Tritium E-12-11-112

Dien Nguyen University of Virginia

December 09th, 2014

Precision measurement of Isospin dependence in the 2N and 3N short range correlation region

Main physics goals

➢ Isospin-dependence of SRCs.

➤3N –structure (Momentum-sharing and Isospin).

➢Cross section and ratio for the test of few-body calculation and final-state interactions.

Study SRCs regime

Minimum initial struck nucleon momentum

2N SRCs: 1<x<2

SRCs Evidence: Cross section ratios

A(e,e') E02019, 5.766, 18°

constant ratio if SRC exist

Evidence of 2N-SRCs at x>1.5

Isospin dependence SRCs

Simple SRCs model assumes isospin independence

Solid evidence of Isospin dependence of SRCs

E12-11-112: kinematics

Beam current : 20 muA, unpolarized.

Beam Energy : 2.2 GeV and 4.4 GeV

Scattering angle: 17 and 19 degree

Beam time : 17.5 days 4.4 GeV (main production) 1.5 days 2.2 GeV (checkout + QE)

Right HRS running ("parasitic")

Left HRS running (380 hours)

Left+Right HRS running (about 1 day)

SRCs Isospin study from ${}^{3}He/{}^{3}H$

•Isospin-independent

$$\frac{\sigma_{{}^{3}He}/3}{\sigma_{{}^{3}H}/3} = \frac{(2\sigma_{p}+1\sigma_{n})/3}{(1\sigma_{p}+2\sigma_{n})/3} \xrightarrow{\sigma_{p}=3\sigma_{n}} 1.4$$

•n-p (T=0) dominance

$$\frac{\sigma_{{}^{3}_{H}}/3}{\sigma_{{}^{3}_{He}}/3} = \frac{(2pn+1nn)/3}{(2pn+1pp)} = 1.0$$

Inclusive cross section calculation from M. Sargsian

Reference:

E12-11-112: projected results

Isospin study of SRC

At x>2, ${}^{3}He/{}^{3}H \neq 1.4$ implies isospin dependence AND non-symmetric momentum sharing

Expected uncertainty in 2N-SRCs region approximately 2% Which will improve a factor of 3-4 improvement of isospin-dependence measurement compare to result of Jlab experiment E01-015.

How about 3N- SRCs?

Good agreement in 2N-SRC region

experiment E08014 is coming

what is structure of 3N-SRCs?

Symmetric:

$$\frac{{}^{3}He}{{}^{3}H} = \frac{2\sigma_{p} + \sigma_{n}}{\sigma_{p} + 2\sigma_{n}} \approx 1.4$$

Non-symmetric:

•Case1: nucleon 3 is single nucleon in 3N

$$\frac{{}^{3}He}{{}^{3}H} = \frac{\sigma_{n}}{\sigma_{p}} \approx 0.3$$

 $\frac{{}^{3}He}{{}^{3}H} = \frac{\sigma_{p}}{\sigma} \approx 3$

•Case2: nucleon 3 is in pair of 3N

Calculation the absolute thickness of Target for Triton experiment Question: How can we check the target thickness g/cm2?

the answer is using elastic scattering

Experiment E08014

DBB.evtypebits >> 3&1

L.tr.n=1& L.cer.asum_c>50 &abs(RctPtL.z)<0.07&L.gold.th<0.03 & L.gold.ph<0.02&L.gold.dp<0.03

Tritium Target will be filled at Savannah River site(SRS) located in South Carolina.

yield =
$$\frac{d\sigma}{d\Omega} * L * \Delta \Omega$$

First checking result:

E0= 2.2 GeV, Theta= 12.5 degree

Run time ~ 1 Hour3HeYield ~ 1e7 eventsStatistic ~ 0.03%3HYield ~ 6e5 eventsStatistic ~ 0.13%

How about 15 degree ?

1 hour3He yield ~5e5 eventsStatistic ~ 0.14%3H yield ~5e4 eventsStatistic ~ 0.45%

Conclusion:

Precision measurement of Isospin dependence in 2N-SRCs
Will get absolute cross section to study about 3N-SRCs structure. Compare to theoritical
Will get the absolute value for thickness of target 3He and Tritium 3H.

We are getting ready for excited tritium experiment in Spring 2016.

Thank you very much for your attention

Back up

Nuclear potential, n(k)

NN Potential AV₁₈

Short range N-N interaction is responsible for high momentum tail of the momentum distribution in nuclei (significant contribution with k>kf)

Inclusive scattering at large x

Nucleon's Fermi motion broadens QE peak The strength of the single particle reaction extends to x~1.3

Binning correction in hall B Data

Calculation the absolute thickness of Target for Triton experiment

Question: How can we check the target thickness g/cm2?

Maybe the answer is elastic scattering?

E0=3.356 GeV and Theta= 21, ~1 hour run time

yield = $\frac{d\sigma}{d\Omega} * L * \Delta \Omega$

E0= 2.2 GeV, Theta= 12.5 degree

Run time ~ 1 Hour3He Yield ~ 1e7 eventsStatistic ~3HYield ~ 1e5 eventsStatistic ~ 0.3%

How about 15 degree ?

1 hour3He yield ~5e5 eventsStatistic ~ 0.14%3H yield ~5e4 eventsStatistic ~ 0.45%

Yield from theoretical calculation

Beam enery : 3.356 GeV, theta=21 degreeRuntime= 0.786 hourTarget He3: ideal density 0.029g/cm3, length=20cmTotal charge: 0.283 C. $N_e = 1.766e18(electrons)$ $\theta_{tg} = \pm 30mrad$ $N_n = 1.2e23(nucleons)$ $\varphi_{tg} = \pm 20mrad$ $\Delta \Omega = 2.4msr$ $XS = 1.36e-6\mu b$

yield =
$$\frac{d\sigma}{d\Omega} * L * \Delta \Omega$$

Yield = 692 events

About 3 times different from real data with the same condition.

Simulation: MCEEP

Setup simulation like theoretical calculation: with target is thin foil with the same thickness (g/cm2)

yield $_{mc} = 694 events$

Question for experiment will be how can we check the target thickness g/cm2

Target 3He, current= 25 muA Rho=0.029g/cm3, length=30 cm =>thickness ~0.9g/cm2 Lu= 22.5 muA.g/cm2

E0=2.2 GeV, theta=12.5, Rate=0.8699e4 E0=2.2GeV, theta=21, Rate=5.409

```
Assume runtime = 1hour
```

Target 3H, current=25muA Rho=2.5mg/cm3, length=30cm =>thickness~0.075g/cm2 Lu=0.075*25=1.875 muA.g/cm2

E0=2.2 GeV, theta=12.5, Rate=0.5338e3 E0=2.2 Gev, theta=21, Rate =0.4508

3He theta=12.5 Yield(ideal)=3.131e7 events => experimental Yield ~1e7 events
3He theta=21 Yield(ideal)=1.94e4 events => experimental Yield~ 6500 events
3H theta=12.5 Yield(ideal)=1.9e6 events => experimental Yield ~ 6e5 events
3H theta=21 Yield(ideal)=1623 events => experimental Yield ~ 541 events

Uncertainty for Tritium experiment

Systematic	δσ/σ	$\delta R/R$	$\delta R/R$
		(normalization)	(pt-to-pt)
Acceptance correction	2.0%*	0.5%	1.0%
Radiative correction	3.0%*	0.4%	0.3%
Tracking efficiency	1.0%*	-	0.2%
Trigger efficiency	0.5%*	-	0.1%
PID efficiency	1.5%*	-	0.2%
Target thickness	2.0%	2.0%	-
Charge measurement	0.5%	-	0.5%
Energy measurement	0.05%	-	-
COMBINED UNCERTAINTY	4.6%	2.1%	1.2%