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(Conjectured) QCD phase diagram

I Direct lattice simulations are possible only along the T axis.

I At non-zero chemical potential the action is complex and importance sampling
fails.

I Focus on µ = 0 in this talk.
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Introduction: HotQCD thermodynamics program

Previous results:

I Nτ = 6, 8, ml/ms = 1/10, asqtad, p41

I Nτ = 8, ml/ms = 1/20, p42

New results:

I Nτ = 8, 12, ml/ms = 1/20, asqtad and
Nτ = 6, 8, ml/ms = 1/20, HISQ3

1Bazavov et al. [HotQCD], Phys. Rev. D 80, 014504 (2009)
2Cheng et al. [RBC-Bielefeld, Phys. Rev. D 81, 054504 (2010)
3Bazavov and Petreczky [HotQCD], J. Phys. Conf. Ser. 230, 012014 (2010); Söldner [HotQCD], PoS

LAT2010, 215 (2010); HotQCD, work in progress.
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Introduction

Physics:

I Deconfinement

I Chiral symmetry restoration

I QGP equation of state

Questions to address:

I Why to use yet another action?

I Do we have the cut-off effects under control?

I How lattice compares with the Hadron Resonance Gas model?
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Lattice QCD

I An observable O in the path integral representation of QCD in the imaginary
time (Euclidian) formalism:

〈O〉 =
1

Z

Z
Dψ̄DψDA O exp(−S),

Z =

Z
Dψ̄DψDA exp(−S), S =

Z
d4xLE ,

where S is the action of the theory.

I Integrals may not be expanded (no small parameter), but may still be evaluated
by other means.

I Lattice4 – discrete Euclidian space-time, serves as a regulator (momenta are
bound) and allows for stochastic evaluation of path integrals,

I quarks live on sites and gluons on links as SU(3) matrices

Ux,µ = P exp


ig

Z x+aµ̂

x
dyν Aν(y)

ff
.

4Wilson, Phys. Rev. D 10, 2445 (1974)
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Lattice QCD

I Lattice action
S = SG + SF , SF =

X
x,y

ψ̄xMx,yψy

(Mx,y is the fermion matrix) preserves the gauge symmetry, but there is the
infamous fermion doubling problem – 16 species of fermions in 4D.

I Staggered fermions5 remove the 4-fold degeneracy, reduce 16 to 4 (call them
tastes to distinguish from physical flavors), preserve a part of the chiral
symmetry at non-zero lattice spacing.

I Rooting procedure6 is used to further reduce the number of species.

I Irrelevant operators (that vanish in the continuum limit) can be added to the
lattice action to remove leading discretization effects – the idea of improved
actions7.

I The p48, asqtad9 and HISQ10 actions have similar improvement at high
temperatures and differ by the degree of improvement at low temperatures.

5Kogut and Susskind, Phys. Rev. D 11, 395 (1975)
6Sharpe, PoS LAT2006, 022 (2006), Creutz, PoS LAT2007, 007 (2007)
7Symanzik, Nucl. Phys. B 226, 187 (1983)
8Heller, Karsch and Sturm, Phys. Rev. D 60, 114502 (1999)
9Orginos and Toussaint, Phys. Rev. D 59, 014501 (1999)

10E. Follana et al., Phys. Rev. D 75, 054502 (2007)
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Lattice QCD

I Integrate fermionic degrees of freedom explicitly, then introduce bosonic fields
to exponentiate the fermionic determinant:

Z =

Z Y
x,µ

dUx,µ (det M(U))1/4 exp{−SG}

=

Z Y
x,µ

dUx,µ

Y
x

[dΦ†xdΦx ] exp{−SG − Φ†(M†M)−1/4Φ}.

I If the weight is real this resembles canonical ensemble and we can use
importance sampling techniques to estimate the integrals stochastically.

I Develop a Markov Chain Monte Carlo procedure to sample the phase space.

I Temperature is set by compactifying the temporal dimension, T = 1/(Nτa),
hold Nτ fixed and vary a.

I Lower temperatures – coarser lattices.

I Establish lines of constant physics (LCP), i.e. change bare quark masses with
lattice spacing such that mπ, mK are fixed.
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HISQ action
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Taste symmetry

I Staggered fermion discretization describes a theory with four tastes. The
rooting procedure (reducing four flavors to one by taking the fourth root of the
fermion determinant) amounts to averaging between staggered tastes.

I Four tastes are not equivalent at non-zero lattice spacing because the taste
symmetry is broken.

I As a result, only one of the pseudo-scalar mesons is massless in the chiral limit
and the other 15 pseudo-scalar mesons have masses of order a2.

I Violations of the taste symmetry have been identified as the dominant source of
the cutoff effects at O(a2) in the asqtad and p4 actions. They lead to distortion
of the hadron spectrum at non-zero lattice spacing.

I In thermodynamics calculations deviations from the physical hadron spectrum
show up at low temperatures, where agreement with the Hadron Resonance Gas
(HRG) model is expected.

I The cutoff effects can be reduced either by going to finer lattices (e.g., asqtad
Nt = 8 to Nt = 12) or by using an action with higher degree of improvement
(e.g. HISQ).
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Taste symmetry
I Taste violations affect the pseudo-scalar meson sector most.
I The quadratic mass splitting of non-Goldstone mesons and the Goldstone

meson is of order α2a2 (left panel).
I These splittings are to a good approximation mass independent.
I The root-mean-squared (RMS) pion mass for asqtad, stout and HISQ (right

panel)11:

mRMS
π =

r
1

16

“
m2
γ5

+ m2
γ0γ5

+ 3m2
γiγ5

+ 3m2
γiγj

+ 3m2
γiγ0

+ 3m2
γi

+ m2
γ0

+ m2
1

”
.
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1
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11Bazavov and Petreczky, PoS LAT2010, 169 (2010)
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Taste symmetry and spectrum

I Effects of taste symmetry breaking are also seen in other channels, increasing
masses of hadrons at non-zero lattice spacing comparing to their continuum
values.

I Preliminary results for the masses of ρ, K∗, φ, N, Ω− (left and central panels)
and the decay constants fπ, fK and fss̄ (right panel).
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Setting the lattice spacing
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I The lattice spacing is determined from the static quark anti-quark potential,
which does not show any noticeable cutoff dependence.

I Sommer scale12 „
r 2 dVqq̄(r)

dr

«
r=rn

=

(
1.65 , n = 0

1.0 , n = 1

r0 = 0.469 fm or r1 = 0.318 fm is used to convert to physical units.

12Sommer, Nucl. Phys. B 411, 839 (1994)
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Deconfinement: renormalized Polyakov loop
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I Related to the free energy of a static
quark anti-quark pair at infinite
separation:

Lren(T ) = exp(−F∞(T )/(2T )).

I The renormalization constant

z(β) = exp(−c(β)/2),

where c(β) is the additive
renormalization of the static
potential.

Lren(T ) = z(β)Nτ Lbare(β), Lbare(β) =

*
1

3
Tr

Nτ−1Y
x0=0

U0(x0, ~x)

+
.

I The increase of Lren(T ) (and decrease of F∞(T )) is related to the onset of
screening at higher temperatures.
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Fluctuations of conserved charges

I Fluctuations and correlations of conserved charges:

χi (T )

T 2
=

1

T 3V

∂2 ln Z(T , µi )

∂(µi/T )2

˛̨̨̨
µi =0

,

χij
11(T )

T 2
=

1

T 3V

∂2 ln Z(T , µi , µj)

∂(µi/T )∂(µj/T )

˛̨̨̨
µi =µj =0

.

I Consider light and strange quark number susceptibility.

I At low temperatures they are carried by massive hadrons and their fluctuations
are suppressed.

I At high temperatures they are carried by quarks and therefore can signal
deconfiment.
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Fluctuations of conserved charges
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I The light (left) and strange (right) quark number susceptibility, comparison
with the hadron resonance gas (HRG) model (solid line).

I Quark number susceptibilities rapidly rise in the transition region and approach
the ideal gas limit (up to the cut-off effects).

I The light quark number susceptibility is carried by the lightest states (pions)
and therefore is more sensitive to the taste symmetry breaking effects resulting
in poorer agreement with HRG.
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Correlations of conserved charges
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I The strangeness-baryon number (left) and u- and s-quark number correlations
(right).

I The u- and s-quark number correlations are compatible with HRG (but still too
noisy to draw firm conclusions).
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Chiral condensate
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I The renormalized chiral condensate (left – r0, right – fK scale):

∆l,s(T ) =
〈ψ̄ψ〉l,T − ml

ms
〈ψ̄ψ〉s,T

〈ψ̄ψ〉l,0 − ml
ms
〈ψ̄ψ〉s,0

, 〈ψ̄ψ〉 =
T

V

∂ ln Z

∂m
.

I Improving the action reduces the lattice artifacts and shifts the transition region
to lower temperatures (compare p4, asqtad and HISQ at fixed Nτ = 8 in the
left panel). Increasing Nτ gives the same effect.

I The solid line on the right panel represents the HISQ continuum limit taken
from the data with r0 scale.
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Chiral condensate (scaling)
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I The chiral condensate is the order
parameter in the chiral limit.

I The multiplicatively renormalized
chiral condensate for the asqtad
action:

Mb =
ms

T 4
〈ψ̄ψ〉l

I At sufficiently low mass the chiral condensate is described by a universal scaling
function fG plus additional scaling violating terms:

Mb(T ,ml ,ms) = h1/δfG (t/h1/βδ)+at∆TH+b1H, H =
ml

ms
, ∆T =

T − Tc

Tc
,

h = H/h0, t = ∆T/t0.
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Chiral susceptibility
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I The chiral susceptibility (Ml = D + 2ml is the staggered fermion matrix for
light quarks):

χ(T ) =
∂〈ψ̄ψ〉l
∂ml

=
T

V

“
〈(TrM−1

l )2〉 − 〈TrM−1
l 〉

2 − 2〈TrM−2
l 〉
”
.

I Disconnected chiral susceptibility for the Asqtad action at different quark
masses13 (left).

I Expected behavior 1/
√

ml in the low-temperature phase (right).
13Söldner, PoS LAT2010, 215 (2010)
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Chiral susceptibility
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I Disconnected chiral susceptibility, comparison of the asqtad and HISQ data.

I Peak locations agree between Asqtad Nτ = 12 and HISQ Nτ = 8.

I (Similar conclusion as from studying the pion splittings: HISQ at lattice spacing
a is comparable to asqtad at 2/3a.)
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Tc in the physical mass limit
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I Determine the peak location in the disconnected chiral susceptibility for Asqtad
at different ml and Nτ .

I Fit with the O(N) scaling inspired ansatz:

Tp(ml ,Nτ ) = Tc + b

„
ml

ms

«d

+ c
1

N2
τ

, d =
1

βδ
≈ 0.54.

I At the physical mass ml/ms ' 1/27 the preliminary continuum estimate for the
pseudocritical temperature is

Tp = (164± 6) MeV.
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Trace anomaly
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I The trace anomaly at ml/ms = 0.05 for p4, asqtad and HISQ.

I Pressure and other thermodynamic quantities can be derived from the trace
anomaly.

I At low temperatures HISQ results agree with stout14 (left).

I At high temperatures p4, Asqtad and HISQ agree (as expected), but substantial
disagreement with stout is observed (right).

I The solid curve is a parametrization based on the HRG model and lattice data15.
14Borsanyi et al., JHEP11 (2010) 077
15Huovinen and Petreczky, Nucl. Phys. A 837, 26 (2010)
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Conclusions

I Taste symmetry breaking effects are identified as the largest source of the
cut-off effects in the low-temperature region for p4 and asqtad staggered
actions.

I Thus, higher degree of improvement (e.g. the HISQ action) substantially
reduces cut-off effects in many thermodynamic quantities at lattice spacings
comparable to previously used.

I To control the systematic errors we compare different staggered actions.

I HISQ results are comparable to asqtad results at finer lattices.

I Using our asqtad data at ml/ms = 1/5, 1/10, 1/20 and Nτ = 6, 8, 12 we
perform continuum and chiral extrapolations and determine the
pseudo-transition temperature in the limit of the physical light quark mass.
HotQCD preliminary result for Tp, defined as the location of the peak in the
disconnected chiral susceptibility is Tp = 164± 6 MeV16.

I For fluctuations and correlations of conserved charges improved agreement with
the Hadron Resonance Gas model is observed for the HISQ action.

I HISQ Nτ = 8 and asqtad Nτ = 12 results for the trace anomaly agree with the
stout data in the low-temperature region.

I In 250-350 MeV range p4, asqtad and HISQ data agree, but disagree with stout.

16HotQCD, work in progress
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