Long-Baseline Neutrino Experiment

Spectral Function of ⁴⁰₁₈Ar via the (e,e'p) reaction

PR12-14-012 Chun-Min Jen@Virginia Tech (12/09/14')

Measurement of the

2014 Winter Hall-A Collaboration Meeting

MJ@HallA, Dec. 2014

Motivation

Why do neutrino people need to borrow electron beam time?

- the *quantitative* description of the response to the *electro-weak interaction* is required in order to accurately explain the the signals detected in accelerator based neutrino scattering experiments.
- various *nuclear effects* play a crucial role in the interpretation of data.

Why Neutrino Experiments (just "Counting" Experiments) are Relatively Much More Challenging than Electron Experiments?

beam : neutrino energies are needed to be quantified.

interaction : interaction type is needed to be classified.

Neutrino Beam Energy Reconstruction $P(\nu_{\mu} \to \nu_{e}) = \sin^{2} 2\theta \sin^{2} \left(\frac{\Delta m^{2} L}{4E_{\nu}} \right)$

- *Nature* (unknown)
- **Distance** between near and far detectors fixed (well-known)
- Reconstructed Neutrino Beam Energies (known but not precise enough due to <u>many reasons</u>)

why neutrino experiments are very challenging?

1. beam energies (also, a range of Q²) at the target (interaction vertex) are not fixed to one value.

2. neutrino energy reconstruction involves the precise understanding of various nuclear effects, including final-state interaction to account for hadron re-interactions.

Neutrino Interaction Vertex Reconstruction

MJ@HallA, Dec. 2014

5

						_			and the second second
Experiment	Selection	Number of events	QE purity	Flux (reference)	MA	$F_A(Q^2)$	σ(E _v)	$\frac{d\sigma}{dQ^2}$	$\frac{d^2\sigma}{dT_{\mu}d\theta_{\mu}}$
ANL	Two- and three-track	1,737	98%	Hadro (14)	\checkmark	—	\checkmark	\checkmark	-
BEBC	Three-track	552	99%	ν _μ CC (15)	\checkmark	—	\checkmark	\checkmark	—
BNL	ν: three-track ν̄: one-track	v: 1,138 v: 13	ν: 97% ν: 76%	ν _μ QE (49)	\checkmark	-	\checkmark	-	-
FNAL	ν: two- and three-track ν̄: one-track	v: 362 v: 405	v: 97% v: 85%	ν _μ QE (50)	\checkmark	—	\checkmark	-	-
GGM	ν: two-track ν̄: one-track	v: 337 v: 837	ν: 97% ν: 90%	Hadro (51)	\checkmark	\checkmark	\checkmark	\checkmark	
Serpukhov	One-track	v: 757 v: 389	v: 51% v: 54%	Hadro, ν_{μ} CC (19)	\checkmark	\checkmark	\checkmark	-	
SKAT	ν: two-track ν̄: one-track	v: 540 v: 159	—	ν _μ CC (20)	\checkmark	_	\checkmark	\checkmark	-
K2K	One- and two-track	5,568	62%	Hadro, ν _μ CC (52)	\checkmark	—	-	-	-
MiniBooNE	One-track	146,070	77%	Hadro (53)	\checkmark	—	\checkmark	\checkmark	\checkmark
SciBooNE (preliminary)	One- and two-track	16,501	67%	Hadro (53)	_	—	\checkmark	-	-
MINOS (preliminary)	One-track	345,000	61%	ν _μ CC (27)	\checkmark	-	-	-	-
NOMAD	v: one- and two-track	v: 14,021 v: 2,237	v: 42%/74% v: 37%	Hadro, DIS, IMD	\checkmark	-	\checkmark	-	
	v: one-track			(/)					Constant of

Table 2	Summary of analysis	techniques employed i	in the experimental	study of neutrino	quasi-elastic (Q	E) scattering
---------	---------------------	-----------------------	---------------------	-------------------	------------------	---------------

Abbreviations: CC, charged-current; DIS, deep-inelastic scattering; hadro, hadro-production; IMD, inverse muon decay.

(Ann. Rev. Nucl. Part. Sci, 61, 355, 2011)

1. less likely to be influenced by FSI

2. w/o any need to struggle with (very tough work!!!) the neutrino energy reconstruction despite the merits in the double differential (not the "total") cross-section measurements, we still need an accurate nuclear structure model to give us a "correct" description of the charged lepton kinematics. (in slide 13)

from the *experimenters*' view: E_i : reconstructed energy

MJ@HallA, Dec. 2014

40 Ar Spectral Function

RFG (an approximation of Spectral Function)

$$P\left(|\vec{\mathbf{p}}|, E\right) = \frac{3}{4\pi k_F^3} \theta(k_F - |\vec{\mathbf{p}}|) \,\delta(\sqrt{m^2 + |\vec{\mathbf{p}}|^2} - m - E_B + E)$$
step function (no structure)

Spectral Function (one particle one hole)

$$P(|\vec{\mathbf{p}}|, E) = |\langle 4^{0} Ar|^{39} Ar, p \rangle |^{2} \delta(E_{4^{0}Ar} - E_{3^{9}Ar} - m_{n} + E)$$

probability amplitude if knocking out one nucleon

p : missing momentum, E : missing (excitation) energy $\mathbf{p}_m = \mathbf{p} - \mathbf{q}$ $\omega + M_A = \sqrt{(M_A - m + E_m)^2 + |\mathbf{p}_m|^2} + \sqrt{\mathbf{p}^2 + m^2} \rightarrow E_m \approx \omega - T_\mathbf{p}$

40 Ar Spectral Function

Spectral Function tells you:

- the initial-state nucleon's momentum distribution is not uniform and extends above the Fermi momentum (k_F);
- the removal energy (E_b) of each nucleon is correlated to its momentum and is not an average constant;

⁴⁰₁₈Ar Spectral Function and Cross-Section

 $e + A \rightarrow e' + p + (A - 1)_n$

 $\frac{d\sigma_A}{dE_{e'}d\Omega_e(dE_pd\Omega_p)} = \mathbf{K} \ \sigma_{ep} \ P(p_m, E_m)$

- in RFGM, nucleons sitting around Fermi sea are most likely to interact with beam particles
- Spectral Function, however, tells you "the probability" of nucleons from different shells to interact with beam particles.

$$\begin{pmatrix} \frac{d^2\sigma}{d\omega d\Omega_{k'}} \end{pmatrix}_A = \int \frac{d^3p}{d^2p} dE \left(\frac{d^2\sigma}{d\omega d\Omega_{k'}} \right)_N P(|\mathbf{p}|, E)$$

 $\times \delta(\omega + M_A - \sqrt{|\mathbf{p} + \mathbf{q}|^2 + m^2} - E_{A-1}) .$

Motivation

 the Spectral Function possesses the reliable capability of providing the fully realistic description of the initial-state nucleon kinematics. we are thus able to obtain the accurately computed cross-sections for *all interaction channels* (QE, RES, COH, DIS, MEC/2p2h).

Example -

(a) $\nu + O \rightarrow \mu + X$, with no Pauli blocking, and no FSI

(b) $\nu + Ar \rightarrow \mu + X$, with both Pauli blocking and FSI included

FIG. 11. (Color online). Comparison of the differential CCQE cross sections $d\sigma/dE_{\mu}$ of (a) oxygen and (b) argon at neutrino energy $E_{\nu} = 800$ MeV, obtained using GENIE 2.8.0 + νT with RFGM and SF.

courtesy of PRD 90, 093004 (2014) <u>1p1h SF (at this stage)</u> M. Jen, A. M. Ankowski, O. Benhar, A. P. Furmanski, L. N. Kalousis, C. Mariani

Motivation courtesy of PRD 88, 032002 (2013)

Evidence of Electron Neutrino Appearance in a Muon Neutrino Beam (T2K Collaboration)

	sin	$^{2}2\theta_{13} =$	
Error source		0.1	
Beam flux & ν int. (ND280 meas.) ν int. (from other exp.)		5.0	
XCC other		0.1	
x _{SF}		5.7	major one
p_F , CC coh		0.0	
$x^{\rm NC coh}$		0.6	
$x^{\rm NC other}$		0.8	
$x_{\nu_e/\nu_{\mu}}$		2.6	
$W_{\rm eff}$		0.8	
$x_{\pi-\text{less}}$		3.2	
$x_{1\pi E_{\nu}}$		2.0	
Final state interactions		2.3	
Far detector		3.0	
Total		9.9	

Kinematical Range for ⁴⁰/₁₈Ar and Proposed Kinematical Setup

	Parallel Kinematics, Luminosity = 5.45×10^{36} atoms cm ⁻² sec ⁻¹								Parallel kinematics		
kinematics	E_e	$E_{e'}$	θ_e	P_p	θ_p	$ \mathbf{q} $	p_m	x_{bj}	$d\sigma_{eA}$	Coin. Rate	
FSI	MeV	MeV	deg	${\rm MeV/c}$	\deg	${\rm MeV/c}$	MeV/c		$\mathrm{mbsr^{-2}MeV^{-2}}$	Hz	kin01—> kin10
kin01	2200	1717	25.3	1000	-48.6	980	20 / 0.1fm ⁻¹	0.80	0.173×10^{-6}	0.60	
kin02	2200	1717	23.9	1000	-47.8	940	60 60	0.72	0.191×10^{-6}	0.67	
kin03	2200	1717	22.5	1000	-47.0	900	100	0.64	0.214×10^{-6}	0.75	
kin04	2200	1717	21.1	1000 nu = 466N	-45.9 leV Eb	860	• 0.5m ⁺ 140 ∨ 0.7fm ⁻¹	0.56	0.245×10^{-6}	0.88	State of the second sec
kin05	2200	1717	19.6	1000 nu = 465M	-44.7 leV Eb	820	180	0.49	0.238×10^{-6}	0.85	
kin06	2200	1717	18.1	1000	-43.2	780	220 / 1.1fm ⁻¹	0.41	0.181×10^{-6}	0.64	scan the struck
kin07	2200	1717	16.6	1000 nu = 469N	-41.4 leV Eb	740	260 / 1.3fm ⁻¹	0.35	0.107×10^{-6}	0.39	nucleon's angles
kin08	2200	1717	15.0	1000 nu = 474N	-39.3 leV Eb	700 <= 59.8Me\	300 / 1.5fm ⁻¹	0.28	0.516×10^{-7}	0.18	
kin09	2200	1717	13.3	1000 nu = 476N	-36.7 leV Eb	660 <= 61.8Me\	340 / 1.7fm ⁻¹	0.22	0.250×10^{-7}	0.09	by moving LHRS & RHRS
kin10	2200	1717	11.5	• 1000 nu = 473№	-33.4 leV Eb	620 <= 58.8Me\	380 / 1.9fm ⁻¹	0.17	0.171×10^{-7}	0.06	

Kinematical Range for ⁴⁰Ar and Proposed Kinematical Setup

⁴⁰Ca missing (removal) energy of shell states

 ${}^{16}O(e, e'p)X$, $E_e = 2.4 \text{ GeV}$ E89-003 (waterfall target): achieved resolution was 0.9 MeV FWHM

Kinematical Range for ⁴⁰₁₈Ar and Proposed Kinematical Setup

	Anti-parallel Kinematics, Luminosity = 5.45×10^{36} atoms cm ⁻² sec ⁻¹										-1
Kinemati	ics	E_e	$E_{e'}$	θ_e	P_p	θ_p	$ \mathbf{q} $	p_m	x_{bj}	$d\sigma_{eA}$	Coin. Rate
		MeV	MeV	deg	$\mathrm{MeV/c}$	deg	$\mathrm{MeV/c}$	MeV/c		$\mathrm{mbsr^{-2}MeV^{-2}}$	Hz
kin11		2200	1717	29.8	1000	-50.2	1110	-110	1.1	0.364×10^{-7}	0.13
kin12		2200	1717	34.4	1000	-51.1	1247	-247	1.5	0.211×10^{-8}	0.01

maximum FSI Antiparallel kinematics

- cross-check structure functions extracted from both parallel and antiparallel kinematics
- estimate the significance of FSI using data from the anti-parallel kinematics setting

Experimental Details

- unpolarized electron beam at ~100 μ A (raster size = 2x2 mm²)
- cryogenic ${}^{40}_{18}$ Ar (E_{deposited} = 160 W) gas target at P = 10 atm
 - thickness = 10 mil
 - cell diameter = 6.28 cm
 - low background : thin AI window ($E_{deposited} = 30 \text{ W}$)
 - constant density : rapid and uniform flow at 216 g/s with P = 10 atm and T = 130K
 - long length (15 cm) to avoid data with z_{tgt} resolution
 - average density loss ~ 3.9 %
- HRS acceptance requires

 $\delta p/p=3.5\%$, $\delta\phi=20\,mr$, $\,\delta\theta=40\,mr$

Experimental Details

- Calibration requires:
 - detector configuration PMT gain factor update
 - HRS pointing optics matrix update (studies of momentum and scattering angles at the target included)
 - target/HRS/detector acceptance update
- Selections include:
 - beam trip
 - end-cap background removal
 - final state particle identification (PID)

Summary

- ★ Statistical uncertainties are estimated at 3% ~ systematics error
- ★ Breakdown of systematics uncertainties

Quantity	description	δ (%)
$\eta_{ m DAQ}$	data acquisition deadtime correction	1.0
ho t'	effective target thickness	1.5
N_e	number of incident electrons	1.0
ϵ_{e}	electron detection efficiency	1.0
$\Delta\Omega_e$	HRS_e solid angle	2.0
$\epsilon_e \cdot \epsilon_p \cdot \epsilon_{\mathrm{coin}}$	product of efficiencies	1.5
Normalization error		3.4
$R_{16}O(e,e'p)$	radiative correction to the ${}^{16}O(e, e'p)$ data	2.0
$\epsilon_p \cdot \epsilon_{ ext{coin}}$	product of efficiencies	<1.0
$\Delta\Omega_p$	HRS_h solid angle	2.0
Systematic error		3.0

Conclusion

- Spectral function formalism allows for a clear cut description of both the reaction mechanisms and the dynamics of the nuclear target;
- The usage of realistic spectral function will play a critical role to reduce the systematics of neutrino interactions in high-precision oscillation (appearance and disappearance) analysis.

"Thank you for your attention."

– any comments?

