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Overview—motivation 

• A detailed understanding of dark matter is a major 
part of any complete description of the world 

• Many experiments hint at the existence of dark 
matter, but no specific dark matter candidates are 
know

– Possibilities include WIMPs and axions

– And, more recently, a new “dark sector” 

• That couples to Standard Model particles via a 
heavy photon A’
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The “Dark Forces” concept

15 March 2013R. Cowan — DarkLight Experimental Concept — MIT4

arXiv:0810.0713 [hep-ph], and others…
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Physics

Goal: Explore e+-e- invariant mass spectrum using
the process e- + p → e- + p + e- + e+  
High Intensity, Low Energy Electron Beam
Using JLab’s FEL on Thick Hydrogen Gas Target

==> Luminosity: 1 ab-1/month
      

A Search for new light bosons using the Jefferson Lab FEL facility.

“Dark Force Detection in Low Energy e-p Collisions”
[Freytsis, Ovanesyan, Thalar: arXiv:0909.2862 (JHEP 1001;111)]

 

  

′ α ≡ ε 2α , (α = e2 /4π )

A'

e- e-

p

e+

e-
A'

e-

e-

p

e+

e-

5



Physics Processes
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The experiment is basically a measurement of the QED background with 0.1ppm 
precision. The detection of all 4 final states is essential.

    

Signal: 
epγ /epA’, ep/epA’ (“invisible”)

Backgrounds: 
ep/ep, ep/epγ, ep/epγγ, epγ /epγ

For α' ~ 10-8 the expected signal is 10-4 of the irreducible QED background: 
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Complementarity

● Reach is 
complementary to other 
planned experiments 

• Such as APEX and the 
Heavy Photon Search 
(HPS) at JLab CEBAF 
machine
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DarkLight Components

DarkLight has 4 primary components:

● Target – Differentially pumped hydrogen gas target 1019 atoms /cm2, 
10 cm long. 

● Silicon proton detector - ~3.5 cm from beam, single layer of silicon 
micro-strip detector. Measure energy and angle of recoil proton.

● Lepton tracker – 10-25 cm radius cylindrical projection chamber.
● Magnet – Solenoid provides 0.5 T B-field to focus Moller e- and 

measure lepton momentum and direction. 
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DarkLight @ FEL

Possible 
DarkLight 
Location

● Energy recovery linac (ERL)
   - 100 MeV e- beam at 10mA
   - 1 MW power 
● IR & UV Beamlines
● DarkLight to be located on UV line.  
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Jlab PAC Proposals

1.  PAC 37: DarkLight Collaboration, PAC 37, November 30, 2010.

Early concept: electron beam scattering off H
2
 in a windowless chamber.

2.  PAC 39: DarkLight Collaboration, PAC 39, May 4, 2012.

• Can DarkLight identify and shield against ambient FEL Vault 
background radiation.?

• Can the FEL beam be threaded through the proposed H
2
 target?

• Can beam halo be managed?

• Are there any RF heating/effects on the target entrance/exit?
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DarkLight Beam-Test

Possible 
DarkLight 
Location

Beam/Target 
Tests

 

6 mm

4 mm

2 mm
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DarkLight Beam-Test

 

6 mm

4 mm

2 mm
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Cubee- beam



Beam-Test Results

A test e- beam 100 MeV, 4.5 mA (450 kW power) was successfully 
transmitted through a 2 mm hole, 12.7 cm long, with max loss of 3 ppm for 
7 hours. This showed that 

● e- beam bunch CAN be threaded through a 12.7 cm long, 2 mm hole.
● Halo CAN be minimized.
● The FEL has the stability required for a successful DarkLight experiment.
● Radiation in the vault is manageable. arXiv 1305.0199,1305.7215, 1305.7493 
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(Possible) Time-line

       
             Year

Focus
2012 2013 2014 2015 2016

FEL beam &
Radiation limits

Finalize Design 
Secure funding

Technical Review 
Start Construction

Detector 
Commissioning

DarkLight data 
taking begins



Summary

• The DarkLight experiment is

– A compact magnetic spectrometer

– Designed for detecting A’ decays to lepton pairs

– For A’ masses in the range 10–90 MeV/c2

• DarkLight’s reach is complementary to that of other planned heavy photon 
searches

• Finishing review by JLab management.

– Will then seek funding and move to technical design and review

• Hoping for commissioning run in 2015, and data-taking runs in 2016
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Experimental details at a glance (1)
• Luminosity 6 x 1035 cm-2 sec-1

– FEL beam produces 6 x 1016 electrons/sec

– At 100 MeV onto 1019/cm2 target

– 10 mA beam current

• FEL beam traverses both field and target

• Gas jet target provides point-like electron-proton interaction

• Target and tracker components in 0.5 T solenoidal magnetic field

– Recoil proton detector

– Silicon strips in forward direction

– Lepton tracker

– Trigger scintillator

• Coincident detection of scattered electron and recoil proton along with the dilepton 
final state
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Experimental details at a glance (2)
• Performance goals

– 1 MeV mass resolution

– Tracking of e+/e− with K.E. > 5 MeV

– Tracking of protons with K.E. > 0.5 MeV

• Typical signal and background rates

– QED bkg (σ ~ 104 pb):  6 kHZ

– For mA’ = 50 MeV/c2 (σ ¼ 10−2 pb):  5200 counts/day 

• Issues 

– Huge QED rate

– Pileup

– Beam halo/heating

– Survivability in 1 MW beam

– Multiple scattering, etc, at low momenta (10’s of MeV/c)



Possible 
DarkLight 
LocationBeam/Target 

Tests

JLab FEL

• Use the 1 MW, 100 MeV e− beam at the 
JLab FEL

• Energy-recovery linac
– SRF technology
– High-power optics
– Proven reliability over many years
– Recovers about 75% of electron 

beam energy
• Originally built to provide IR & UV light
• Beam heating/halo/rad bkg tests last July

• Some upgrades needed for DarkLight
– Lower emittance (smaller 

charge/bunch)
– Higher rep rate: 75 MHz  750 MHz
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Beam tests
• Goals

– Show that the high-power FEL beam could pass 
through a 2 mm dia. Aperture 10 cm long 
without excessive heating or beam losses 

– To characterize photon and neutron 
backgrounds

– Verify that trackers can operate in the 
beam/vault environment

• Setup

– Movable aluminum block in a test cube

– Temperature, OTR, YAG crystal monitors on 
cube

– NAI/PMT and other rad counters located 
downstream and in vault
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Kinematic Considerations
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• Need high-efficiency detection of 
the 4-body final state

– On top of a large QED 
background rate

• Magnetic field large enough to

– Sweep Mollers downstream 
w/o entering sensitive regions

– Provide for momentum 
analysis

• Detect final state proton

– K.E. ≈ 1 –5 MeV

• Elastically scattering rates peak

– Forward direction for electron

– Near 90° for proton 

– In signal events w/ e+e− pair, 
recoil protons are at < 60°

• Limiting lepton tracking to > 25°

– Reduces elastic rate



Target Region
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• Windowless gas target
– Defined as volume inside 

beampipe
– 1019 atoms/cm2 in 10 cm long 

target region (12 torr)
– Between two restrictive gas flow 

apertures
– 2 mm dia., 10 cm long inlet/outlet 

apertures
– And 20 mm dia, 1 m long “exhaust 

pipe”
– Downstream of W collimator

• W collimator design
– To absorb beam halo
– Recessed to absorb backscattered 

halo electrons
– Limit Rutherford-scattered 

electrons entering the gas volume
• Differential pumping, 3–4 stages

– FEL vacuum 10-8 torr
– Pumping rate 15 torr-liter/sec

● Beampipe 
– Beryllium in 25°–165° angular 

lepton acceptance region
• Moller dump 

– Graphite to reduce  showering
– Shielded with lead on upstream 

side to reduce backscatter into 
tracker

• Challenges
– Control power deposition 

• beam core, halo, resistive 
wall heating



Silicon detectors
• Purpose

– Tag the recoil proton
• Location and energy 

– Linear response, ≈ 30% K.E. 
resolution

– Hit locations of final state leptons
• Two detectors

– Central (SCD) and forward (SFD)
– Inside the beam vacuum

• Similar to HERMES

• Design uses conventional single-sided, 
rad hard silicon strips

– <1% radiation length
– Low outgas rate

• Angular coverage
– SCD 17°–163°
– SFD 6°–19°

• Fast readout for use in trigger
– Liquid cooled front-end electronics   

Silicon Central Detector   Silicon Forward 
Detector (SFD)

Beampipe

Moller
dump

W collimator

Be

e−
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Silicon detectors

• Si strips in two layers

– Held at one edge by rigid, 
ceramic ladders

– Embedded cooling tube

• Each sensor 300 μm thick

– Total 0.65% rad. Length

– Inner sensor for detecting 
recoil proton

– Outer sensor for leptons
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Lepton tracker• Inside the solenoid
• Operate in high-rate 

environment
– Permit long drift times
– High channel 

densities
• Resolution

– Single-hit ≈ 250 μm
– 1 MeV average mass 

resol.
• Trigger at about 1 kHZ
• PANDA GEM-TPC tracker 

is similar in goals
– About 60% scale of 

DarkLight
– Analog event pipeline
– Continuous operation
– Proven technology

• Forms major part of the 
trigger 

      – Each subsystem 

performs prelim. event 
reconstruction

– Feeds upstream for 
filtering 27

DarkLight conceptual design



Tracker performance

• Reconstruction of all four final 
state particles is essential for 
background rejection using 
kinematic constraints

• Momentum resolution from MC 
study

– σpT/pT = 0.06 at pT=200 
MeV/c

– Scales as 1/√pT

• Yields mass resolution of 0.2–2 
MeV/c2

– Over mass range of interest

28

Fits to reconstructed A’ invariant mass
for A’ masses from 10–90 MeV/c2
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“Invisible”

Detector: 
- Cylindrical Array
  60 cm (diam) x 150 cm (length)
- Composed of 10 segments (10 cm wide)
- Segment = Pb (0.5 cm thick) + scintillator (1 cm thick) x 3+ 
- 3 layers =/> 90% efficiency.



Magnet• Goals

– Sweep Mollers and other backgrounds away from sensitive 
detectors

– Provide for momentum analysis

• Nominal design

– Solenoid, 0.5 T

• Inner rad 33.5 cm, outer 49 cm

–  magnet to deal with backgrounds

– Iron yoke for flux return

• Thick enough to reduce hall backgrounds

• Inner radius 50 cm, outer 60 cm, length 170 cm

• Water-cooled copper

– 20 °C in, 50 °C out

– 1300 A, 150 kW

Solenoid design (preliminary)
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Trigger
• Has to handle

– Mollers
– e−p scattering
– QED background
– A’ signal events

• TPC is primary
• Data flows into trigger pipeline

– Hit detection, charge above threshold
– Remove channels not hit (zero suppresion)
– Collect hits close together in position and time

• Form simple track reconstruction
• Helix fit, track angle and charge

– Add timestamp
– Package the data & send to next stage

• First trigger condition
– One lepton at > 90°
– Three lepton tracks total 
– 1 MHz

• Second trigger condition
– Recoil proton
– K.E. > 0.5 MeV

– 10 kHz (QED irreducible backgrounds

– This is written to disk 31

Block diagram of DarkLight trigger
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