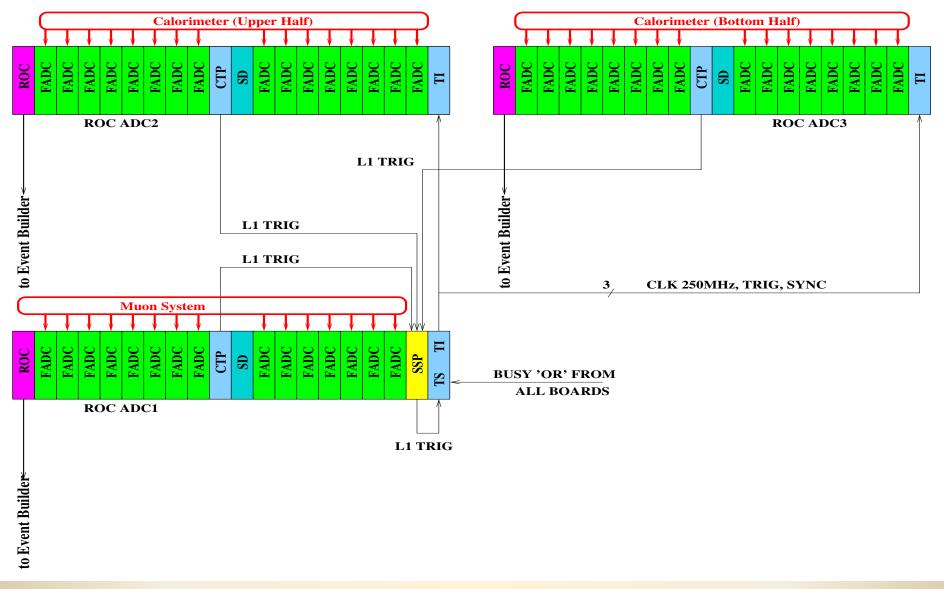
DAQ and Trigger for HPS run

Sergey Boyarinov JLAB Jun 5, 2013

Electronics for HPS Proposal September 20, 2010 S. Boyarinov boiarino@jlab.org

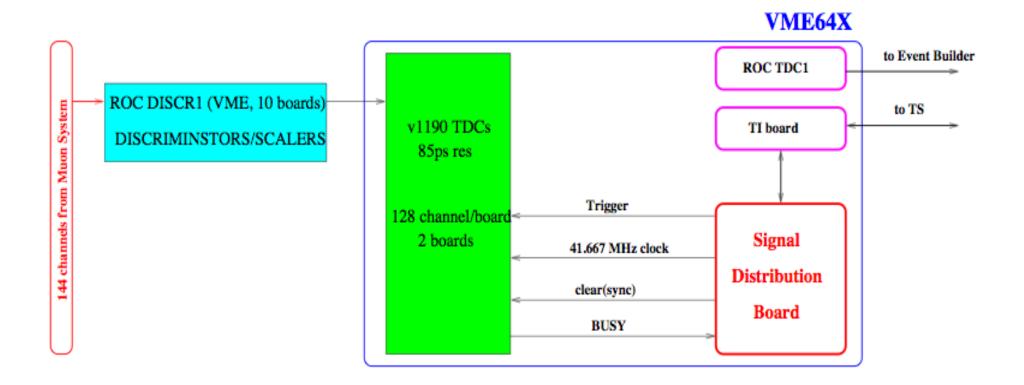
Requirements

- 50kHz event rate at Event Builder
- 250MB/s data rate at Event Builder (calorimeter 25MB/s, muon 6MB/s, SVT 215(up to 500)MB/s)
- 100MB/s data rate on tape (after level3 trigger)


DAQ System Overview

- SVT readout system (ATCA)
- Calorimeter and Muon System Readout: 442 channels of 12bit 250MHz Flash ADCs, 144(<=256) channels of 85ps resolution pipeline TDCs with discriminators
- Flash ADC based trigger system
- 2 VME, 1 VME64X, 3 VXS, 1 ATCA crates equipped with Readout Controllers and Trigger Units
- JLAB CODA DAQ software

ATCA SVT Readout System (SLAC)


- One year time scale to finish electronics development
- Will test SVT readout with the rest of the system, probably using simplified setup in SLAC

Flash ADC and Trigger System (VXS)

Electronics for HPS Proposal September 20, 2010

Pipeline TDC System (VME64X/VME)

NOTE: will not use it if FADCs produce timing and scalers (timing is not implemented yet)

Trigger processing - CTP/SSP

- Calorimeter: search for clusters using 3x3 crystals window
- Muon system: search for hits
- Trigger 1: two calorimeter clusters; cuts on cluster multiplicity, geometry (with respect to beam) and energy (two thresholds)
- Trigger 2: two muon hits, cuts on geometry (upper and bottom) and energy (threshold)
- Possible problem: boundary effects because of segmented calorimeter readout and limited bandwidth between CTP and SSP – will be addressed with new CTP design increasing bandwidth to SSP

Slow control and online data analysis

- EPICS information will be inserted into data stream
- DAQ/Trigger parameters (pedestals, thresholds etc) will be loaded using standard procedure (TBD), and inserted into data stream, in most cases directly from electronic boards
- Logbook and slow control logging are under development in JLAB, should be one solution for all groups
- Environment to run online (level 3) software will be provided
- Working analysis is REQUIRED from the very beginning of the run to obtain trigger parameters

Timeline

- All boards are available and tested: end of 2013 (except CTP – will try go have it summer 2014)
- New version of FADC, CTP and SSP trigger FPGAs firmware: end of 2013 (summer 2014; timing from FADC ?)
- Testing with new SVT electronics: end of 2013 (?)
- DAQ /Slow Control/Online Monitoring software: summer 2014 (hope to complete in time)
- New network/computing: end of 2014
- HPS commissioning: end of 2014
- Manpower: we switched to CLAS12 DAQ software development; also have new Hall B visitor working on slow control; all that in favor of HPS run plans