

12GeV CEBAF Status and Plans

Arne Freyberger

Operations Dept Accelerator Division

JLAB

June4, 2013

Accelerator Operations Department

Outline

- 12GeV Upgrade: Status
 - 12GeV Accelerator Design
 - Down Schedule: LSD
 Shutdown Work Planning
 - Cryogenics
 - Beam Transport: Magnets
 - Acceleration: SRF
- 2 Path to Beam Operations
- Commissioning Schedule

4 HPS Option II: Beam Transport

June 4, 2013 2/27

APF Ops. Dept.

12GeV CEBAF Status

12 GeV CEBAF Design

Constraints/Parameters:

- Use existing 6-GeV CEBAF tunnel
- $E_{Glue \mathcal{X}} \geq 12 \, \mathrm{GeV}$
- $P_{beam} < 1 \mathrm{MW}$

Design:

- Increase the linac energy gain from 600MeV/linac to 1100MeV/linac with the addition of five C100 cryomodules per linac.
- Add an additional arc (Arc10) and pass through the North Linac to bring the beam energy to 12 GeV.
- Add magnetic extraction and Hall-D beamline at the end of the North Linac for the Glue *X* experiment.
- Upgrade magnets, power supplies, cooling and cryogenics to support the higher beam energy.

APF Ops. Dept.

12GeV CEBAF Status

June4, 2013 3/27

Down Schedule: LSD Quick Summary

- Long Shutdown, 16 months long. Scheduled from May-2011 to Sep-2013.
- Overall tasks have gone well, there were a few big surprises:
 - Underground cooling water pipe for CHL-1 fractured. Three month delay in the start-up of CHL-1 and SRF cavity recommissioning.
- LSD tasks likely to extend beyond Sep-2013
 - To be performed in || with System Check Out.
- Still maintaining a Nov-2013 start-up

APF Ops. Dept.

12GeV CEBAF Status

June 4, 2013 4/27

Shutdown Work Planning

Cryogenics

Done Maintenance on existing 6GeV infrastructure. Includes: transfer line maintenance and CHL-1 maintenance.

Done Restart CHL-1, cooldown CEBAF Linacs

Nearly Done CHL-2 Commissioning

In Progress Support 2K operations for SRF commissioning

- In Progress Build transfer lines between CHL-2 and CEBAF
- Not Started Commissioning 2nd 2K cold box. scheduled for 2013-Aug

The installed SRF cavities were all thermally cycled for the first time since hurricane Isabel. No **issues** on the subsequent cool down to 2K!!!

12GeV CEBAF Status

Magnets: Spreaders and Recombiners 4-corners of the machine

Done Tear out magnets, stands, girders in the 1S, 1R, 2S, 2R Done Modified existing magnets, receive new magnets from vendor Done Install new stands and girders Nearly Done Field measurements of each (old and new) dipole Done Install 1R region Nearly Done Install 1S, 2S and 2R regions

APF Ops. Dept.

12GeV CEBAF Status

June4, 2013 7/ 27

Magnets: BSY, A,B,C & D transport

Done	Remove magnets and girders in A, B & C
	beam lines
Done	Removes stands, girders in the
	Transport/BSY region
Done	Modified existing magnets, receive new
	magnets from vendor
Done	Install new stands in BSY, Transport and
	D lines
Nearly Done	Field measurements of each (old and
	new) dipole
In Progress	Install magnets in Transport and BSY
	region
In Progress	Install magnets in the D transport and
	beam line
In Progress	Install magnets in the A line
Not Started	Install magnets in the B & C lines

APF Ops. Dept.

12GeV CEBAF Status

June4, 2013 8/ 27

Jefferson Lab

Acceleration: SRF

Done Install R100 cryomodule in Injector (0L04 slot)

- In Progress Install and commission ten C100 cryomodules. 9 out of 10 installed, 5 commissioned.
- In Progress Recommission C20/C50 SRF base. About 25% complete.
- In Progress Upgrade R100 RF controls and power to support 100MeV energy gain.

In Progress Refurbish weakest C20 module, resurrection of the C50 program (C50-11) for gradient maintenance.

Not Started Commission R100 and C50-11

Not Started Helium process identified weak

APF Ops. Dept.

12GeV CEBAF Status

June4, 2013 9/ 27

Outline

- 12GeV Upgrade: Status
- Path to Beam Operations
 Accelerator Readiness Process
- 3 Commissioning Schedule
- 4 HPS Option II: Beam Transport

5 Summary

APF Ops. Dept.

12GeV CEBAF Status

June4, 2013 10/ 27

Jefferson Lab

The Accelerator Readiness Review Process

The Accelerator Readiness Review Process emphasizes the following ten items:

- ✓ Final Safety Assessment Document (FSAD)
- **O Commissioning Plan**
- Solution States States States (USI) ● States S
- Process/Procedure Evaluation
- Image of the second second
- Ocumentation Control
- Safety
- **O** Training and Qualification
- Staffing Requirements

To be reviewed next week at the Director's Commissioning Review. This is one step in the preparation leading up to the ARR process.

Path to Beam Operations

Many concurrent tasks and efforts.

- ullet ~Four months remaining of accelerator installation.
- We are at the start of a process to thoroughly review accelerator system status, commissioning plans and process in preparation for the Accelerator Readiness Review(ARR).
- Accelerator Readiness Review process will be a phased approach with the first review scheduled for August 2013.

Outline

- 12GeV Upgrade: Status
- 2 Path to Beam Operations
- Commissioning Schedule
 - Creating the Schedule
 - Beam Operations Schedule
- 4 HPS Option II: Beam Transport

5 Summary

APF Ops. Dept.

12GeV CEBAF Status

June4, 2013 13/27

Creating the Beam Commissioning Schedule Plan First, then Schedule

- Beam Commissioning plan was developed bottoms up without scheduling information. The plan includes:
 - 12GeV Project tasks (pre-ops).
 - Tasks required to span gaps in the 12GeV Project pre-ops tasks (Support pre-ops).
 - Stasks needed to achieve *physics quality* beams.
 - Tasks to establish routine operations.
- Beam commissioning tasks duration estimated based on previous experience. Estimate includes the expected initial low reliability of the hardware (50% in FY14).
- Number of operating weeks per Fiscal Year developed as part of the annual budgetary process with DOE.
- Beam commissioning **schedule** created that meshes the **plan** with the funded weeks of operation.
 - The original estimated task duration is retained.

CEBAF 12GeV Beam Operations

- Constant Effort scenario: 30 weeks of operation per year.
- Two running periods per year
 - Fall run typically about 13-14 weeks
 - Spring run typically 16-17 weeks
- Avoid running in summer months (June, July, Aug) to save power bill

Acc-I Schedule 2013-11-04 \rightarrow 2013-12-20

Accelerator Run Period I Plan

WBS	Name	Note	Start	End	Duration	ProjectAccount	Oct 2013 Nov 201	3 Dec 2013	
2	Long Shutdown/Upgrade	Thi 💊	Tue 2013-01-01	Mon 2013-11-04	307.0			المالف الفاليات	
2.2	🚍 Linac Tasks		Thu 2013-04-11	Mon 2013-11-04	207.0				
2.2.1	🚍 North Linac		Thu 2013-04-11	Mon 2013-11-04	207.0				
2.2.1.3	🚍 R100 Cryomodule		Mon 2013-06-03	Mon 2013-11-04	153.3				
2.2.2	🚍 South Linac		Thu 2013-04-11	Fri 2013-11-01	204.0				
2.2.2.3	🚍 C50-11 Cryomodule		Mon 2013-09-09	Fri 2013-11-01	53.0				
3	Hot Check Out		Tue 2013-08-27	Tue 2013-11-19	84.0			· ·	
3.3	EI LEM Data Collection	Ope 💊	Tue 2013-10-29	Tue 2013-11-19	21.0	MD_NP			
4	= 12GeV CEBAF Commissioning		Mon 2013-11-04	Fri 2015-06-12	585.0			-	
4.1	- Accelerator Period I: 2.2GeV/pass to 2R, tune-mode beam	The 💊	Mon 2013-11-04	Fri 2013-12-20	46.5				
4.1.1	Recover: Beam up to 5MeV	Est 💊	Mon 2013-11-04	Mon 2013-11-11	7.0	Spreops_NP			
4.1.1.1	💳 Beam to FC1		Mon 2013-11-04	Wed 2013-11-06	2.0	Spreops_NP			
4.1.1.2	🚍 Beam to 6MeV Spectrometer/Mott		Wed 2013-11-06	Mon 2013-11-11	5.0	Spreops_NP			
4.1.2	🚍 Spin up 1pass beam to 2R		Mon 2013-11-11	Fri 2013-12-20	39.5	Preops_12GeV			
4.1.2.1	💳 Beam to the Inj. Spectrometer		Mon 2013-11-11	Sat 2013-11-16	5.0	Preops_12GeV			
4.1.2.2	🚍 Beam to the End of the Injector Chicane		Sat 2013-11-16	Tue 2013-11-19	3.8	Preops_12GeV		5	
4.1.2.3	🚍 Beam to End of North Linac		Tue 2013-11-19	Wed 2013-11-27	7.3	Preops_12GeV	, .		
4.1.2.4	🚍 Beam to the 1R dumplette		Wed 2013-11-27	Sat 2013-12-07	10.0	Preops_12GeV	L	+	
4.1.2.5	🚍 Beam to End of South Linac		Sat 2013-12-07	Sat 2013-12-14	7.3	Preops_12GeV		-	
4.1.2.6	🚍 Beam to the 2R dumplette		Sat 2013-12-14	Wed 2013-12-18	4.0	Preops_12GeV			
4.1.2.7	Establish 2.2GeV/pass beam to 2R	Rai 💊	Wed 2013-12-18	Fri 2013-12-20	2.0	Preops_12GeV		L→8	
All effo	rt and duration values are in days. 24/7 scenario								
	Cottainer Task em Normal Task 🔶 Milestone								

The goal of this 6week run period is to establish 2.2GeV/pass tune-mode beam to the 2R dumplette. If successful, satisfies 12GeV Project CD4A-IV deliverable one year ahead of schedule: 2014-12-19

APF Ops. Dept.

12GeV CEBAF Status

Acc-II Schedule 2014-02-05 → 2014-05-07

Accelerator Run Period II Plan

WBS	Name	Note	Start	End	Duration	ProjectAccount	Jan 2014 30 06 13 20 2	Feb 2014	Mar 2014	Apr 2014 31 07 14 21 2	May 2014 18 05 12 19 26 00
4	= 12GeV CEBAF Commissioning		Mon 2013-11-04	Fri 2015-06-12	585.0						
4.3	- Accelerator Period II: E>1.1GeV/pass, tune-mode beam		Wed 2014-02-05	Wed 2014-05-07	91.0			-		-	-
4.3.1	 3-pass spin up (BSY) 		Wed 2014-02-05	Wed 2014-02-19	14.0	Spreops_NP					
4.3.2	 1/2/3 pass Magnet/Optics characterization 		Wed 2014-02-19	Wed 2014-03-19	28.0	MD_NP					
4.3.3	Hall-A Detector Checkout		Wed 2014-03-19	Wed 2014-03-26	7.0	Preops_12GeV			հեր		
4.3.4	5.5-pass spin up to D		Wed 2014-03-26	Wed 2014-04-23	28.0	Spreops_NP			ել	- b	
4.3.5	4/5/5.5 pass Magnet/Optics characterization		Wed 2014-04-23	Wed 2014-05-07	14.0	MD_NP				4	
							(1()))))
All	All effort and duration values are in days. 24/7 scenario										
	Container Task 🗰 Normal Task 💠 Milestone										

The goals of this run are:

- Establish beam to CW capable dumps, Hall-A, Hall-D or BSY dump
- Pirst CW beam operations in the 12GeV era
- Multi-pass steer up
- Beam to Hall-A for detector tests

APF Ops. Dept.

12GeV CEBAF Status

June4, 2013 17/27

Acc-III Schedule 2014-09-22 → 2014-12-19

Accelerator Run Period III Plan

WBS	Name	Note	Start	End	Duration	ProjectAccount	Aug 2014 8 04 11 18 23	Sep 2014 01 08 15 22	Oct 2014 29 06 13 20 2	Nov 2014 7 03 10 17 24	Dec 2014 4 01 08 15 22 29
4	Rev CEBAF Commissioning		Mon 2013-11-04	Fri 2015-06-12	585.0		_				
4.4	- Accelerator Period III: E Various 2-hall operation?		Mon 2014-09-22	Fri 2014-12-19	88.0			-		_	_
4.4.1	Machine Recovery and Push energy to 2.2GeV/pass		Mon 2014-09-22	Mon 2014-10-20	28.0	MD_NP			-		
4.4.2	Beam through HallD line: E>1.1GeV/pass		Mon 2014-10-20	Mon 2014-10-27	7.0	Spreops_NP			h.		
4.4.3	HallD Detector Checkout: E>1.8GeV/pass?		Mon 2014-10-27	Mon 2014-11-17	21.0	Preops_12GeV			4	-	
4.4.4	1/2/3 pass separation E>1.1GeV/pass		Mon 2014-11-17	Fri 2014-12-05	18.0	MD_NP				4	b
4.4.5	5.5 physics beam development: E>2GeV/pass		Fri 2014-12-05	Fri 2014-12-19	14.0	MD_NP					+
							(4)		$ \rightarrow $) •
Alle	All effort and duration values are in days. 24/7 scenario										
	Container Tack 🛲 Normal Tack 💠 Mäistone										

The highlight of this run period is the Hall-D detector checkout (WBS: 4.4.3) to satisfy CD4B-III which has a date of 2016-06-30.

Once the RF separators are commissioned CEBAF will be in a position to support simultaneous activities. With the caveat that the beam to A (or B and C) be at lower pass than where the beam commissioning effort is focused.

APF Ops. Dept.

12GeV CEBAF Status

June 4, 2013 18/27

Accelerator Run Period IV Plan

WBS	Name	Note	Start	End	Duration	ProjectAccount	015	Feb 2015	Mar 2015	Apr 2015	May 2015	Jun 24
4	= 12GeV CEBAE Commissioning		Mon 2013-11-04	Fri 2015-06-12	585.0			02 09 16 21	02 09 16 23	30 06 13 10	0 11 18 23	01 08 1
4.5	- Accelerator Period IV: E>2GeV/pass 2-hall operation		Fri 2015-02-13	Fri 2015-06-12	119.0				_	-	_	
4.5.1	 Restoration and Multiple beam characterization 		Fri 2015-02-13	Fri 2015-04-03	49.0	MD_NP				h		
4.5.2	A engineering run/D? engineering run		Fri 2015-04-03	Fri 2015-04-24	21.0	MD_NP				• 		
4.5.3	 Transport B&C characterization/optimization 		Fri 2015-04-24	Fri 2015-05-22	28.0	Spreops_NP				La C		
4.5.4	Hall B&C Detector Checkout		Fri 2015-05-22	Fri 2015-06-12	21.0	Preops_12GeV					4	
All	All effort and duration values are in days. 24/7 scenario											
	Container Task Normal Task Milestone											
		1	Off-duty period									

The impact of the 12GeV re-baseline has not be incorporated yet into the schedule. Some of these tasks are likely to be deferred.

Converting task 4.5.4 three weeks of 12GeV pre-ops to beam for physics will require NP funding.

Task 4.5.3 likely to be moved to FY16 as well (four weeks of B&C transport optimization) is NP funded.

There is potentially a 10wk physics run in this run period (4.5.2 + 4.5.3 + 4.5.4).

APF Ops. Dept.

12GeV CEBAF Status

HPS Option II Stolen from Ken's slides

New Options for location of HPS to allow torus installation

Beam Layout: Migrating from HPS \rightarrow Option II Maintain steering and diagnostics just upstream on first HPS dipole

	Distance							
	to first							
What	MyName	HPS dipole	Provenance					
		(m)						
Vertical Corrector	MBC2H08V	2.5	New					
Horizontal Corrector	MBC2H08H	2.35	New					
Beam Position Monitor	IPM2H08	2.075	New					
Drift								
Beam Viewer	ITV2H09	0.89	ITV2H01?					
Wire Scanner	IHA2H09	0.69	IHA2H00					
Beam Position Monitor	IPM2H09	0.5	New					
Center of HPS 1 st Dipole	MBX2H90	0	Frascati					

APF Ops. Dept.

12GeV CEBAF Status

June4, 2013 21/27

Beam Layout: Migrating from HPS \rightarrow Option II

Move focusing elements to space frame

		Distance	Distance
		to first	to Tagger
What	MyName	HPS dipole	harp
		(m)	(m)
nA Beam Position Monitor	IPM2H01	27.505	12.914
Beam Position Monitor?	IPM2H02	27.255	13.164
Quadrupole	MQA2H02	26.905	13.514
Quadrupole	MQR2H03	26.305	14.114
Quadrupole	MQA2H04	25.705	14.714
Vertical Corrector	MBC2H04V	25.180	15.239
Horizontal Corrector	MBC2H04H	24.98	15.439
Beam Position Monitor	IPM2H04	24.905	15.514
CLAS Target	ETACLAS	15.415	25.004
Center of HPS 1^{st} Dipole	MBX2H90	0	40.419

12GeV CEBAF Status

June4, 2013 22/27

Fit criteria

HPS Requirements:

- horizontal ribbon beam
- $250 < \sigma_x < 300 \mu m$
- $\sigma_y < 40 \mu m$

Fit Convergence Criteria:

- 250 $< \sigma_x < 300 \mu \mathrm{m}$
- $\sigma_y < 20 \mu m$

The factor of two on σ_y is a safety factor. A mis-matched beam will only make the beam larger. The incoming beam emittance is more likely to be larger not smaller than design. The HPS beam test to demonstrate a ribbon beam at the tagger harp measured a beam width that was about $2 \times$ larger than design.

APF Ops. Dept.

12GeV CEBAF Status

June 4, 2013 23/27

Jefferson Lab

Invoking the three HPS quads

Can we live without the three HPS quads?

Does not converge to constraint. But does result in values that satisfy the HPS requirements. But this is accomplished with some quads at the maximum setting.

Outline

- 12GeV Upgrade: Status
- 2 Path to Beam Operations
- 3 Commissioning Schedule
- 4 HPS Option II: Beam Transport
- 5 Summary
 - The Final Word

APF Ops. Dept.

12GeV CEBAF Status

June 4, 2013 26/27

Accelerator Status Summary

- Barely holding to the 2013-Nov-04 date for the first 12GeV Commissioning activities.
- First beam to halls Spring 2014, for detector tests in Hall-A.
- Possibilities for beams for Physics in FY15

HPS Option II Summary

- Retain diagnostics and correctors magnets upstream of HPS.
- Option II is viable
- A set of magnet settings can be found to achieve HPS beam size on target requirements without adding additional quadrupole magnets.
 - This configuration has very little safety margin.
- Quadrupole triplet just upstream of CLAS provides for a more robust configuration more likely to achieve HPS requirements.

Thank You for your time and attention.

APF Ops. Dept.

12GeV CEBAF Status

June4, 2013 28/ 27

Beam Requirements for Initial Operations

Hall	Emittance	Energy Spread	Spot Size	Halo
		σ	σ	
	(nm-rad)	(%)	(μm)	
		< 0.05	$\sigma_x < 400$	
Α	$\varepsilon_x < 10$	(12 GeV)	$\sigma_y < 200$	$< 1 imes 10^{-4}$ †
	$\varepsilon_y < 5$	< 0.003	$(\sigma_y < 100)$	
		(2-4 GeV)	(2-4 GeV)	
В	$\varepsilon_x < 10$	<0.1	$\sigma_x <$ 400	$< 2 imes 10^{-4}$ †
	$\varepsilon_y < 10$		$\sigma_y <$ 400	
С	$\varepsilon_x < 10$	< 0.05	$\sigma_x < 500$	$< 2 imes 10^{-4\dagger}$
	$\varepsilon_y < 10$		$\sigma_y <$ 500	
			At Radiator:	
D	$\varepsilon_x < 50$	<0.5	$\sigma_x < 1550, \sigma_y < 550$	$< 1\%^{\ddagger}$
	$\varepsilon_y < 10$		At Collimator	
			$\sigma_x <$ 540, $\sigma_y <$ 520	

 [†] Ratio of the integrated non-Gaussian tail to Gaussian core.
 [‡] Ratio of Halo background event rate to physics event rate. (GlueX-doc-775-v4, GlueX-doc-646-v5)

12GeV CEBAF Status

June4, 2013 29/27

Beam Requirements for Out-Year Operations

Hall	Emittance	Energy Spread	Spot Size	Halo
		σ	σ	
	(nm-rad)	(%)	(μm)	
		< 0.05	$\sigma_x < 400$	
Α	$\varepsilon_x < 10$	(12 GeV)	$\sigma_y < 200$	
	$\varepsilon_y < 5$	< 0.003	$(\sigma_y < 100)$	$<$ 1 $ imes$ 10 $^{-4\dagger}$
		(2-4 GeV)	(2-4 GeV)	
В	$\varepsilon_x < 10$	< 0.1	$\sigma_x <$ 400	$< 1 imes 10^{-4}$ †
	$\varepsilon_y < 10$		$\sigma_y <$ 400	
	$\varepsilon_x < 10$	< 0.05	$\sigma_x < 400$	
С	$\varepsilon_{\gamma} < 5$	< 0.03	$\sigma_{\gamma} < 200$	
		(6 GeV)	-	$< 1 imes 10^{-4}$ †
			At Radiator:	
D	$\varepsilon_x < 10$	< 0.5	$\sigma_x < 1550$, $\sigma_y < 550$	$< 1\%^{\ddagger}$
	$\varepsilon_y < 5$		At Collimator	
			$\sigma_{x} <$ 540, $\sigma_{y} <$ 520	

[†] Ratio of the integrated non-Gaussian tail to Gaussian core. [‡] Ratio of Halo background event rate to physics event rate. (GlueX-doc-775-v4 GlueX-doc-646-v5)

Beam Requirements

		6GeV	12 GeV							
		OPS	CE)-4	Initial	12GeV	Out-	lears		
E	ndstations	ABC^{\dagger}	ABC	D	ABC	D	ABC	D		
Energy	(GeV)	6	≥ 6	\geq 10	11 [‡]	12 [‡]	11	12		
Current	(µA)	200	0.002	0.002	85	5	85	5		
ε _x	(nm-rad)	<1	NA	20	10	50	10	10		
ε_y	(nm-rad)	<1	NA	20	5	10	5	5		
$\delta p/p$	(% RMS)	0.003	NA	NA	0.05	0.5	0.05	0.5		
HALO	(ppm)	ND	NA	NA	100	100	100	10		

[†] The values for ABC represent the most stringent requirement of the three end-stations during the 6 GeV era.

[‡] High availability 5.5(5) pass operation restricted to be at or below 10(9) GeV for Hall-D(ABC) in FY14 due to insufficient Dog-Leg range.

