

E12–14–009: Ratio of the electric form factor in the mirror nuclei ${}^{3}\text{He}$ and ${}^{3}\text{H}$

(The ³He - ³H Charge Radius Difference)

Luke Myers Hall A Winter Meeting

December 9, 2014

Measuring $\langle r^2 \rangle$

• Absolute methods

Elastic electron scattering

$$\langle r^2 \rangle = 6 \ \frac{dG_E}{dQ^2}|_{Q^2 \to 0}$$

Measuring $\langle r^2 \rangle$

Absolute methods

Elastic electron scattering

$$\langle r^2 \rangle = 6 \ \frac{dG_E}{dQ^2}|_{Q^2 \to 0}$$

Electronic spectroscopy

2S-2P transition

Muonic spectroscopy

 $e \rightarrow \mu \Rightarrow$ greater precision

Measuring $\langle r^2 \rangle$

Absolute methods

Elastic electron scattering

$$\langle r^2 \rangle = 6 \ \frac{dG_E}{dQ^2}|_{Q^2 \to 0}$$

Electronic spectroscopy

2S-2P transition

Muonic spectroscopy

 $e \rightarrow \mu \Rightarrow$ greater precision

Relative method

Isotopic shifts

PROTON RADIUS PUZZLE

Proton radius extracted from all three methods

ep:	0.879	± 0.009	fm
eH:	0.876	± 0.008	fm
μ H:	0.84087	± 0.00039	fm

What is going on here?!

PROTON RADIUS PUZZLE

Proton radius extracted from all three methods

ep:	0.879	± 0.009	fm
eH:	0.876	± 0.008	fm
μ H:	0.84087	± 0.00039	fm

What is going on here?!

Just for laughs...

Deuterium radius

eD:	2.130	± 0.010	fm
μH + Iso. Shift:	2.12771	$\pm \ 0.00022$	fm
μD (prelim):	2.128		fm

Experimentally, large uncertainties & discrepancies arXiv:1412.2603 – new radii and moments of 3,4 He Lightest isotope with excess neutrons (skin?)

$$\begin{array}{c|c} & \langle r^2 \rangle_{3_{\text{H}}} & \langle r^2 \rangle_{3_{\text{He}}} \\ \hline \text{SACLAY 1.76(9)} & 1.96(3) \\ \hline \text{BATES 1.68(3)} & 1.87(3) \\ \end{array}$$

Experimentally, large uncertainties & discrepancies arXiv:1412.2603 – new radii and moments of 3,4 He Lightest isotope with excess neutrons (skin?)

"Because the ³H (tritium) charge radius currently has large errors, in my opinion the single most valuable measurement to be undertaken for nuclear physics purposes would be the tritium-hydrogen (³H-¹H) isotope shift"

J.L. Friar Precision Physics of Simple Atomic Systems (2003)

One-time procurement of ³H target at JLab

One-time procurement of ³H target at JLab Precise theoretical calculations of $\langle r^2 \rangle_{^{3}\text{He}}$

One-time procurement of ³H target at JLab Precise theoretical calculations of $\langle r^2 \rangle_{^{3}\text{H}}$, $\langle r^2 \rangle_{^{3}\text{He}}$ ³H:³He connects the hydrogen, helium chains

EXPERIMENTAL SETUP

- \blacksquare Setup ~same as MARATHON and SRC
- Targets: ³H, ³He as well as ¹H, ²H, empty cell and ¹²C
- Beam: 1.1 GeV, 5 μ A for 1.5 days
- Special collimator plate

Collimator Plate

KINEMATICS WITH LHRS

$\theta_{ m HRS}$	$p_{ m HRS}$	Q^2	³ H Rate	³ He Rate
[deg]	$[{\rm GeV/c}]$	$[GeV^2]$	[Hz/bin]	[Hz/bin]
12.5	1.07	0.049 – 0.065	210	510
15.0	1.07	0.072 – 0.091	60	125

• Only **one** momentum setting

- Works for $^3\mathrm{H},\,^3\mathrm{He}$ as well as $^1\mathrm{H},\,^2\mathrm{H},\,^{12}\mathrm{C}$
- $^{1}\mathrm{H},$ $^{12}\mathrm{C}$ data for systematics cross check
- Count rates are HUGE!
 - $I_{\rm beam}\sim 5\mu A$
 - Even with losses, 10^5 counts/bin/hr

Non-target Scattering

- 1) Scattering from windows
 - Dedicated, empty target runs
 - Vertex cuts
- 2) 1.1 GeV beam halo
 - Heating and scattering concerns
 - If needed, reduce raster size
- 3) Rescattering from target walls
 - Simulations: small absolute effect, cancellation
- 4) Rescattering from collimator plate
 - Software cuts, $^{12}\mathrm{C}$ comparison

Error Budget

Statistics	0.4%
Charge	$<\!0.5\%$
Relative target thickness	1.5– $2%$
Deadtime, efficiency, etc	${<}0.5\%$
G_M subtraction	0.4%
Radiative corrections	0.5%
Coulomb correction, TPE	0.4%
Total	1.8– $2.2%$

EXPECTED RESULTS

EXPECTED RESULTS

THE WRAP-UP

• 1.5 day experiment

Single-arm, two angles, single p setting $^{1}\mathrm{H},~^{2}\mathrm{H},~^{3}\mathrm{H},~^{3}\mathrm{He},$ and $^{12}\mathrm{C}$

- 2% measurement of $G_{\rm E}({}^{3}{\rm H}):G_{\rm E}({}^{3}{\rm He})$ $\langle r^{2} \rangle_{{}^{3}{\rm He}} - \langle r^{2} \rangle_{{}^{3}{\rm H}} \approx (0.20 \pm 0.03) \text{ fm}$ Reduction in uncertainty by $\sim 3 \text{x}$
- "[T]his proposal offers an opportunity to perform an interesting measurement, which will provide valuable input to theoretical calculations, and will enable their further progress." – JLab Theory Advisory Committee
- Best chance to measure the ${}^{3}\mathrm{H}$ radius

Thank you!

BEAMTIME ALLOTMENT

Description	Time
Accelerator scaling to 1.1 GeV	4 hr
BCM calibration and luminosity scans	2 hr
Optics and acceptance studies with collimator	4 hr
Production running at 12.5° (1.5 hrs/target)	$9~{ m hr}$
Target changes at 12.5°	1 hr
Move spectrometer from 12.5° to 15.0°	2 hr
Optics and acceptance studies with collimator	4 hr
Production running at 15.0° (1.5 hrs/target)	$9~{ m hr}$
Target changes at 15.0°	1 hr
Total Beam Time Request	1.5 PAC Days

TARGET CONTRIBUTION

1) Scattering from windows

- Dedicated, empty target runs
- Vertex cuts at ± 10 cm

