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.Outline

• motivation: muon g − 2

◦ role of rho-meson

◦ dilepton rate of rho-meson

• rho-meson as resonance

◦ π-π p-wave scattering phase

◦ rho-resonance mass

◦ rho-resonance width
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.Muon anomalous magnetic moment, aµ

• leading hadronic contribution comes from vacuum polarization
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• the vector-mesons dominate the hadronic contribution to aµ

γ γ
ρ

• vector meson induces strong mPS dependence in aµ
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2
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• insight from rho leads to new observables aµ with same physical limit

aµ(mPS→mπ) = aµ(mPS→mπ)
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.Muon anomalous magnetic moment, aµ

• standard method (lower curve) has apparently strong mPS dep.
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• physical limit agrees for std. and two variations of an imp. method
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.Lepton anomalous magnetic moments, al

• the same technique for all three charged leptons of standard model
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• purely non-perturbative calculation with 2% or less errors
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.Rho-meson electromagnetic coupling

• coupling of the rho-meson to the electromagnetic current

γ ρ 〈Ω|Jemµ (0)|V, p, ε〉 =
m2
V gV√

2
εµ(p)

• this can be related to the dilepton rate Γ(ρ→ l+l−)

γ
ρ

l

l

+
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2π

3
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VmV

• using PDG values, the coupling is

gρ = 0.2853 (12)
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.Rho-meson electromagnetic coupling

• dimensionless quantities are generally expected to be cleaner
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• proper resonance treatment on the lattice would be interesting
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.Finite-size methods and scattering on the lattice

• π-π states at finite volume are shifted due to self-interaction

Eππ 6=
√
m2
π + (2π/L)2~n2

1 +
√
m2
π + (2π/L)2~n2

2

• Lüscher relates Eππ levels to p-wave scattering phase δ(E) for I = 1

Eππ = 2
√
m2
π + (2π/L)2q2 tan δ(Eππ) =

π3/2q

Z00(q2)

• above example is in the center-of-mass and Z00(q2) is a known function

Z00(q2) =
1√
4π

∑
n∈Z3

1

|n|2 − q2

• generalized to moving frames by Rummukainen and Gottlieb and Feng
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.I = 1 π-π scattering phase

• energy dependence mapped out with three distinct frames
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• fit to Breit-Wigner form to extract resonance properties
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.Rho-resonance mass

• fit to an effective field theory for the rho-resonance
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• cutoff effects, chiral dynamics can account for discrepancy

[Feng, Jansen, Renner 1011.5288]
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.Rho-resonance width

• again fit to an effective field theory for the rho-resonance
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• agreement with experiment but notice larger errors, milder mPS dep.

[Feng, Jansen, Renner 1011.5288]
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.Rho-pi-pi coupling

• gρππ is dimensionless combination of mρ and Γρ
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• apparently very flat mPS dependence

[Feng, Jansen, Renner 1011.5288]
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.Conclusions

• understanding (and mitigating) ρ contribution important to obtaining

gl − 2 with 2% or less errors for all three electron, muon and tau

• electromagnetic coupling of the ρ (treated as stable) is already accurately

reproduced with a nearly 1% accuracy

• finite-size methods for scattering used to calculate I = 2 s-wave scat-

tering length accurate to 1%

• energy dependence of δ1(E) for I = 1 p-wave π-π has been calculated

• rho-resonance mass and width consistent with measured values to within

systematics of our first exploratory calculation
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.Extra slides
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.I = 2 π-π scattering length

• our ”warm up” exercise with finite-size methods
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• mπaI=2
ππ = −0.0439(5) (ETMC) vs. −0.0444(9) (NA48/2 and χPT)

[Feng, Jansen, Renner 0909.3255] 14/12



.π-π scattering lengths

• compilation of I = 2 and I = 0 s-wave π-π scattering lengths
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• lattice calc. of I = 0 scattering length is challenging but possible
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.I = 2 π-π scattering phase

• recent extensive calculation of scattering phase
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• results in scattering lengths in agreement with previous plots

[Dudek, Edwards, Peardon, Richards, Thomas 1011.6352] 16/12


