Meson spectroscopy from lattice QCD

Mike Peardon

School of Mathematics, Trinity College Dublin, Ireland

Jefferson Lab - Excited states workshop, 24th February 2011

Carnegie Mellon

Justin Foley, David Lenkner, Colin Morningstar, Chik-Him Wong

Jefferson Lab

Jo Dudek, Robert Edwards, Bálint Joó, David Richards, Christopher Thomas

- U Maryland Steve Wallace
- U Pacific Keisuke Jimmy Juge
- TIFR, Mumbai Nilmani Mathur
- Trinity College Dublin MP, Sinéad Ryan
- U Washington Huey-Wen Lin
- DESY Zeuthen John Bulava

Overview

- Myths: Lattice QCD can ...
 - ... only compute **ground-state** properties.
 - ... not compute **scattering** properties.
 - ... not handle **high spin** states.
 - ... not handle **isoscalar** mesons.
- Where do these myths come from?
- New methods for making hadrons.
- Myth-busting results.

Where do these myths come from?

... mostly from the way numerical simulations are done, particularly when including quarks.

Lattice regularisation

- Lattice provides a non-perturbative, gaugeinvariant regulator for the QCD path integral.
- Quarks live on sites
- Gluons live on links
- a lattice spacing
- *a* ~ 0.1 fm

- Chirally symmetric quarks are missing, but can discretise quarks by trading-off some symmetry
- In a finite volume $V = L^4$, finite number of degrees of freedom and path-integral is an ordinary (but large) integral.

High-dimension integrals estimated by Monte Carlo

Monte Carlo sampling the QCD lattice vacuum

Variance of estimators is huge unless we use importance sampling — must work with QFT in Euclidean space-time

• In a Euclidean metric:

 $C_{\pi}(t_1,t_0) =$

 $\frac{\int DUD\bar{\psi}D\psi \quad \bar{\psi}_u(t_1)\gamma_5\psi_d(t_1)\bar{\psi}_d(t_0)\gamma_5\psi_u(t_0) \quad e^{-S_G-\bar{\psi}_uM\psi_u-\bar{\psi}_dM\psi_d}}{\int DUD\bar{\psi}D\psi \quad e^{-S_G-\bar{\psi}_uM\psi_u-\bar{\psi}_dM\psi_d}}$

Hard to deal with Grassmann algebra

Monte Carlo sampling the QCD lattice vacuum

Variance of estimators is huge unless we use importance sampling — must work with QFT in Euclidean space-time

In a Euclidean metric:

 $C_{\pi}(t_{1}, t_{0}) = \frac{\int DU \ \text{Tr} \ \gamma_{5} M^{-1}(t_{1}, t_{0}) \gamma_{5} M^{-1}(t_{0}, t_{1}) \ \det M[U]^{2} \ e^{-S_{G}}}{\int DU \ \det M[U]^{2} \ e^{-S_{G}}}$

- Hard to deal with Grassmann algebra

 ... so integrate out quark fields
- Quenched approximation was to ignore det M²

Monte Carlo sampling the QCD lattice vacuum

Variance of estimators is huge unless we use importance sampling — must work with QFT in Euclidean space-time

In a Euclidean metric:

 $C_{\pi}(t_{1}, t_{0}) = \frac{\int DU \ \text{Tr} \ \gamma_{5} M^{-1}(t_{1}, t_{0}) \gamma_{5} M^{-1}(t_{0}, t_{1}) \ \det M[U]^{2} \ e^{-S_{G}}}{\int DU \ \det M[U]^{2} \ e^{-S_{G}}}$

- Hard to deal with Grassmann algebra

 ... so integrate out quark fields
- Quenched approximation was to ignore det M²
- $N_f = 2$ importance sampling measure
- Non-negative, thanks to Euclidean metric

Spectroscopy and Euclidean space-time

 Energies of colourless QCD states extracted from two-point functions in Euclidean time

 $C(t) = \langle \Phi(t) | \Phi^{\dagger}(0) \rangle$

• Euclidean time: $\Phi(t) = e^{Ht} \Phi e^{-Ht}$ so $C(t) = \langle \Phi | e^{-Ht} | \Phi \rangle$. Insert a complete set of states then:

$$C(t) = \sum_{k=0}^{\infty} |\langle \Phi | k \rangle|^2 e^{-E_k t}$$

• $\lim_{t\to\infty} C(t) = Ze^{-E_0t}$: observe large-t exponential fall-off, then **energy of ground-state** measured

Euclidean metric very useful for spectroscopy: provides a way of isolating and examining low-lying states • Excited-state energies measured from matrix of correlators:

 $C_{ij}(t) = \langle \Phi_i(t) | \Phi_j^{\dagger}(0) \rangle$

• Solve generalised eigenvalue problem:

 $C(t_1) \underline{v} = \lambda C(t_0) \underline{v}$

for different t_0 and t_1 [Lüscher & Wolff, C. Michael]

- Then $\lim_{(t_1-t_0)\to\infty} \lambda_n = e^{-E_n(t_1-t_0)}$
- Method constructs optimal ground-state creation operator, then builds orthogonal states.

Excited states accessed if basis of creation operators is used and the matrix of correlators can be computed

Isoscalar meson correlation functions

Isovector mesons: Wick contraction gives

Isoscalar – extra diagrams. Wick contraction:

 $\begin{aligned} \langle \psi_{i} \bar{\psi}_{j} \psi_{k} \bar{\psi}_{l} \rangle &= M_{ij}^{-1} M_{kl}^{-1} - M_{il}^{-1} M_{jk}^{-1} \\ \langle 0 | \Phi_{l=0}(t) \Phi_{l=0}^{\dagger}(0) | 0 \rangle &= \\ \langle 0 | \Phi_{l=1}(t) \Phi_{l=1}^{\dagger}(0) | 0 \rangle - \langle 0 | \text{Tr } M^{-1} \Gamma U_{\mathcal{C}}(t) \text{Tr } M^{-1} \Gamma U_{\mathcal{C}}(0) | 0 \rangle \end{aligned}$

Scattering

Scattering matrix elements are not directly accessible from Euclidean QFT [Maiani-Testa theorem]

- Scattering matrix elements: asymptotic |in>, |out> states. (out $|e^{i\hat{H}t}|$ in> \rightarrow (out $|e^{-\hat{H}t}|$ in>
- Euclidean space: project onto ground-state only

D. McManus, P. Giudice & MP

- Lüscher's formalism: information on elastic scattering inferred from volume dependence of spectrum
- Method requires precise data

Talks → Schierholz, Renner

Spin on the lattice

- Lattice breaks $O(3) \rightarrow O_h$
- Lattice states classified by quantum letter, $R \in \{A_1, A_2, E, T_1, T_2\}$
- Link to continuum by subducing reps of O(3) into O_h
- Look for degeneracies. Problem: spin-4 has same pattern as 0 ⊕ 1 ⊕ 2.
- Better spin assignment by constructing operators from lattice representation of convariant derivative.
- Start in continuum with operator of definite *J*, then subduce this into O_h and then replace derivatives with lattice equivalent.
- Also measure $(0|\Phi^{\dagger}|J^{PC})$ and look for remnants of continuum symmetries.

The numerical tool-kit for quarks

- Physics focus of LQCD has been matrix elements, not spectroscopy.
- Traditionally, quark propagation computed starting with **point source**: $\eta(\underline{x}, t) = \delta_{t,0}\delta_{\underline{x},\underline{0}}$
- Solve $M\psi = \eta$, then ψ is one column of M^{-1}

- QCD lagrangian is translationally invariant
- With this trick, can make simple mesons and baryons cheaply.
- Isoscalar mesons, higher-spin states, hybrids, large operator bases not so well constructed.

The "point-to-all" propagator has restricted the focus of physics lattice QCD has addressed

In principle:

- Variational calculations allow access to excited states
- Lüscher's method enables lattice QCD computations of elastic scattering properties.
- **Isoscalar mesons** just need extra diagrams to be computed.
- **High-spin-state** measurements just need more than local bilinears

In practice:

Problems with **manipulating quarks on the computer** has made all this very challenging and progress has been slow

A new framework "Distillation"

"distill: to extract the quintessence of" [OED]

• Smeared field: $\tilde{\psi}$ from ψ , the "raw" quark field in the path-integral:

 $\tilde{\psi}(t) = \Box[U(t)] \ \psi(t)$

- Extract confinement-scale degrees of freedom, while preserving symmetries of quarks.
- Creation operator now acts on smeared quark fields:

 $\Phi^{\dagger}_{M}(t) = ar{ ilde{\psi}}(t) \Gamma ar{\psi}(t)$

 Γ is operator in $\{\underline{s}, \sigma, c\} \equiv \{\text{position,spin,colour}\}$

Smearing extracts the essential degrees of freedom needed to make mesons: overlap $\langle n | \Phi_M^{\dagger} | 0 \rangle$ is large for low-lying eigenstate $|n\rangle$

Gaussian smearing

Gaussian smearing:

$$\lim_{n\to\infty}\left(1+\frac{\sigma\nabla^2}{n}\right)^n=\exp(\sigma\nabla^2)$$

• This acts in the space of coloured scalar fields on a time-slice: $N_s \times N_c$

• Data from $a_s \approx 0.12 \text{ fm } 16^3$ lattice: $16^3 \times 3 = 12288$.

• Distillation: **define** smearing to be explicitly a very low-rank operator. Rank is $N_D(\ll N_s \times N_c)$.

Distillation operator $\Box(t) = V(t)V^{\dagger}(t)$ with $V^{a}_{\underline{X},c}(t)$ a $N_{\mathcal{D}} \times (N_{s} \times N_{c})$ matrix

- We use: □_∇ the projection operator into D_∇, the space spanned by the lowest eigenmodes of the 3-D laplacian
- Eigenvectors of ∇² not the only choice and may not be optimal
- Because V is a narrow column matrix, quark-line diagrams factorise: much cheaper to compute.

Distillation enables:

- Arbitrary operator insertions
- large variational basis
- isoscalar correlators
- multi-hadron states

... to be computed.

... but work to do

poor cost scaling with V

Results

Caveat emptor:

- No $a \rightarrow 0$ extrapolation
- Finite V
- unphysical m_{π}

Isovector meson spectroscopy

- $m_{\pi} = 400 \text{ MeV}$
- No 2-meson operators

Should be a dense spectrum of two-meson states:

– Not seen at all

Isoscalar meson spectroscopy

No 0⁺⁺ data presented

- *m*_π = 400 MeV
- No glueball, 2-meson ops
- Still expensive calculations

Statistical precision: η 0.5% η' 1.9%

Vector mesons: the ρ , ω and ϕ

 $l=1 \omega \phi$ 0.4 0.3 0.2 0.1 0.0

- Mix light and strange quarks in correlators
- Resolve $\rho \omega$ mass difference (QCD only) clearly:

 $m_\omega - m_
ho = 19(4)$ MeV

The power of GPUs

• 479 configurations, $N_{\mathcal{D}} = 64 \rightarrow 31M$ solutions of $M\psi = \eta$

- Enabled by use of Graphics Processing Units (GPU) and QUDA software library written by Clark and Babich .
- Linear solver integrated into chroma by Bálint Joó
- Sustains more than 100 GFlops per GPU for linear system solver.

GPUs offer excellent price/performance since manufactured in huge numbers

$\pi - \pi$ scattering (I = 2)

- Lüscher's method: first compute energy shifts in the finite volume
- Data for *L* = 16, 20, 24*a*_s
- Energy shifts well resolved

- Measure δ_0, δ_2 and small δ_4
- l = 0, 1 under investigation (more diagrams, including $t \rightarrow t$)

Problem: volume cost scaling

• So far - results on modest lattice sizes: $N_s = 16^3 \equiv (1.9 fm)^3$. Used $N_D = 64$

Cost vs volume

- Maintaining constant resolution of structures in the vacuum (of fixed physical size) means increasing $N_D \propto N_s$
- Computer costs grow like N_s^2 (for inversions), N_s^3 for meson contractions, N_s^4 for baryons . . .
- One Solution: use stochastic estimator techniques (Monte Carlo within a Monte Carlo)
- This works well because distillation rank-reduces the problem substantially

NOT a problem with taking $a \rightarrow 0$.

Stochastic estimation

Charmonium spectroscopy

- New TCD/JLab project starting: (TCD: Liuming Liu, Graham Moir, MP, Sinéad Ryan, Pol Mainar)
- So far, tuning action and testing distillation method
- Preliminary data suggest method works for heavy quarks too

- Good resolution seen, as with light quark sector
- GPUs very helpful again ...

The Myth-busters scorecard

... only compute properties of ground-states

BUSTED

excited-state spectroscopy ← variational techniques

... not compute scattering properties

BUSTED (elastic scattering)

Lüscher's method \leftarrow V-dependence of full spectrum

← two-meson states in operator basis

... not handle high-spin states

BUSTED

... not handle isoscalar mesons

BUSTED

Disconnected diagrams

Distillation has enabled a lot of this progress

The fine print:

- Distillation has poor volume scaling larger volumes still expensive
- Stochastic estimation makes the method more numerically efficient
- Crucial next step is to include two-meson operators to put in the "dark matter" missing from the spectra observed so far
- This may need reworking of the choice of distillation space

References

Distillation	Phys.Rev.D80:054506,2009.
I=1 mesons	Phys.Rev.Lett.103:262001,2009
	Phys.Rev.D82:034508,2010.
I=0 mesons	arXiv:1102.4299
$\pi\pi$ scattering	arXiv:1011.5277, arXiv:1011.6352
Stochastic	arXiv:1011.0481