E08-010 (N $\rightarrow \Delta$) Analysis Update

Adam Blomberg

Core group

- Temple University
 - N. Sparveris¹, M. Paolone, A. Blomberg²
- Dalhousie University
 - D. Anez²
- St. Mary's University
 - A.J. Sarty
- Thomas Jefferson National Accelerator Facility
 - D. Higinbotham
- Massachusetts Institute of Technology
 - S. Gilad

¹ Contact person ² Graduate Student

Motivation

Explore for non spherical components in the nucleon wave function

Quadrupole transition $\Delta \text{Resonance} \rightarrow \text{H}(e,e'p)\pi^0$

Quark-gluon and Mesonic DOF

Low $Q^2 \rightarrow Pion$ cloud accentuated

Methodology

Methodology

$$\sigma = J_{\Omega} \Gamma_{\nu} \frac{p_{cm}}{k_{cm}} (R_T + \epsilon_L R_L + \epsilon R_{TT} \cos 2\phi_{X_{\gamma}} + \nu_{LT} R_{LT} \cos \phi_{X_{\gamma}})$$

Two in-plane measurements at $\phi = 0^{\circ}$ and $\phi = 180^{\circ}$ allows extraction of resonant amplitudes

$$\sigma_0 + \varepsilon \sigma_{TT} = g(R_T, R_L, R_{TT}, \theta_{CM})$$

$$\sigma_{LT} = f(R_{LT}, \theta_{CM})$$

Signal and BG Sensitivities

 $\begin{aligned} R_{TT} &= 3 \sin^2 \theta \; (\; \text{E2} \cdot \text{M1} + (\text{M1})^2 + \dots \sum (\text{background}) \;) \\ R_{LT} &= -6 \cos \theta \sin \theta \; (\; \text{C2} \cdot \text{M1} + \dots \sum (\text{background}) \;) \\ R_T + R_L &= (\text{M1})^2 + \dots \sum (\text{background}) \end{aligned}$

 R_{TT} → sensitivity to EMR R_{LT} → sensitivity to CMR $R_{T} + R_{L}$ → sensitivity to M1

$$CMR = \frac{C2}{M1}$$

Interfering background amplitudes introduce model uncertainty

The experiment

- Data taken Feb-Mar 2011
- $H(e,e'p)\pi^0$
 - $N \rightarrow \Delta$ π^0 channel
- Two HRSs in coincidence
- 4 and 15 cm LH₂ targets
- Beam energy = 1.16 GeV
- 14 Kinematics
- $Q^2 = 0.04 0.13 (GeV/c)^2$
- W = 1.17 1.232 GeV

The Detectors

Vertical Drift Chamber (VDC)

Define Particle Tracks Particle Momentum p

Scintillators

DAQ Trigger Coincident Timing

Particle Identification

Cherenkov (e⁻ only) Lead Glass Showers Scintillators

Parallel Analysis

+

Temple University (Temple)

St. Mary's University & Dalhousie University (SM&DU)

- Shared Work
 - Calibraitons
 - Mispointing
 - Current
 - PID
 - TOF
 - •

- Independent Work
 - Multi-track analysis
 - PS analysis
 - Multipole extraction

Preliminary Result Preview

Parallel Analysis Preliminary Cross Section Results

SM&DU results normalized to MAID parallel cross section at Q²=0.13 (Gev/c)² flat 16% enhancement to all cross sections

	SM&DU:	9.58 ± 0.05	scaled to	11.08 ± 0.06
Parallel	Temple:	11.28 ± 0.06	(no scaling)	11.28 ± 0.06
	MAMI:	11.10 ± 0.09	(no scaling)	11.10 ± 0.09

After this scaling there is agreement in some kinematics, but disagreement in others:

θ _{pq} = 52°	SM&DU:	9.97 ± 0.13	scaled to	11.53 ± 0.16
Inside	Temple:	11.53 ± 0.05	(no scaling)	11.53 ± 0.05
Outside	SM&DU:	15.62 ± 0.12	scaled to	18.07 ± 0.14
	Temple:	19.44 ± 0.05	(no scaling)	19.44 ± 0.05

Cross Sections shown are for $Q^2=0.13$ (Gev/c)² and W = 1232 MeV

Summary Statistics

Cross Section Summary

Statistical Uncertainty	better than 1%
Model Uncertainty	better than 1%
Systematic Uncertainty	2 - 3%
Bin centering ratio	90 - 95 %

Preliminary Results: W scan

Parallel XS vs W: It is known that MAID fails / Sato Lee in good agreement with world data

Preliminary Results: Asymmetry and XS

Preliminary Results: Multipole extraction

