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Overview

� Myths: Lattice QCD can . . .
. . . only compute ground-state properties.
. . . not compute scattering properties.
. . . not handle high spin states.
. . . not handle isoscalar mesons.

� Where do these myths come from?

� New methods for making hadrons.

� Myth-busting results.



Where do these
myths come from?

. . . mostly from the way
numerical simulations
are done, particularly
when including quarks.



Lattice regularisation

� Lattice provides a non-perturbative, gauge-
invariant regulator for the QCD path integral.

� Quarks live on sites
� Gluons live on links
� a - lattice spacing
� a ∼ 0.1 fm

Quark fields

on sites

on links

Gauge fields

� Chirally symmetric quarks are missing, but can
discretise quarks by trading-off some symmetry

� In a finite volume V = L4, finite number of degrees
of freedom and path-integral is an ordinary (but
large) integral.

High-dimension integrals estimated by Monte Carlo



Monte Carlo sampling the QCD lattice vacuum

Variance of estimators is huge unless we use importance
sampling — must work with QFT in Euclidean space-time

� In a Euclidean metric:

Cπ(t1, t0) =
∫

DUDψ̄Dψ ψ̄u(t1)γ5ψd(t1)ψ̄d(t0)γ5ψu(t0) e−SG−ψ̄uMψu−ψ̄dMψd
∫

DUDψ̄Dψ e−SG−ψ̄uMψu−ψ̄dMψd

� Hard to deal with Grassmann algebra

. . . so integrate out quark fields
� Quenched approximation was to ignore det M2

� Nf = 2 importance sampling measure
� Non-negative, thanks to Euclidean metric
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Spectroscopy and Euclidean space-time

� Energies of colourless QCD states extracted from
two-point functions in Euclidean time

C(t) = 〈Φ(t)|Φ†(0)〉

� Euclidean time: Φ(t) = eHtΦe−Ht so C(t) = 〈Φ|e−Ht|Φ〉.
Insert a complete set of states then:

C(t) =
∞
∑

k=0

|〈Φ|k〉|2 e−Ekt

� limt→∞C(t) = Ze−E0t: observe large-t exponential
fall-off, then energy of ground-state measured

Euclidean metric very useful for spectroscopy: provides
a way of isolating and examining low-lying states



Excited states

� Excited-state energies measured from matrix of
correlators:

Cij(t) = 〈Φi(t)|Φ†
j
(0)〉

� Solve generalised eigenvalue problem:

C(t1) v = λ C(t0) v

for different t0 and t1 [Lüscher & Wolff, C. Michael]

� Then lim(t1−t0)→∞ λn = e−En(t1−t0)

� Method constructs optimal ground-state creation
operator, then builds orthogonal states.

Excited states accessed if basis of creation operators is
used and the matrix of correlators can be computed



Isoscalar meson correlation functions

� Isovector mesons: Wick
contraction gives

� Isoscalar – extra diagrams. Wick contraction:

〈ψiψ̄jψkψ̄l〉 = M−1
ij
M−1
kl
−M−1

il
M−1
jk

〈0|ΦI=0(t)Φ†
I=0(0)|0〉 =

〈0|ΦI=1(t)Φ†
I=1(0)|0〉 − 〈0|Tr M−1ΓUC(t)Tr M−1ΓUC(0)|0〉



Scattering

Scattering matrix elements are not directly accessible
from Euclidean QFT [Maiani-Testa theorem]

� Scattering matrix elements:
asymptotic |in〉, |out〉 states.
〈out |eiĤt| in〉 → 〈out |e−Ĥt| in〉

� Euclidean space: project onto
ground-state only
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D. McManus, P. Giudice & MP

� Lüscher’s formalism:
information on elastic scattering
inferred from volume
dependence of spectrum

� Method requires precise data

Talks → Schierholz, Renner



Spin on the lattice

� Lattice breaks O(3)→ Oh

� Lattice states classified by quantum
letter, R ∈ {A1,A2,E,T1,T2}

� Link to continuum by subducing
reps of O(3) into Oh

� Look for degeneracies. Problem:
spin-4 has same pattern as
0⊕ 1⊕ 2.

� Better spin assignment by constructing operators
from lattice representation of convariant derivative.

� Start in continuum with operator of definite J, then
subduce this into Oh and then replace derivatives
with lattice equivalent.

� Also measure 〈0|Φ†| JPC〉 and look for remnants of
continuum symmetries.



The numerical tool-kit for quarks

� Physics focus of LQCD has been matrix elements,
not spectroscopy.

� Traditionally, quark propagation
computed starting with point
source: η(x, t) = δt,0δx,0

� Solve Mψ = η, then ψ is one
column of M−1

� QCD lagrangian is translationally
invariant

� With this trick, can make simple mesons and
baryons cheaply.

� Isoscalar mesons, higher-spin states, hybrids, large
operator bases not so well constructed.

The “point-to-all” propagator has restricted the focus of
physics lattice QCD has addressed



In principle:
� Variational calculations allow

access to excited states
� Lüscher’s method enables lattice

QCD computations of elastic
scattering properties.

� Isoscalar mesons just need extra
diagrams to be computed.

� High-spin-state measurements just
need more than local bilinears

In practice:
Problems with manipulating quarks on
the computer has made all this very
challenging and progress has been slow



A new framework
“Distillation”

“distill: to extract the quintessence of” [OED]



Smearing

� Smeared field: ψ̃ from ψ, the “raw” quark field in
the path-integral:

ψ̃(t) = �[U(t)] ψ(t)

� Extract confinement-scale degrees of freedom,
while preserving symmetries of quarks.

� Creation operator now acts on smeared quark
fields:

Φ†
M

(t) =
¯̃ψ(t)Γψ̃(t)

Γ is operator in {s, σ,c} ≡ {position,spin,colour}

Smearing extracts the essential degrees of freedom
needed to make mesons: overlap 〈n|Φ†

M|0〉 is large for
low-lying eigenstate |n〉



Gaussian smearing

� Gaussian smearing:

lim
n→∞

�

1 +
σ∇2

n

�n

= exp(σ∇2)

� This acts in the space of coloured scalar fields on a
time-slice: Ns ×Nc
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� Data from as ≈ 0.12fm 163 lattice: 163 × 3 = 12288.



Distillation

� Distillation: define smearing to be explicitly a very
low-rank operator. Rank is ND(� Ns ×Nc).

Distillation operator

�(t) = V(t)V†(t)

with Va
x,c

(t) a ND × (Ns ×Nc) matrix

� We use: �∇ the projection operator into D∇, the
space spanned by the lowest eigenmodes of
the 3-D laplacian

� Eigenvectors of ∇2 not the only choice and may not
be optimal

� Because V is a narrow column matrix, quark-line
diagrams factorise: much cheaper to compute.



Distillation enables:
� Arbitrary operator insertions
� large variational basis
� isoscalar correlators
� multi-hadron states

. . . to be computed.

. . . but work to do
� poor cost scaling with V



Results

Caveat emptor:
� No a −→ 0 extrapolation
� Finite V

� unphysical mπ



Isovector meson spectroscopy
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� mπ = 400 MeV
� No 2-meson operators

Should be a dense spectrum
of two-meson states:

— Not seen at all



Isoscalar meson spectroscopy
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� No 0++ data presented
� mπ = 400 MeV
� No glueball, 2-meson ops
� Still expensive calculations

Statistical precision:
η 0.5%
η′ 1.9%



Vector mesons: the ρ,ω and ϕ

� Mix light and strange
quarks in correlators

� Resolve ρ−ω mass
difference (QCD only)
clearly:

mω −mρ = 19(4) MeV

I = 1 ω ϕ
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The power of GPUs

� 479 configurations, ND = 64→ 31M solutions of
Mψ = η

� Enabled by use of Graphics
Processing Units (GPU)
and QUDA software library
written by Clark and Babich .

� Linear solver integrated into chroma by Bálint Joó
� Sustains more than 100 GFlops per GPU for linear

system solver.

GPUs offer excellent price/performance since manufac-
tured in huge numbers



π − π scattering (I = 2)

� Lüscher’s method: first
compute energy shifts in the
finite volume

� Data for L = 16,20,24as
� Energy shifts well resolved
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� Measure δ0, δ2 and small
δ4

� I = 0,1 under investigation
(more diagrams, including
t→ t)



Problem: volume cost scaling

� So far - results on modest lattice sizes:
Ns = 163 ≡ (1.9fm)3. Used ND = 64

Cost vs volume
� Maintaining constant resolution of structures in the

vacuum (of fixed physical size) means increasing
ND ∝ Ns

� Computer costs grow like N2
s

(for inversions), N3
s

for
meson contractions, N4

s
for baryons . . .

� One Solution: use stochastic estimator
techniques (Monte Carlo within a Monte Carlo)

� This works well because distillation rank-reduces
the problem substantially

NOT a problem with taking a→ 0.



Stochastic estimation
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� Disconnected
contribution to
ψ̄γ5ψ

� Signal reproduced
for substantial cost
saving

� One diagram
contributing to
I = 0,1 ππ
scattering
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Charmonium spectroscopy

� New TCD/JLab project starting: (TCD: Liuming Liu,
Graham Moir, MP, Sinéad Ryan, Pol Mainar)

� So far, tuning action and testing distillation method
� Preliminary data suggest method works for heavy

quarks too

ALL DATA PRELIMINARY (and low statistics, 35 cfgs)
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� Good resolution seen, as with light quark sector
� GPUs very helpful again . . .



The Myth-busters scorecard

. . . only compute properties of ground-states

BUSTED
excited-state spectroscopy ← variational techniques

. . . not compute scattering properties

BUSTED (elastic scattering)
Lüscher’s method ← V-dependence of full spectrum
← two-meson states in operator basis

. . . not handle high-spin states

BUSTED
Link lattice data to continuum ← Derivative operators

. . . not handle isoscalar mesons
BUSTED
Disconnected diagrams

Distillation has enabled a lot of this progress



The fine print:

� Distillation has poor volume scaling - larger
volumes still expensive

� Stochastic estimation makes the method more
numerically efficient

� Crucial next step is to include two-meson operators
to put in the “dark matter” missing from the
spectra observed so far

� This may need reworking of the choice of
distillation space
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