Update from SoLID (Solenoidal Large Intensity Device)

Zhihong Ye Duke University & SoLID Collaboration Hall-A Winter Meeting 10/09/2014

Outline

- SIDIS,
- PVDIS,
- J/Psi
- ♦ SoLID Overview
 - Magnet
 - Detectors
 - Triggers&DAQ
 - Simulation and Software
- ♦ Summary

Physics Overview

Semi-Inclusive Deep Inelastic Scattering (SIDIS):

- \rightarrow Transversely Polarized 3He, E12-10-006 (90 days, A),
- \rightarrow Longitudinally Polarized 3He, E12-11-007 (35 days, A),
- \rightarrow Transversely Polarized Proton, E12-11-108 (120 days, A),
- \rightarrow Two new bonus runs: Ay and Di-Hadron,
- \rightarrow And can be more ...

◆ Parity Violation Deep Inelastic Scattering (PVDIS):

- \rightarrow PVDIS with LH2 and LD2, E12-10-007 (169 days, A)
- \rightarrow proposing new experiments, e.g. EMC with Cacium
- J/ψ :
- \rightarrow Near Threshold Electroproduction of J/ ψ at 11 GeV, E12-12-006 (60 days, A-)

♦ More ...

Semi-Inclusive Deep Inelastic Scattering:

→SIDIS: 4-D (x, pt, Q2, z) probe of nucleon transverse momentum distribution (TMD)

Leading-Twist TMD PDFs

Semi-Inclusive Deep Inelastic Scattering:

→SIDIS: 4-D (x, pt, Q2, z) probe of nucleon transverse momentum distribution (TMD)

→ SoLID-SIDIS studies TMDs with extensive coverage, and high resolutions

Semi-Inclusive Deep Inelastic Scattering:

- \rightarrow SIDIS: 4-D (x, pt, Q2, z) probe of nucleon transverse momentum distribution (TMD)
- \rightarrow SoLID-SIDIS studies TMDs with extensive coverage, and high resolutions
- \rightarrow Determine the tensor charge of d & u

$\delta q^{a} = \int_{0}^{1} [h_{1T}^{a}(x) - h_{1T}^{\bar{a}}(x)] dx$

- **Extractions from experiments:** 2,3 - Anselmino et al, Phys.Rev. D87 (201
- 4 Anselmino et al, Nucl. Phys. Proc. Sur
- 5 Bacchetta, Courtoy, Radici, JHEP 130

Lattice QCD:

- 6 Alexandrou et al. PoS(LATTICE 2014)
- 7 Gockeler et al, Phys. Lett. B (2005)
- 8 Pitschmann et al, (2014)
- 9 Hecht, Roberts and Schmidt, Phys. Re

Models:

- 10 Cloet, Bentz and Thomas, Phys. Lett.
- 11 Wakamatsu, Phys. Lett. B (2007)
- 12 Pasquini et al, Phys. Rev. D (2007)
- 13 Gamberg and Goldstein, Phys. Rev. |
- 14 He and Ji, Phys. Rev. D (1995)

Semi-Inclusive Deep Inelastic Scattering:

- →SIDIS: 4-D (x, pt, Q2, z) probe of nucleon transverse momentum distribution (TMD)
- → SoLID-SIDIS studies TMDs with extensive coverage, and high resolutions
- \rightarrow Determine the tensor charge of d & u
- \rightarrow Access the orbital angular momentum (OAM) of quarks and gluons with transverse n/p

Nucleon Spin Puzzle:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma(\mu) + L_q(\mu) + J_g(\mu)$$

- No direct model-independent relation to the OAM in Spin Sum-Rule.
- Pretzelosity: access info of $\triangle L=2$ (S-D or P-P interference)

SoLID (SIDIS & J/\U)

Collima

7

PVDIS

Parity Violation Deep Inelastic Scattering:

- A Measure the asymmetry between left- and right-handed electron scatterings which can access:
 - ✓ QCD: nucleon structure, charge asymmetry, high twist, EMC ...
 - ✓ Electro-Weak
 - ✓ New physics in NP and HEP (TeV-scale probe ...)
 - ✓ More ...

<u>Standard Model:</u>

J/ψ

• Near Threshold Electroproduction of J/ψ

 \rightarrow Probes strong gluonic interaction between two color neutral objects J/ ψ and nucleon near threshold:

 \rightarrow Models relate J/ ψ production near threshold to trace anomaly and proton mass budget

(D. Kharzeev et al Eur.Phys.J. C9 459 (1999), A. Sibirtsev et al. Phys. Rev., D71:076005 (2005))

SoLID (SIDIS & J/\U)

Collim

SoLID Overview

• High Intensity ($10^{37} \sim 10^{39} \text{ cm}^{-2}\text{s}^{-1}$) and Large Acceptance

LASPD

SIDIS&J/Psi:

6xGEMs

Take advantage of new developed detector techniques, fast electronics and data acquisition.

LGC

HGC

FASPD MRPC

FAEC

Sophesticated MC simulation and analysis software developments
 PVDIS: Baffle
 LGC
 4xGEMs
 EC

LAEC

Magnet

◆ CLEO-II Solenoid Magnet: from Cornell Univ.

<u>Goals:</u>

→Acceptance: Φ: 2π, Θ: 8°-24° (SIDIS), 22°-35° (PVDIS), P: 1.0 - 7.0 GeV/c,

 \rightarrow Resolution: $\delta P/P \sim 2\%$ (requires 0.1 mm tracking resolution)

 \rightarrow Fringe field at the front end < 5 Gaus

<u>Status:</u>

- → CLEO-II magnet formally represented and agreed in 2013: Built in 1989 and operated until 2008, uniform central field at 1.5 T, Inner radius 2.9 m, coil radius 3.1 m and coil length 3.5 m
- \rightarrow Site visit in 2014, disasembly in 2015 and plan transportation in 2017
- \rightarrow Design of supporting structures and mounting system at JLab

CLEO at Cornell

• **GEM**: by UVa and Chinese collaborators

Goals: →5 planes (PVDIS) and 6 planes (SIDIS/JPsi), area~37 m² (165K outputs), →work in high rate and high radiation environment. →tracking eff.>90%, radius resolution ~ 0.1 mm,

<u>Status:</u>

- <u>UVa</u>: First full size prototype assembled, and beam test at Fermi Lab Oct 2013
- <u>China</u>: CIAE/USTC/Tsinghua/LZU)
- ✓ 30×30 cm prototype constructed and readout tested, and now moving to 100cm×50cm construction
- ✓ Gem foil production facility under development at CIAE
- \checkmark Continue on read-out electronics desgin and test

100cm×50cm GEM foil

Multi-gap Resistive Plate Chamber: by Tsinghua, Duke and Rutgers

<u>Status:</u>

- \rightarrow Prototype Developed at Tsinghua
- \rightarrow Beam test at Hall-A in 2012
- \rightarrow New facility for mass production
- \rightarrow Read-out electronics design

<u>Goals:</u>

- \rightarrow For SIDIS/JPsi only, between FASPD and FAEC
- → 50 super-modules, each contains 3 modules, 1650 strips and 3300 output channels.
- \rightarrow Timing resolution < 100ps
- \rightarrow Works at high rate up to 10 KHz/cm2
- \rightarrow Photon suppression > 10:1
- $\rightarrow \pi/k$ separation up to 2.5GeV/c

Tsinghua-FPGA TDC

Electromagnetic Calorimeters (EC): by UVa, W&M, ANL ...

<u>Goals:</u>

- \rightarrow Shashlyk sampling calorimeters
- \rightarrow 1800 modules (2 R.L.) for PreShower, 1800 modules (18 R.L) for Shower
- \rightarrow Modules re-arranged for PDVIS<->SIDIS
- → electron eff.>90%, E-Resolution~10%/ \int E, π suppression > 50:1
- \rightarrow Rad. Hard (<20% descreasing after 400K Rad)

	θ (deg)	z (cm)	R(cm)	P (GeV/c)	Max π/e	Area (m²)
PVDIS FAEC	22 - 35	(320,380)	(110,265)	2.3 - 6	~200	~ 18.3
SIDIS FAEC	7.5 - 14.85	(417,475)	(98,230)	1 - 7	~200	~ 13.6
SIDIS LAEC	16.3 - 24	(-65,-5)	(83,140)	3-6	~20	~ 4.0

• Electromagnetic Calorimeters (EC): continue ...

Status:

- \rightarrow Sophesticated Geant Simulation
- \rightarrow Active Pre-R&D at UVa and Jlab
- \rightarrow Sample&PMT tests and Pre-Amp design

PreShower module

preserve DIS electron of x>0.35

threshold: 2.6 GeV \rightarrow 3 GeV momentum

Scintillating Pedal Detectors (SPD): by UVa and Duke ...

Triggers&DAQ

♦ Triggers:

- \rightarrow Estimation based on sophesticated Geant simulation and well-tone physics models
- → PVDIS: LGC+EC provide electron triggers, 27 KHz/sector, 30 sectors
- → SIDIS: Coincident trigger between electrons and hardrons within a 30 ns window: LASPD+LAEC provide electron triggers, 25 KHz LGC+FASPD+MRPC+FAEC provide electron trigger, 129 KHz
 66 KHz + 6 KHz (eDIS) FASPD+MRPC+FAEC provide hardron trigger, 14 MHz

Read-Out and Data Aquisition System:

- → Use fast electronics to handle the high rates (FADC, APV25, VETROC, etc.)
- \rightarrow Read out EC clusters to reduce background
- → Current design can take the trigger rates 60 KHz per sector for PVDIS, and 100 KHz overall for SIDIS
- \rightarrow Use Level-3 to further reduce the events size
- \rightarrow Learn new developments from others (e.g. Hall-D)

Simulation&Software

♦ GEMC:

- SoLID full setup in GEMC (Geant4) with realistic materials
- EM background produced from 11GeV e- on targets with the physics models in Geant4
- Hadron background, generated from event generators (Wiser fit) on both target and target windows, then passed into GEMC

♦ GEM Tracking Reconstruction:

- Can reconstruct charged particles traveling in the strong magnetic filed
- Need fast processing time for high rates with backgrounds
- Two approaches: Tree Search (Ole), Progressive Tracking (Weizhi Xiong, Duke)

18

Summary

Highly rated experiments with exciting physics topics

- Take advantage of latest detector and electronics techniques
- Active MC simulation, software deveoptments and Pre-CDR & Prototyping
- ♦ A strong and still expending collaboration:

200+ physicists, 50+ institutions and significant international contributions ...

Timeline:

- ◆CLEO-II magnet has been requested and will be transported in 2017
- Pre-conceptial Design Report has been submitted in July 2014
- White-papers submited for QCD and Symmetry town-meetings in 2014 (LRP), many talks& semenars, and received very positive feekbacks.
- Ready for the director review

Backup Slides

Power of SoLID-PVDIS

Baffle

PVDIS Baffle:

hits before FAEC (black(-),red(0),blue(+))

<u>Goals:</u>

- \rightarrow For PVDIS only
- \rightarrow 11 layers of 9cm thick lead and one layer of 5cm lead

 \rightarrow Right after the target to block photons, pions and secondary particles.

 \rightarrow Follow charge particle bending in the field, preserve the same azimuthal slice and block line of sight.

Light Gas Cherenkov Counter (LGC): by Temple University

<u>Goals:</u>

 →2 m CO2 (SIDIS/Jpsi), 1 atm
 →1 m C4F8O (65%)+N2 (35%) (PVDIS), 1 atm
 →30 sectors, 60 mirrors, 270 PMTs, Area~20m²
 →N.P.E>10, eff.>90%, π suppression > 500:1
 →Work at 200G field (100G after shielding)

<u>Status:</u>

- \rightarrow Support Structure and Mounting Design
- \rightarrow u-metal Shielding design
- \rightarrow Pre-R&D ongoing at Temple

Heavy Gas Cherenkov Counter (HGC): by Duke University

 $[\]rightarrow$ Prototype-Test will happen at Duke soon

<u>Goals:</u>

- \rightarrow for SIDIS only
- ightarrow1 m C4F8O at 1.5 atm
- \rightarrow 30 mirrors, 480 PMTs, area~20 m²
- \rightarrow N.P.E>10, eff.>90%, Kaon suppression > 10:1,
- \rightarrow Work at 200G field (100G after <u>shielding</u>)

