

The Status of g2p & GEp(II) Analysis

Pengjia Zhu

University of Science and Technology of China
On behalf of the E08-027(q2p)/E08-007(GEp) collaboration

$$\frac{d^2\sigma}{dE'd\Omega}(\downarrow \Rightarrow -\uparrow \Rightarrow) = \frac{4\alpha^2 \sin\theta}{MQ^2} \frac{E'^2}{\nu^2 E} \left[\nu g_1(x, Q^2) + 2E g_2(x, Q^2)\right]$$

Measure g₂ in the low Q² region (0.02<Q²<0.2GeV²)

- Extract longitudinal-transverse spin polarizability(δ_{LT}) benchmark test of χPT , discrepancy seen for neutron data
- Test Burkhardt-Cottingham (BC) Sum Rule violation suggested for proton in high Q2(SLAC E155x)
- Hydrogen hyperfine splitting correction for proton structure contributes to uncertainty
- Proton charge radius contributions to uncertainty include proton polarizability

GEp motivation

(Part II)

Asymmetry

$$\mathcal{A} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

$$\mathcal{A} = fP_bP_t \underbrace{\frac{a\cos\theta^*G_M^2 + b\sin\theta^*\cos\phi^*G_EG_M}{a\cos\theta^*G_M^2 + b\sin\theta^*\cos\phi^*G_EG_M}}_{A=fP_bP_t}$$

$$\longrightarrow \frac{G_E}{G_M}$$

Elastic Form Factor Ratio

~2%-3% uncertainty at Q^2 ~ 0.015 - 0.06 GeV²

GEp motivation

 $G_{E,M}(Q^2) = \int \rho(\vec{r}) e^{i\vec{q}\vec{r}} d^3\vec{r} = \int \rho(\vec{r}) d^3\vec{r} - \frac{\vec{q}^2}{6} \int \rho(\vec{r}) \vec{r}^2 d^3\vec{r} + \dots$

The proton radius puzzle

#	Extraction	Method	<re>2 [fm]</re>
1	Sick	ep scattering	0.895±0.018
2	CODATA		0.8768±0.0069
3	Mainz	ep scattering	0.879±0.008
4	GEp part I	ep scattering	0.870±0.010
5	Combined 2-4		0.8764±0.0047
6	Muonic Hydrogen	µH Lamb shift	0.842±0.001

Result from Lamb shift in muonic hydrogen disagree with other results

X. Zhan, et al. Phys. Lett. B 705(2011) 59

Experimental setup

- Polarized NH3 target
 - Slow raster (id 3)
 - Low current (50~100nA for g2p, 5~10nA for GEp)
 - Super-harps (id 6)
 - Tungsten calorimeter (id 4)
 - New BPM/BCM receiver(readout)
 - Hall A Standard BCM/BPM (id 1/id 8)
 - High transverse target field(2.5~5T)
 - Chicane dipole magnet (id 7)
 - Local beam dump (id 11)
- · 6deg scattering angle detection
 - Septum

Detector efficiency

Cherencov efficiency ~99.96%

Lead glass efficiency ~99.6%

All of our detector efficiency is in very good situation

Detector efficiency

All of our detector efficiency is in very good situation

Target polarization

Average polarization:

5T: ~70%

2.5T: ~15%

Offline Left Arm 2.5T Polarizations

- Beam position and angle at the target
 - Fitted function from simulation to transport position from BPMs to target

- Event by event position and angle
 - Use BPM information as average beam position
 - Calibrate Raster magnet current information as position deviation from center position
 - Combine BPM, slow/fast raster magnet current informations

$$X = \langle X_{BPM} \rangle + X_{fast} + X_{slow}$$

Use carbon hole to calibrate slow raster

Uncertainty

- Best situation: 1mm for position, 1.1mrad for angle
- Main uncertainty part:
 - Pedestal fluctuation
 - Too close for two BPMs -- 26.5cm difference

HRS Optics - without target field

Angle matrix -- sieve slit

Angle at sieve slit got from survey

 x, y, θ, φ

HRS Optics - without target field

HRS Optics - without target field

Performance summary of RMS values without target field

RMS	LHRS	RHRS	
δ [dp]	1.5×10 ⁻⁴	2.4×10 ⁻⁴	
Θ [out-of-plane angle]	1.59 mrad	1.57 mrad	
У	3.3 mm	2.9 mm	
$oldsymbol{\phi}$ [in-plane angle]	0.99 mrad	0.82 mrad	χ, y, θ, φ
	δ, y, θ, φ Target	Q1 Q1 Septa Q2	Q3

HRS Optics - with target field

- Septum broke during the experiment, need to use the dat taken with the broken septum to recalibrate angle matrix
- A simulation package is written to deal with the ray tracing in the target field
 - For the recalibration of the matrix, the simulation package is used to calculate reference angles
 - For reconstruction, the simulation package is used to calculate the real scattering angles x, y, θ, φ

Acceptance

Unpolarized cross section

$$\frac{d \sigma^{raw}}{d \Omega dE'} = \frac{N * ps * RC}{Q/q * N_{tg} LT * \epsilon_{det}} \frac{Acc}{\Delta \Omega \Delta E'}$$

Method:

• Match the simulation and data in all of planes

Use simulation to get acceptance

$$\frac{Acc}{\Delta \Omega \Delta E'} = \frac{1}{\Delta \Omega^{MC} \Delta E'^{MC}} \frac{N_{simu}^{MC}}{N_{acc}^{MC}}$$

- we are working on obtaining the comparison of angles and momentum on target plane
- The simulation results match data on focal plane very well, and this will largely help the comparison on target plane.

Simulation

- Runge-Kutta method with self-adjusting step length to improve speed and accuracy
- HRS SNAKE models are included to get the focus plane variables
- Several cross-section models are also included, an event generator is written with these models
- Energy loss models included

Ongoing:

- Match data with simulation
- Packing fraction study with simulation

Comparison between simulated dp vs optics run dp

Packing fraction

-- effective NH3 target thickness
NH3 beads filled by liquid He

Define: $p_f = 1 - \frac{Y_{He}^{\text{in}}}{Y_{tg}}$

Yield from He in dummy target cell

Yield from NH3 target cell

Packing fraction

- Only use elastic peak
 - Fitting routine to obtain level of contamination from QE peaks
- Ongoing
 - Radiation length matching between production and dummy runs
 - Updating fitting routine to include multiple contributions to second peak
 - Repeat analysis for other materials/energy settings

Fit to Elastic and QE Peaks - Production Run

Current Result:

(2.2 GeV, 2.5T Setting, Material 8)

$$p_f = 0.551$$

Dilution

Remove the Background from N,He,Aluminum foil

$$A_{raw} = \frac{Y_{+} - Y_{-}}{Y_{+} + Y_{-} + bg}$$

$$A_{phy} = \frac{1}{P_{b}P_{t}D} * A_{raw}$$

$$Y_{+/-}$$
 Yield from proton
$$bg\!=\!Y_{N}\!+\!Y_{He}\!+\!Y_{f}$$
 Yield from N, He, foil
$$P_{b}P_{t}$$
 Polarization of beam and target

Dilution
$$D=1-\frac{bg}{Y_{total}}$$

 Y_f : Extract from dummy and empty target Y_{He} : Extract from empty target Y_N : Extract from carbon target and scale it to nitrogen using P.Bosted cross section model

Dilution

Comparation of C&N XS from P.Bosted model P.Bosted (2009) Radiated XS Simulation at 3.350GeV

Current result: 3.350GeV 5T Transverse Dilution result

• Still Ongoing

Bosted model tuning using saGDH data

-- saGDH unpolarized radiative correction study

- saGDH has similar kinematics with g2p (0.02~0.2GeV2)
- saGDH has pure nitrogen data (gas nitrogen target)
- g2p only took dilution data on carbon, need to scale to match actual nitrogen background
- For the nitrogen background subtraction for dilution study

Summary for g2p Analysis status

Completed:

- Run database
- · Beamline
 - BCM calibration
 - BPM calibration
 - Helicity decode
 - Dead time calculation
- Detector Calibration
 - Gas Cerenkov
 - Lead Glass
 - Trigger efficiency
- Target Polarization Analysis
- HRS Optics
 - Straight through
 - With target field -Left arm
- g2p simulation package:
 - Geometry and optics part for optics
 - Cross section models
 - Energy loss models

Ongoing:

- HRS Optics
 - With target field Right arm
- Acceptance study
- Packing fraction
- Dilution
- g2p simulation
 - Match data with simulation

Summary for GEP Analysis status

run number

Experimental asymmetries

Left	arm	cut I		cut II	
energy (GeV)	Q2 (GeV2)	A (%)	ΔΑ/A (%)	A (%)	ΔΑ/A (%)
1.1	0.013	2.11	2.8	1.87	3.5
1.7	0.027	1.5	2.4	1.55	2.4
1.7	0.039	2.32	2.7	2.44	3.18
2.2	0.045	1.78	1.5	1.91	1.7
2.2	0.065	2.47	1.6	2.56	2.0

- Asymmetries behave as expected, although too low, probably due to dilution analysis procedure.
- Final uncertainties expected to be ~1%-2% statistical and ~3% systematical.

g2p collaboration

Spokesperson

Alexander Camsonne Jian-ping Chen Don Crabb Karl Slifer

Post Docs

Kalyan Allada Jixie Zhang Vince Sulkosky Ellie Long James Maxwell

Graduate Students

Toby Badman
Melissa Cummings
Chao Gu
Min Huang
Jie Liu
Pengjia Zhu
Ryan Zielinski

Thank You!

Pengjia Zhu

GEp collaboration

Spokesperson

Adam Sarty
Donal Day
Douglas Higinbotham
Guy Ron
John Arrington
Ronald Gilman

Graduate Student

Moshe Friedman

backup

• BC Sum Rule

$$\int_0^1 g_2(x, Q^2) dx = 0$$

■SLAC E155x

Hall C RSS

■Hall A E94-010

■Hall A E97-110 (preliminary)

Hall A E01-012 (preliminary)

- δ_{LT} is seen as a more suitable testing ground of χPT insensitive to Δ resonance
- \bullet Significant disagreement between data and both χPT calculations
- No proton data yet

$$\delta_{LT}(Q^2) = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 [\mathbf{g_1} + \mathbf{g_2}] dx$$

Hydrogen Hyperfine Splitting

$$\Delta E = (1 + \delta)E_F$$
$$\delta = \delta_{\text{QED}} + \delta_R + \delta_{\text{small}} + \Delta_S$$

 δ_{QED} :QED radiative correction

 $\delta_{\rm p}$:recoil effect

 δ_{small} :hardronic/muonic vac pol,weak

• Δ_s is largest portion of theoretica

$$\Delta_S = \Delta_Z + \Delta_{pol}$$

$$\Delta_{
m pol} = rac{lpha m_e}{\pi g_p m_p} (\Delta_1 + \Delta_2)$$

 Δ_2 is dominated by low $Q^2 g_2^p$

GEp motivation

(Part I)

Recoil Polarization

$$I_0 P_t = -2\sqrt{\tau(1+\tau)} G_E G_M \tan\frac{\theta_e}{2}$$

$$I_0 P_l = \frac{E_e + E_{e'}}{M} \sqrt{\tau(1+\tau)} G_M^2 \tan^2\frac{\theta_e}{2}$$

$$\mathcal{R} \equiv \mu_p \frac{G_E}{G_M} = -\mu_p \frac{P_t}{P_t} \frac{E_e + E_{e'}}{2M} \tan \frac{\theta_e}{2}$$

X. Zhan, et al. Phys. Lett. B 705(2011) 59

~1% uncertainty at Q^2 ~ 0.3 - 0.7 GeV²

GEp motivation

 2 %-3% uncertainty at Q² 0.015 - 0.06 GeV²

X. Zhan, et al. Phys. Lett. B 705(2011) 59

BPM Calibration

- · 2Hz software filter
 - get better resolution
- Current vs ADC value fit at same position

•
$$\varphi = f(A - A_{ped}) = a(A - A_{ped} + b)$$

• remove current effect

- BPM pedestal fluctuation during experiment
 - use nearest pedestal value for each run

Beam position reconstruction at target

- Fitted function using target field map to transport position from BPMs to target
- Event by event position and angle at target position

•
$$X = \langle X_{BPM} \rangle + X_{fast} + X_{slow}$$

• $X = \langle X_{BPM} \rangle + X_{fast} + X_{slow}$ • Use Carbon hole to calibrate slow raster

Uncertainty

- Best situation: 1mm for position, 1.1mrad for angle
- Main uncertainty part:
 - Pedestal fluctuation
 - Too close for two BPMs 95.5cm vs 69cm upstream of target

Current vs position

Matrix Calibration: Angle

Matrix Calibration: Momentum

Matrix Calibration: y

HRS Optics - with field

- Know beam position at reaction point, the position of sieve slit hole, and target field map
 - Get the effective angle at sieve slit
 - Linear backward position at sieve to target plan to get effective position
 - Fit matrix between effective variables and focal plan variables
- Reconstruction for each production run:
 - Use fitted matrix to get effective variables at target plan for each events
 - Linear forward to sieve position
 - Use field map to traject the effective variables to real reacting variables

Packing fraction -> effective NH3 target thickness NH3 beads filled by liquid He

Define:
$$p_f = 1 - \frac{Y_{He}^{in}}{Y_{tg}}$$

$$Y_{He}^{\rm in} = \frac{l_{tg}}{l_{tot}} Y_{dummy}$$

Yield from He inside cell if only He in cell

$$Y_{tg} = Y_{prod} - Y_{He}^{out}$$

Yield from materials within the target cell

$$Y_{He}^{\text{out}} = \frac{l_{tot} - l_{tg}}{l_{tot}} Y_{dummy}$$

Assumes uniform acceptance throughout

$$Y_{\text{prod}}$$
, Y_{dummy} From N and He elastic peak

Dilution

$$A_{raw} = \frac{Y_{+} - Y_{-}}{Y_{+} + Y_{-} + bg}$$

$$A_{phy} = \frac{1}{P_{b} P_{t} D} * A_{raw}$$

$$D = 1 - \frac{Y_{N} + Y_{He} + Y_{f}}{Y_{total}}$$

$$Y_{+/-}$$
 Yield from proton
$$bg = Y_N + Y_{He} + Y_f \quad \text{Yield from N, He, foil}$$
 $P_b P_t \quad \text{Polarization of beam and target}$ $D \quad \text{Dilution factor}$

$$Y_f = Y_{dummy} - Y_{empty}$$

$$Y_{He} = (1 - p_f) \alpha Y_{empty}$$

 α , β , γ Used to scale material radiation lengths

$$\boldsymbol{Y}_{N} = \boldsymbol{\gamma} \, \boldsymbol{p}_{f} \frac{\rho_{N} \, l_{tg} \, \boldsymbol{M}_{C}}{\rho_{C} \, l_{C} \, \boldsymbol{M}_{N}} (\boldsymbol{Y}_{C} - (1 - \frac{l_{C}}{l_{tg}}) \boldsymbol{\beta} \, \boldsymbol{Y}_{empty}) \quad \text{ From carbon nitrogen xs ratio}$$

Dilution

Current result:

• Still Ongoing

