Test Run Analysis Summary

Matt Graham (but mostly Pelle & Takashi & Omar & Sho)
HPS Collaboration Meeting
June 4, 2013

Outline

- Can we find tracks?
 - Yes!
 - How many?
 - a fair amount.
 - The right amount?
 - we'll see.
- How do they look?
 - Ok.
 - Not bad...considering
- Are we done?
 - No.?!
- What about two track events?
 - They are the most interesting...
 - mostly I will talk about this!

Did we find tracks? Yes.

More tracks/trigger in top ...due to wonky sensors in bottom

Alignment, such as it is: Non-Bend Plane

Alignment, such as it is: Bend Plane

Alignment...for real

- (as we've been saying forever), we still need to perform track-based alignment to get relative mis-alignment
- Pelle spent significant amount of time with the millepede alignment program...to no avail
 - since he gave up, he found an issue with tracking; track parameters were not updated for final iteration
 - maybe with this fix, millepede with work!?
- We really need to get back to this...not just to align the testrun detector, but to be ready for the full electron beam running
- WE NEED SOMEONE TO TAKE UP THE ALIGNMENT MANTLE!!!!

Single track parameters: data & MC

The MC is generated by running a photon beam through target using EGS to produce secondaries & scatter in target; those then sent to GEANT for detector simulation

...generally good shape agreement between MC and data,

particularly on the top half.

Single track parameters: data & MC

...not quite as good at the bottom...still problem with (global) alignment?

e⁺e⁻ Pair Events

~0.5% of triggers had 2 tracks (1.6% run)

select good pairs == opposite charge; one in top + one in bottom $\rightarrow 1.4$ pairs/90nC

Rates...singles ok; pairs screwy?

Prior to April 25....a head scratcher.

Pair Photoproduction in EGS

From Takashi:

Pair production $d\sigma \sim d\epsilon_1 d\theta_1 d\theta_2 d\phi$

- $E_{\gamma} = \varepsilon_1 + \varepsilon_2$
- $\theta_1 \sim \theta_2 \sim m_e/E_v \sim 500 \mu rad at 1 GeV$
- φ~180°

Approximations

- $\phi = 180^{\circ}$
- Energy and polar angle are decoupled.
- θ_1 and θ_2 are decoupled.

Sampling

- Sample ε first from dσ=F(ε)dε
- Sample θ_1 and θ_2 independently from $d\sigma = G(\varepsilon, \theta)d\theta$

Even if $\theta_1 > 20$ mrad, θ_2 is most likely at $\theta_2 \sim m_e/E_{\gamma}$.

Some two track kinematics

Shapes show great agreement!

e⁺e⁻ top/bottom events After EGS fix: $N(data)/N(MC) \sim 0.6$

that factor of 2....still not understood but much better!

Position resolution @ converter

Single (top) track x & y position at z=-67cm from pair events

...ok MC/data agreement. There is 10-25% difference in the sigmas, likely due to misalignment...

Vertexing from test run

The reconstructed vertex position looks....much worse...

BUT, differences here come from both relative (broaden) AND top/bottom (shifts) mis-alignments...more work to do.

Summary

- A fair bit of analysis has been done on the test run data (particularly by Pelle)
 - found an issue with EGS! Found a bug in lcsim tracking code!
 - There are probably more bugs!
- We are at a point where we have rough agreement between rates and shapes...but the last 10% is always harder than the first 90%...
- Next job (IMO) is to do track-based alignment