Scattered Electron Detection in HPS Experiment  $e + Z \rightarrow e' + Z' + A'$ 

M. Osipenko<sup>1</sup>, M. Battaglieri<sup>1</sup>, M. Carpinelli<sup>2,3</sup>, A. Celentano<sup>4</sup>, R. De Vita<sup>1</sup>, M. Holtrop<sup>5</sup>, N. Randazzo<sup>6</sup>, M. Ripani<sup>1</sup>, M. Taiuti<sup>4</sup>, S. Stepanian<sup>7</sup> et al.

<sup>1</sup>INFN Genova, <sup>2</sup>INFN Cagliari, <sup>3</sup>Universitá degli Studi di Sassari, <sup>4</sup>Università di Genova, <sup>5</sup>University of New Hampshire, <sup>6</sup>INFN Catania, <sup>7</sup>Jefferson Lab

HPS Meeting

## Reaction of Interest

$$e(p) + Z(P_i) \rightarrow e'(p') + Z'(P_f) + A(k)$$
  

$$t = P_i - P_f$$
  

$$A(k) \rightarrow e^+(l_+) + e^-(l_-)$$

Approximations:

- Coherent: X = Z'
- Diffractive:  $t^0 \simeq 0$  and  $|\vec{t}| \simeq \frac{E_0}{E'} E_A (1 \cos\theta_A)$
- Weizsacker-Williams<sup>1</sup>:

$$\begin{aligned} \sigma_{e+Z \to e'+Z'+A} &\simeq \\ \Gamma_{\gamma^*}(t) \times \sigma_{e+\gamma_r \to e'+A} \end{aligned}$$



<sup>1</sup>J.D. Bjorken, R. Essig, P. Schuster, N. Toro, Phys. Rev. **D80**, 075018 (2009).

# Detector Simulations with GEMC

- MadGraph event generators for A' production and background<sup>1</sup>
- Geant4 based detector simulation and reconstruction package<sup>2</sup>
- Events generated ( $E_0 = 1.1, 2.2, 6.6$ GeV):  $E_{+ \wedge (- \vee e')} > 0.05, 0.2, 0.6$  GeV,  $E_{+} + E_{(- \vee e')} > 0.1, 0.4, 1.2$  GeV and  $\theta_{\vee}^{+ \wedge (- \vee e')} > 0.01$  rad.
- Events satisfying Trigger conditions<sup>3</sup> were analyzed.



<sup>1</sup> courtesy of Mathew Graham, SLAC National Accelerator Laboratory <sup>2</sup> courtesy of Maurik Holtrop, University of New Hampshire and Maurizio Ungaro, JLab

<sup>3</sup>see backup slides

## Scattered Electron Kinematics

- Scattered electron goes at 0° and carries < 200 MeV.</li>
- Signal/background ratio is maximized: at > 20° and < 50 MeV.</li>
- Detection at  $Z_{det.} \sim \sqrt{X_{det.} (666 cm \frac{P_{e'}/1GeV}{B/1T} X_{det.})}$ e.g. for  $X_{det.} = 20$  cm,  $Z_{det.} < 70$  cm.



M. Osipenko

HPS Meeting

## **Detector Prototype**

- No space for  $> 10X_0$  scintillator crystals,
- cost of such calorimeter would be of the order of M\$,
- magnetic spectrometer may be feasible.
- Flux detector at magnet wall on electron side.



#### **Detector** Acceptance I

- acceptance of Flux detector 0.37,
- acceptance of STR (two layers) 0.19,
- acceptance of STR (one layer) + Flux detector 0.24,



## **Detector Acceptance II**

- acceptance of Flux detector 0.45,
- acceptance of STR (two layers) 0.19,
- acceptance of STR (one layer) + Flux detector 0.26,



## Detector Acceptance III

- acceptance of Flux detector 0.48,
- acceptance of STR (two layers) 0.15,
- acceptance of STR (one layer) + Flux detector 0.28,



## Detector Acceptance IV

- most of events lie in the region  $10 < Z_{det.} < 50$  cm and  $-6 < Y_{det.} < 6$  cm,
- acceptance of STR alone (two layers) is about 1/6,
- acceptance of Flux detector alone is about 1/2,
- acceptance of STR (one layer) + Flux detector is only 50% better than STR alone.



## Detector Acceptance V

- added  $5 \times 5 \times 1$  cm<sup>3</sup> LYSO scintillator nearby the target (electron side),
- recovered another 1/6 of acceptance for total of 50-60%,
- but the energy of scattered electron is too large to be contained.



## More Realistic Detector Geometry

- Fill gaps between STR layers
- four modules of size similar to STR ones,
- assuming two point reconstruction, one STR layer + one Realistic detector layer, at 2.2 GeV and  $m_A = 100$  MeV the acceptance is 1/2 of Flux detector acceptance,
- this value is marginally better than only STR (two layers) acceptance.



▲ □ ▶ ▲ □ ▶ ▲

## Identification of Coherent Process

- Contribution of incoherent production at large Q<sup>2</sup> is important<sup>1</sup>,
- 6.6 GeV data lies at Q<sup>2</sup> values where incoherent production can reach 50%.



<sup>1</sup>J.D. Bjorken, R. Essig, P. Schuster, N. Toro, Phys. Rev. **D80**, 075018 (2009).

M. Osipenko HPS Meeting

## $e^+e^-$ mass resolution I

 detector resolution on e<sup>+</sup>e<sup>-</sup> mass can be approximated:

$$\delta m_{A'}^2 \simeq m_{A'}^2 \sqrt{2 \left(rac{\delta \mathcal{P}}{\mathcal{P}}
ight)^2 + 2(\delta \theta)^2}$$

 angular resolution gives order of magnitude smaller contribution<sup>1</sup>

| E <sub>0</sub> | В    | $\delta p/p$ | $\delta 	heta, \phi$ | $\delta m_{A'}^2/m_{A'}^2$ |
|----------------|------|--------------|----------------------|----------------------------|
| [GeV]          | (T)  | (%)          | (mrad)               | (%)                        |
| 1.1            | 0.25 | 7.7          | 2.7                  | 11.6                       |
| 2.2            | 0.5  | 4.4          | 1.4                  | 6.9÷9.9                    |
| 6.6            | 1.5  | 2.5          | 0.8                  | 3.8÷4.8                    |

## $e^+e^-$ mass resolution II

 substitute inaccurately measured lepton momenta with scattered electron energy:

$$m_{l^+l^-}^2 \simeq \frac{(E_0 - E')^2}{2} (1 - \cos^2 \theta_{CM}) (1 - \cos \theta_{\pm})$$

where only decay angle depends on them:

$$\cos\theta_{CM} = \frac{E_+ - E_-}{E_+ + E_-}$$

• this reduces dependence on  $E_+$  and  $E_-$  energy resolution:

$$\delta m_{A'}^2 \simeq m_{A'}^2 \frac{2}{\frac{E_0}{E'} - 1} \frac{\delta E'}{E'}$$

#### $e^+e^-$ mass resolution III

- Scattered electron spectrometer resolution  $\delta p/p = 2.5\%$  was assumed.
- Factor of 2 improvement in the mass reconstruction.



<ロ> (日) (日) (日) (日) (日)

## $e^+e^-$ mass resolution IV

• No improvement when A' mass is negligible with respect to beam energy.



## Summary

#### Development of scattered electron detector:

- does not improve physical background rejection. The scattered electron energy can be reconstructed from A' decay lepton pair;
- does not allow to extend detector acceptance because the reconstruction of A' mass from only scattered electron or from scattered electron and positron is problematic;
- allows for separation of the incoherent A' production channel.
   For low beam energies this contribution is negligible;
- allows to improve A' mass resolution by a factor of 2, except for 6.6 GeV and small masses.
- Acceptance of proposed FLUX detector (fully instrumented electron side magnet wall) ranges from 30 to 50%. However, the combined acceptance of STR and FLUX detectors drops by a factor of 2 and becomes comparable with acceptance of STR detector alone (assuming 2 double layer reconstruction).

#### **Backup Slides**

M. Osipenko HPS Meeting

<ロ> <同> <同> < 同> < 同> - < 同> - < 同> - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - <

-2

## Trigger Conditions

The HPS trigger conditions were imposed to the simulated events. These conditions are listed below:

- threshold on single crystal: 30 MeV,
- 2 number of crystals in cluster >=1,
- cluster lower energy threshold: 200 MeV (1.1 GeV), 400 MeV (2.2 GeV), 1200 MeV (6.6 GeV),
- **(a)** cluster upper energy threshold: 0.9  $E_0$ ,
- sum of clusters lower energy threshold: 500 MeV (1.1 GeV), 1000 MeV (2.2 GeV), 3000 MeV (6.6 GeV),
- Sum of clusters upper energy threshold:  $E_0$ ,
- maximum difference of clusters energies: 1500 MeV,
- Maximum deviation of the polar angle between two clusters from 180 deg.: 35 deg.

## Acceptance

Table: Acceptances for the scattered electron detection in A' production with respect to the calorimeter trigger acceptance/efficiency:  $A_{STR}$  - for STR detector (at least 2 double layers),  $A_{Flux}$  - for Flux detector (impact point with 0 < Z < 90 cm and -10 < Y < 10 cm),  $A_{STR+Flux}$  - for STR and Flux detectors (at least 1 STR double layer and Flux impact point with 0 < Z < 90 cm and -10 < Y < 10 cm).

| [GeV]         (MeV)         -         -           1.1         100         0.19         0.37         0.24           2.2         100         0.19         0.45         0.26           2.2         500         0.11         0.21         0.07           6.6         100         0.48         0.31         0.14           6.6         500         0.15         0.48         0.28 | E <sub>0</sub> | $m_{A'}$ | $A_{STR}$ | A <sub>Flux</sub> | A <sub>STR+Flux</sub> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|-----------|-------------------|-----------------------|
| 1.11000.190.370.242.21000.190.450.262.25000.110.210.076.61000.480.310.146.65000.150.480.28                                                                                                                                                                                                                                                                                   | [GeV]          | (MeV)    |           |                   |                       |
| 2.2         100         0.19         0.45         0.26           2.2         500         0.11         0.21         0.07           6.6         100         0.48         0.31         0.14           6.6         500         0.15         0.48         0.28                                                                                                                    | 1.1            | 100      | 0.19      | 0.37              | 0.24                  |
| 2.2         500         0.11         0.21         0.07           6.6         100         0.48         0.31         0.14           6.6         500         0.15         0.48         0.28                                                                                                                                                                                     | 2.2            | 100      | 0.19      | 0.45              | 0.26                  |
| 6.6         100         0.48         0.31         0.14           6.6         500         0.15         0.48         0.28                                                                                                                                                                                                                                                      | 2.2            | 500      | 0.11      | 0.21              | 0.07                  |
| 6.6 500 0.15 0.48 0.28                                                                                                                                                                                                                                                                                                                                                       | 6.6            | 100      | 0.48      | 0.31              | 0.14                  |
|                                                                                                                                                                                                                                                                                                                                                                              | 6.6            | 500      | 0.15      | 0.48              | 0.28                  |