	2			1	1

- Isolated G_1 state \rightarrow Spin $\frac{1}{2}$
- isolated H state \rightarrow Spin $\frac{3}{2}$
- Degenerate G_2 and H states \rightarrow Spin $\frac{5}{2}$
- Degenerate G_1 , H and G_2 states \rightarrow Spin $\frac{7}{2}$:

Nucleon G_{1u} effective energies: $m_{\pi} = 392(4)$ MeV

Nucleon H_q effective energies: $m_{\pi} = 392(4)$ MeV

Nucleon H_u effective energies: $m_{\pi} = 392(4) \text{ MeV}$

Nucleon G_{2g} effective energies: $m_{\pi} = 392(4)$ MeV

Nucleon G_{2u} effective energies: $m_{\pi} = 392(4)$ MeV

Summary of Part I.

- First excited baryon spectrum based on $N_f = 2+1$ QCD using anisotropic lattices
- 6 lowest energy N, Δ and Ω states in each IR for $m_{\pi} = 392(4)$, 438(3) and 521(3) MeV.
- Patterns of lowest energies are similar to the patterns of lowest physical resonance states.
- Spin identification is very difficult. Degeneracies allow several subduction patterns to be compatible with results.
- Degenerate states in G_1 , H and G_2 : Could be a $J = \frac{7}{2}$ state or degenerate $J = \frac{1}{2}$ and $J = \frac{5}{2}$ states?

Test 2: Spectra with and without couplings between operators subduced from different J's

- Small couplings can mix different J's when states are degenerate
- Compare energies based on $C_{ij}(t)$ using all operators in an IR (include $J\neq J'$ couplings)
- and energies based on $C_{ij}(t)$ using only operators subduced from a single J (omit $J \neq J'$ couplings)
- For example, we have 28 G_{1g} operators in all. They include 24 subduced from $J = \frac{1}{2}$ and 4 subduced from $\frac{7}{2}$.
- Are the $J = \frac{1}{2}$ energies using all 28 G_{1g} operators similar to those using only the 24 operators subduced from $J = \frac{1}{2}$?

Test 2 for 28 G_{1u} energies

Excited Hadronic States & Deconfinement Transition Workshop, Jlab, 2/24/11

Test 2 for 48 H_u energies

Test 2 for 20 G_{2u} energies

Excited Hadronic States & Deconfinement Transition Workshop, Jlab, 2/24/11

How well do weights identify the spins?

	Table 2: Sp	oin w	<i>ieights</i>	in % f	for ten	H_g energy leve
	E_n	$\frac{1}{2}$	$\frac{3}{2}$	$\frac{5}{2}$	$\frac{7}{2}$	
H_g - 0	0.3705(90)	Ō	98 .2	1.6	0.1	
$H_{g}^{\mathbf{J}}$ -1	0.3816(38)	0	5.1	94.7	0	
$H_{g}^{"}$ -2	0.4005(48)	0	0.8	98.9	0.1	
$H_{g}^{"}$ -3	0.4013(61)	0	96.4	3.4	0	
$H_{g}^{"}$ -4	0.4030(43)	0	99.1	0.8	0	
H_{g}^{-} -5	0.4113(42)	0	99.3	0.4	0.1	
$H_{g}^{"}$ -6	0.4237(60)	0	96.1	3.6	0.1	
$H_{g}^{"}$ -7	0.4267(35)	0	3.2	96.4	0.2	
H_{g}^{-} -8	0.4414(38)	0	0.6	0.3	98.9	
$H_g^{'}$ -9	0.5050(224)	0	91.3	5.9	2.7	

~ / S.

How well does the spin identification work?

	Table 3: Spi	n w	eigh	ts in %	for ten	G_{2g}	energy	levels.
	E_n	$\frac{1}{2}$	$\frac{3}{2}$	$\frac{5}{2}$	$\frac{7}{2}$			
G_{2g} - 0	0.3717(54)	Ō	Ō	<u>99</u> .9	Ō			
G_{2g} -1	0.4088(50)	0	0	99.9	0			
G_{2g}^{-2} -2	0.4151(49)	0	0	99.6	0.3			
G_{2g} -3	0.4307(58)	0	0	0.6	99.3			
$G_{2g}^{-}-4$	0.4854(393)	0	0	99.6	0.3			
G_{2g} -5	0.5095(158)	0	0	92.4	7.5			
G_{2g} -6	0.5178(112)	0	0	34.5	65.4			
G_{2g} -7	0.5184(87)	0	0	77.8	22.1			
$G_{2g}^{-}-8$	0.5368(108)	0	0	86.8	13.1			
G_{2g} -9	0.5480(187)	0	0	13.9	86			

Excited Hadronic States & Deconfinement Transition Workshop, Jlab, 2/24/11

Results of spin identification analysis for baryon excited states

- The spin of a baryon excited state is equal to *J* when the state is created predominantly by operators subduced from continuum spin *J*.
- Some baryon excited states that are nearly degenerate can have significant mixings of their *J* parentage.

Spin $\frac{5}{2}$ and $\frac{7}{2}$ states based on average over M

$$C^{[J]}(t) = \frac{1}{2J+1} \sum_{\Lambda,r} C^{[\Lambda,r;J]}(t)$$
$$= \frac{1}{2J+1} \sum_{M} C^{[J,M]}(t)$$

Excited Hadronic States & Deconfinement Transition Workshop, Jlab, 2/24/11

Nucleon & Delta Spectrum

