Hall A Compton Status and Plans

Dave Gaskell Hall A Collaboration Meeting December 8, 2014

- 1. Compton at 11 GeV
- 2. Laser status
- 3. Photon Detector
- 4. Electron detector

Hall A Compton Overview

- Laser system: 1 W green drive laser coupled to high gain Fabry-Perot cavity → several kW intracavity power
- 2. Photon detector: GSO crystal operated in integrating mode (low energies) → high energy crystal under study: lead-tungstate?
- 3. Electron detector: silicon strip detector \rightarrow 240 µm pitch, 192 strips/plane
- 4. DAQ: CMU, integrating mode photon DAQ. New counting mode photon DAQ + new electron detector DAQ under development

Hall A Compton – 12 GeV Configuration

11 GeV functionality required changing chicane deflection: 30 cm \rightarrow 21.55 cm

As of January 2014, most of the infrastructure work had been completed

- → Dipole height adjusted
- \rightarrow New vacuum chambers fabricated and installed
- \rightarrow Laser table height adjusted (new legs)
- \rightarrow New electron detector chamber fabricated

Recently completed

- \rightarrow Modifications for photon detector stand and collimator holder
- \rightarrow Photon tube

Chicane/Vacuum System

A few modifications have been made to the chicane in the last several months

- Added new BPM between dipoles 1 and 2 → allow easier beam steering during initial setup. Reduce potential for damaging lasers and optics on table
- 2. "Backup" shims fabricated for dipoles
- Electron detector and 4th dipoles vacuum chambers modified to improved clearance for highest energy scattered electrons

Shims for mitigation of synch backgrounds

At higher energies, synchrotron backgrounds in photon detector get uncomfortably large

- → This can be mitigated by adding relatively small shims at ends of dipole to "soften" the bend
- → Shims have been installed as part of the 12 GeV improvements

Shims for mitigation of synch backgrounds

At higher energies, synchrotron backgrounds in photon detector get uncomfortably large

- → This can be mitigated by adding relatively small shims at ends of dipole to "soften" the bend
- → Shims have been installed as part of the 12 GeV improvements
- → Installed shims would yield synch powers larger than optimum design
- → Alternate shims have been fabricated - in case problems are discovered during DVCS run

Electron Detector Can

- At 11 GeV, maximally scattered (Compton endpoint) electrons will strike electron detector can (green laser)
- \rightarrow Will create backgrounds in electron detector
- → Shifting can and dipole chamber will shift collision point further downstream, away from electron detector

Electron Detector Can

At 11 GeV, maximally scattered (Compton endpoint) electrons will strike electron detector can (green laser)

Modifications:

- 1. Increase opening and bellows to 8 inches
- 2. Flip dipole 4 chamber, add "flair" on the upstream side

Compton endpoint electrons

Compton Laser Status

Compton laser system approaching full functionality

- \rightarrow Components on laser table functioning and aligned
- \rightarrow Slow controls restored
- \rightarrow Fabry-Perot cavity locking, but low gain

Compton Laser: Frequency Doubling System

Green laser light provided by single-pass, frequency doubling system → Good doubling efficiency requires proper alignment of doubling (PPLN) crystal, optimum temperature → We are routinely achieving ~20% doubling efficiency, sometimes better

Compton Laser: Fabry-Perot Cavity

- Key component of system is locking the laser to the (high gain) Fabry-Perot cavity
- Before start of DVCS/GMp run, spent a lot of time working on laser-cavity alignment, matching the spatial profile, and achieving lock
- Work was complicated by the power infrastructure work and our unfamiliarity with the details of this system
- In the end, we chose to install low reflectivity mirrors (R=99.83%) to simplify alignment
- FP cavity lock was achieved but at lower gain than expected for these mirrors → 100 W vs. 500 W

Compton Laser: Fabry-Perot Cavity

Compton Laser: Fabry-Perot Cavity

Using the incident, reflected, and transmitted power, we can totally characterize cavity properties

Mode match can be improved via iteration or direct measurement. Inferred loss MUCH too large! Dirty mirrors? Or other losses on table?

Compton Photon Detector

CMU spearheaded the development of the new "integrating mode" photon detector system

→ High resolution GSO detector + integrating DAQ provided sub-1% photon detector polarization measurements

Higher backscattered photon energies in the 12 GeV era require a new crystal

Requirements:

- \rightarrow "Good" energy resolution
- → Dense enough to contain full (or most) of the backscattered photon energy

Hoping to test lead-tungstate during DVCS/GMp run

Lead Tungstate Test Detector

Lead-tungstate crystals on loan from Yerevan/Hall C

Crystal size = 3 x 3 x 20 cm

Detector assembled, PMT optimized by CMU (B. Quinn)

Have installed a 4-block, lead-tungstate detector to test during DVCS/GMp run \rightarrow CMU DAQ needs to be revived

Compton Electron Detector

Existing system suffers from excessive noise, low efficiency

→ For experiments with high luminosity (and/or very long run times), silicon microstrips may not be sufficiently radiation hard

Near term improvement plan (JLab/Manitoba/MSU):

- → Investigate shorter PCB board to couple detector to amplifierdiscriminator – improve signal size before discrimination
- \rightarrow Install thicker silicon plane (?)

Longer term plans:

→ Investigate diamond strips (similar to Hall C) as an alternate for far future experiments (MOLLER, SOLID)

VETROC

Electron detector also needs new, fast readout

- → Fast Electronics group working with Bob Michaels and Alexandre Camsonne to develop new custom logic board – VETROC
- → Similar functionality to CAEN V1495, but "super-charged" – higher rate capabilities, expanded memory/buffer

Compton Plans

- Near term (January down)
 - Restore CMU photon DAQ functionality test leadtungstate prototype in spring
 - Swap out low gain mirrors in FP cavity → aim for few kW level powers in cavity
 - Further characterization of laser and optics
- Longer term plans
 - Improve laser polarization monitoring/setup scheme (replicate Hall C system for < 0.2% level systematic error)
 → this will require some new equipment, controls, and software. Summer 2015?
 - Improve electron detector performance
 - Continue development of Compton DAQ Upgrade

Hall A Compton Subsystems and Contributors

- Coordination: JLab
- Laser System: JLab, UVa
- Photon Detector: CMU
- Electron Detector: Manitoba, JLab, Miss. State, Clermont-Ferrand
- DAQ: CMU, JLab

Laser Polarization - the Transfer Function

Knowledge of the laser polarization inside cavity is a key systematic uncertainty

→ Polarization usually inferred from measurements of beam transmitted through cavity, after 2nd mirror

Typically a "transfer function" is measured with cavity open to air

Possible complications due to:

→ Change in birefringence due to mechanical stresses (tightening bolts)

→ Change in birefringence when pulling vacuum

Laser Polarization – the "Entrance" Function

Propagation of light into the Fabry-Perot cavity can be described by matrix, M_E

- → Light propagating in opposite direction described by transpose matrix, $(M_E)^T$
- → If input polarization (ϵ_1) linear, polarization at cavity (ϵ_2) circular only if polarization of reflected light (ϵ_4) linear and orthogonal to input*

Jefferson Lab JINST 5 (2010) P06006

*J. Opt. Soc. Am. A/Vol. 10, No. 10/October 1993

Steering mirrors,

Cavity Polarization via Reflected Power

"If input polarization (ϵ_1) linear, polarization at cavity (ϵ_2) circular only if polarization of reflected light (ϵ_4) linear and orthogonal to input"

 \rightarrow In the context of the Hall C system, this means that the circular polarization at cavity is maximized when retro-reflected light is minimized

- → Above statement was verified experimentally (with cavity open) by directly measuring circular polarization in cavity while monitoring retro-reflected power
- → Additionally, by fitting/modeling the entrance function we can determine the degree of circular polarization by monitoring the reflected power – even for the case when system is not optimized

Laser Polarization Systematic Uncertainty

Cavity polarization optimization scans performed with cavity unlocked → No measureable difference in laser polarization when comparing to locked cavity

Additional sources of potential uncertainty due to transmission through input cavity mirror and potential laser depolarization

 \rightarrow Both constrained by measurement to be very small

Overall systematic error on laser polarization in cavity ~ 0.1%

Compton Electron Detector*

Current Issues

Jefferson Lab

- \rightarrow Synchrotron radiation (did not work during PVDIS)
- \rightarrow Contamination of asymmetry by shielding
- \rightarrow Signal / background ratio
- \rightarrow Crosstalk digital with analog (need to be careful of offsets and thresholds)
- \rightarrow No official support for major development in Clermont
- \rightarrow Readout with standard Compton DAQ only run at 30 Hz
- → Readout 32 bit BLT only : dead time

*Courtesy Alexandre Camsonne

Cosmic Tests

Single channel

Cosmic Tests

All channels (sum)

Efficiency curve

