

Yulia Furletova (JLAB)

Outline

- Introduction
- Why CLFV?
- CLFV in BSM physics
- CLFV at Hall-C CEBAF
- Conclusions

- 2

Introduction

Symmetry

The Standard Model

- .What is a fundamental symmetry?
- What are conserved quantities in the fundamental interactions?
- .SM contains no explanation for the symmetry between quark and lepton sectors:
 - -mass hierarchy
 - -the number of generations.
- -Flavor is not a conserved quantity in fundamental interactions: Flavor mixing

"Physics page", FB

Flavors in quark sectors

g

gluon

photon

Z boson

W boson

91.2 GeV/c2

80.4 GeV/c2

charm

strange

muon

muon

neutrino

≈4.18 GeV/c2

bottom

tau neutrino

1.777 GeV/c2

≈4.8 MeV/c²

0.511 MeV/c2

<2.2 eV/c2

LEPTONS

electron

≈126 GeV/c²

Higgs boson

The flavor changing neutral currents (FCNCs) are forbidden in the standard model (SM) at tree level (require a loop process involving a virtual W exchange).

- Family number is not a symmetry in SM: quark family number is violated in weak decays in the CKM matrix
- Flavor mixing in the standard model quark sector is well established, through processes like $K^0-\overline{K}^0$ oscillations, $B_{\rm d}-\overline{B}_{\rm d}$ mixing etc.

$$J_{\mu}^{cc} = (\bar{u}, \bar{c}, \bar{t})_L \gamma_{\mu} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_L$$

What about lepton sector?

Yulia Furletova

Lepton Flavor

In the lepton sector: $\begin{pmatrix} \nu_e \\ e \end{pmatrix}$ $\begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix}$ $\begin{pmatrix} \nu_\tau \\ \tau \end{pmatrix}$

- A Lepton Flavor Violation (LFV) is a transition between e, μ, τ sectors that doesn't conserve lepton family number
- Evidence of LFV: neutrinos oscillate
 Neutrinos have a (small) mass and mix.
- Many experiments (MINOS, K2K, Super-K, etc) at particle accelerators independently observed muon neutrino disappearance over several hundred km long baselines. OPERA observed a presence of tau in muon neutrino beam.... T2K, NOvA...

Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS)

$$egin{bmatrix}
u_e \\
u_{\mu} \\
u_{ au} \end{bmatrix} = egin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{ au 1} & U_{ au 2} & U_{ au 3} \end{bmatrix} egin{bmatrix}
u_1 \\
u_2 \\
u_3 \end{bmatrix}.$$

What about charged leptons?

6

Charged LFV

In the charged lepton sector Lepton Flavor Violation is heavy suppressed in the Standard Model

$$l_{\alpha} \rightarrow l_{\beta}$$
 < 10⁻⁵⁴

Example of lepton flavor conservation is a muon decay $\mu^{-}\!\!\to {\rm e}^{-}\overline{\nu}_e\nu_{\mu}$

Example of CLFV: neutrinoless muon decay $\mu^- \rightarrow e^- \gamma$

Opportunity for New Physics !!!

Various BSM models that predict CLFV

Supersymmetry

Compositeness

Heavy neutrino

Higgs/top loops

Leptoquarks

Heavy Z',
Anomalous boson
Coupling

Leptoquarks

- Leptoquark is a color triplet boson (appear in many SM extensions)
- Symmetry between electron and quark sectors.
- ·Flavor is not conserved, but
- •Fermion number F= 3B+L (F= 0, F= 2) is to be conserved
- LQs model are explored in Buchmüller-Rückl-Wyler (BRW) framework under
- SU(3)xSU(2)xU(1):
- 14 different LQ types (7 scalars, 7 vectors).
- LQ couple to both leptons and quarks and carry SU(3) color, fractional electric charge, baryon (B) and lepton (L) number

Yulia Furletova

Leptoquarks at ep/eA experiments

Туре	J	F	Q	ep dominant process			Coupling	Branching ratio β_{ℓ}	Туре	J	F	Q	ep dor	ninant	process	Coupling	Branching ratio β_{ℓ}
S_0^L	0	2	-1/3	$e_L^- u_L$	\rightarrow $\left\{$	$\ell^- u u$ $ u_\ell d$	$\lambda_L - \lambda_L$	$\frac{1/2}{1/2}$	V_0^L	1	0	+2/3	$e_R^+ d_L$	\rightarrow $\left\{$	$\ell^+ d \ ar{ u}_\ell u$	$\lambda_L \ \lambda_L$	$\frac{1/2}{1/2}$
S_0^R	0	2	-1/3	$e_R^-u_R$		$\frac{\nu_{\ell}u}{\ell^{-}u}$	λ_R	1	V_0^R	1	0	+2/3	$e_L^+ d_R$	\rightarrow	$\frac{\nu_{\ell} a}{\ell^+ d}$	λ_{L} λ_{R}	1
$ ilde{S}_0^R$	0	2	-4/3	$e_R^- d_R$	\rightarrow	ℓ^-d	λ_R	1	$ ilde{V}_0^R$	1	0	+5/3	$e_L^+u_R$	\rightarrow	ℓ^+u	λ_R	1
S_1^L	0	2	-1/3	$e_L^- u_L$	\rightarrow $\left\{$	$\ell^- u$	$-\lambda_L$	1/2	V_1^L	1	0	+2/3	$e_R^+ d_L \rightarrow \left\{ ight.$	$\ell^+ d$	$-\lambda_L$	1/2	
						$ u_\ell d$	$-\lambda_L$	1/2						→ {	$\bar{\nu}_\ell u$	λ_L	1/2
			-4/3	$e_L^- d_L$	\rightarrow	ℓ^-d	$-\sqrt{2}\lambda_L$	1				+5/3	$e_R^+ u_L$	\rightarrow	$\ell^+ u$	$\sqrt{2}\lambda_L$	1
$V_{1/2}^L$	1	2	-4/3	$e_L^- d_R$	\rightarrow	$\ell^- d$	λ_L	1	$S_{1/2}^L$	0	0	+5/3	$e_R^+u_R$	\rightarrow	$\ell^+ u$	λ_L	1
$V_{1/2}^R$	1	2	-1/3	$e_R^- u_L \rightarrow \ell^-$	$\ell^- u$	λ_R	1	cR	0	0	+2/3	$e_L^+ d_L$	\rightarrow	$\ell^+ d$	$-\lambda_R$	1	
			-4/3	$e_R^- d_L$	\rightarrow	$\ell^- d$	λ_R	1	$S_{1/2}^R$	U	U	+5/3	$e_L^+ u_L$	\rightarrow	$\ell^+ u$	λ_R	1
$ ilde{V}_{1/2}^L$	1	2	-1/3	$e_L^-u_R$	\rightarrow	$\ell^- u$	λ_L	1	$ ilde{S}_{1/2}^L$	0	0	+2/3	$e_R^+ d_R$	\rightarrow	$\ell^+ d$	λ_L	1

- Electron and positron beams probe
- different types of Leptoquarks
 -electron-proton collisions, mainly F=2 LQs are produced -positron-proton collisions, mainly F=0 LQs are produced
- u vs d targets
- Polarization

1 generation

2 generation

3 generation

eq -> LQ -> eqX eq -> LQ ->
$$v_eqX$$

eq -> LQ ->
$$\mu qX$$
 eq -> LQ -> $\nu_{\mu} qX$

eq -> LQ ->
$$v_{\mu}qX$$

eq -> LQ -> τqX
eq -> LQ -> $v_{\tau}qX$

LFC

10

Leptoquark limits at ep, ee and pp colliders

.LEP (ee):contact interactions (indirect constrains from e⁺e⁻-> qq)

.LHC/TEVATRON (pp): pair
production (\(\lambda \) independent)

·HERA/EIC (ep): single LQ production M < J s, contact interaction M > J s

For leptoquark Yukawa coupling λ = 0.1, the ZEUS bounds on the first-generation leptoquarks range from 248 to 290 GeV

HERA: L~ 10^{30-31} cm $^{-2}$ s $^{-1}$ (0.5 fb $^{-1}$) EIC: L~ 10^{34} cm $^{-2}$ s $^{-1}$ (>50 fb $^{-1}$)

CLFV at EIC (e-> μ ,e-> τ)

 \bullet Cross-section for $\ ep \to \tau X$ takes the form:

$$\sigma_{F=0} = \sum_{\alpha,\beta} \frac{s}{32\pi} \left[\frac{\lambda_{1\alpha}\lambda_{3\beta}}{M_{LQ}^2} \right]^2 \left\{ \int dxdy \ x\overline{q}_{\alpha} \left(x,xs \right) f \left(y \right) + \int dxdy \ xq_{\beta} \left(x,-u \right) g \left(y \right) \right\}$$

$$f \left(y \right) = \begin{cases} \frac{1/2}{2(1-y)^2} \text{ (scalar)} \\ \frac{1}{2}(1-y)^2 \text{ (vector)} \end{cases}, \quad g \left(y \right) = \begin{cases} \frac{(1-y)^2/2}{2} \text{ (vector)} \end{cases}$$

CLFV (e-> μ)

- A CLFV signature via Leptoquark or Parity Violating SUSY is similar to DIS but with muon instead of electron in the final state.
- Searches at HERA and LHC

Strongest present limits on μ ->e, τ ->e, τ -> μ

Many searches for a physics Beyond the Standard Model, example

$$\mu^- \rightarrow e^- \gamma$$

Current limit (MEG): Br < 4.2 ·10-13

LFV transitions	LFV Present Bounds $(90\%CL)$	Future Sensitivities
$BR(\mu \to e\gamma)$	$4.2 \times 10^{-13} \; (MEG \; 2016)$	$4 \times 10^{-14} \text{ (MEG-II)}$
$BR(\tau \to e\gamma)$	$3.3 \times 10^{-8} \text{ (BABAR 2010)}$	10^{-9} (BELLE-II)
$BR(\tau \to \mu \gamma)$	$4.4 \times 10^{-8} \text{ (BABAR 2010)}$	10^{-9} (BELLE-II)
$BR(\mu \to eee)$	$1.0 \times 10^{-12} \text{ (SINDRUM 1988)}$	$10^{-16} \text{ Mu3E (PSI)}$
$BR(\tau \to eee)$	$2.7 \times 10^{-8} \text{ (BELLE 2010)}$	$10^{-9,-10}$ (BELLE-II)
$BR(\tau \to \mu\mu\mu)$	$2.1 \times 10^{-8} \text{ (BELLE 2010)}$	$10^{-9,-10} \text{ (BELLE-II)}$
$BR(\tau \to \mu \eta)$	$2.3 \times 10^{-8} \text{ (BELLE 2010)}$	$10^{-9,-10}$ (BELLE-II)
$CR(\mu - e, Au)$	$7.0 \times 10^{-13} \text{ (SINDRUM II 2006)}$	
$CR(\mu - e, Ti)$	$4.3 \times 10^{-12} \text{ (SINDRUM II 2004)}$	$10^{-18} \text{ PRISM (J-PARC)}$
$CR(\mu - e, Al)$		3.1×10^{-15} COMET-I (J-PARC)

Yulia Furletova 14

Complementary search (e-> μ) using a high luminosity environments at JLAB CEBAF:

$$e+N -> \mu+N$$

CLFV search $e\rightarrow\mu$

T.Blazek, S.F.King "Electron to Muon Conversion in Electron-Nucleus Scattering as a Probe of Supersymmetry", arXiv:hep-ph/0408157

Estimated limit from
$$\mu^- \rightarrow e^- \gamma$$
 $\sigma(e+N \rightarrow \mu+N) \leq 10^{-8} fb$.

Conclusion: "We strongly urge our experimental colleagues to consider performing such an experiment".

Yulia Furletova 16

Hall-C

Proposal:

- A muon chamber after calorimeter and absorber ("e"-arm)
- Require a muon track to match a track in the inner/outer tracker.
- Require a "MIP" in the calorimeter
- Shielding to reduce a background

Conclusions

Quark mixing: observed

Neutrino mixing: observed.

Charged lepton mixing:
not yet observed.
Let's find it!

Backup