Hadron resonances in heavy ion collisions at RHIC and LHC: What do we know?

Christina Markert University of Texas at Austin

- Introduction
- Resonances in Medium
- Resonances at RHIC and LHC
- Conclusion (Future)

Phase diagram of nuclear matter

Resonance production

Features of QCD phase transition (lattice QCD calculations): deconfinement: Polyakov loop rises chiral restoration: quark condensate drops hadron masses drop

- 1.) Medium: resonances are formed when partonic matter transitions into hadronic matter
- 2.) Hard-scattering: resonances created from a jet within the QGP phase

3

3.) Regenerated resonances

Probe for QCD phase transition(s)

Because of short lifetime and strong interactions with the medium, light vector mesons are the only probe of chiral symmetry restoration

Because of color screening in the medium, heavy vector mesons are the most sensitive probe of deconfinement conditions

Phase diagram of nuclear matter

Resonance reconstruction with TPC

Particle identification

Resonances in p+p and Au+Au at 200 GeV

8

$\pi^+ + \pi^-$ invariant mass distribution

Christina Markert Workshop on Excited Hadronic States and the Deconfinement Transition, JLAB, Feb 23, 2011

Mass shifts

Resonances in p+p at 200 GeV

Eur.Phys.J.C66:377-386,2010

 $K(892),\Sigma(1385),\Lambda(1520)$ are in agreement with statistical model description

 ρ,ϕ are too low by 2σ

Resonances in Au+Au at 200 GeV

Christina Markert Workshop on Excited Hadronic States and the Deconfinement Transition, JLAB, Feb 23, 2011

Resonance suppression at RHIC

Christina Markert Workshop on Excited Hadronic States and the Deconfinement Transition, JLAB, Feb 23, 2011

13

Resonances at lower energies (SPS)

Larger resonance suppression at SPS than at RHIC:
→ More re-scattering than regeneration
→ Suggest longer lifetime of hadronic phase

Christina Markert

Workshop on Excited Hadronic States and the Deconfinement Transition, JLAB, Feb 23, 2011

Particle spectra from thermal model

Resonance suppression

(Energy and system size dependence)

Resonances v₂ and NCQ scaling test

Ellíptic flow of presonance

Prabhat Pujahari ICPAQGP2010

In agreement with low p_T n=4 scaling and high p_T n=2 scaling

Regeneration of J/ψ at RHIC?

Measure chiral symmetry restoration

via leptonic decay of resonances

 → do not interact with hadronic medium
 However leptonic decays from regenerated
 resonances possible

2. Use momentum dependence to avoid hadronic phase.
 via resonances from jets
 → filter resonances from early medium

Di-electron measurement p+p (STAR)

ω(782) BR = 7.18 x 10⁻⁵

 $\phi(1020)$ BR = 2.97 x 10⁻⁴

First look - more details from STAR to follow...

Masses appear in agreement with PDG ω and ϕ signals significant

Di-electron measurement (PHENIX)

Misaki Ouchida, J.Phys.Conf.Ser.230:012022,2010

Dí-electron measurement (PHENIX) II

Alberica Toia QM2008

Low-Mass Continuum: enhancement 150 $< m_{ee} < 750$ MeV: 3.4 ± 0.2(stat.) ± 1.3(syst.) ± 0.7(model)

Dí-muon measurement (NA60)

Resonances from jets to probe chirality

We want early produced resonances and decay in chirally restored medium

\rightarrow resonances from jets

CM, R. Bellwied, I.Vitev, Phys.Lett.B669:92-97,2008

Resonance with respect to jet

side	Low p _T	High p _T
near	no medium	no medium
away	hadronic medium → Resonance suppression	Partonic or early hadronic medium →Mass shift and/or width broadening →Chiral medium

Formation of Hadronic Resonances (from jets)

Formation Time of Resonances

Resonances in p+p collisions ALICE

K(892) Resonance from Jets p+p7GeV

Markert ICPAQGP2010

32

Hadronization in deconfined matter

(R.Bellwied CM, PLB691, 208 (2010))

General idea:

- 1. Color neutral pre-hadrons in the deconfined matter above T_c form a mixed phase of degrees of freedom
- Color-neutral objects will exhibit a reduced interaction probability with the colored medium due to color transparency (P. Jain , Phys.Rep.271 (1996))
- → Enhanced survival probability and reduced quenching for early formed (pre-)hadrons

Red curve: polyakov loop calculation of level of deconfinement (Bazavov, Petreczky, arXiv:1005.1131)

Hight p_T suppression for identified hadrons

Hight p_T suppression at LHC energies

Phys.Rev.Lett.99:112301,2007.

Christina Markert

Workshop on Excited Hadronic States and the Deconfinement Transition, JLAB, Feb 23, 2011

Conclusion

Hadronic resonances are measured at different energies and system sizes. Can be used to extract hadronic lifetime.

New detector upgrades at RHIC and LHC experiments will help to study higher p_T resonance and leptonic decays.

Resonances from jets will be used to study chiral symmetry restoration. → Theory needed to find right momentum range.

New resonance measurement: $a_1 \rightarrow pion + gamma, ...$

Most recent LHC results from ALICE. Unexpected rise of R_{AA} at high pT

Phys. Lett. B 696 (2011) 30

RÅ

Kopeliovich et al.,arXiv:1012.2854v1 Color transparency – rise at high p_T ~ survival of color dipole in medium. Similar idea to CM & RB

Comparison to other p+p data

Markert ICPAQGP2010

38