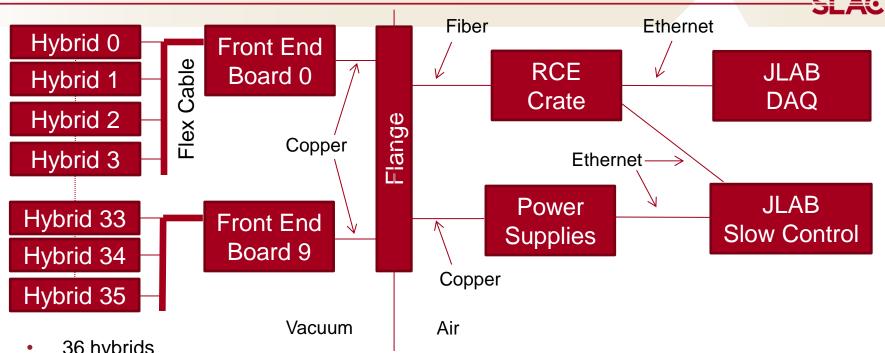
HPS Collaboration Meeting, JLAB June 4-6, 2013

SVT Data Acquisition Architecture

Ryan Herbst



Overview

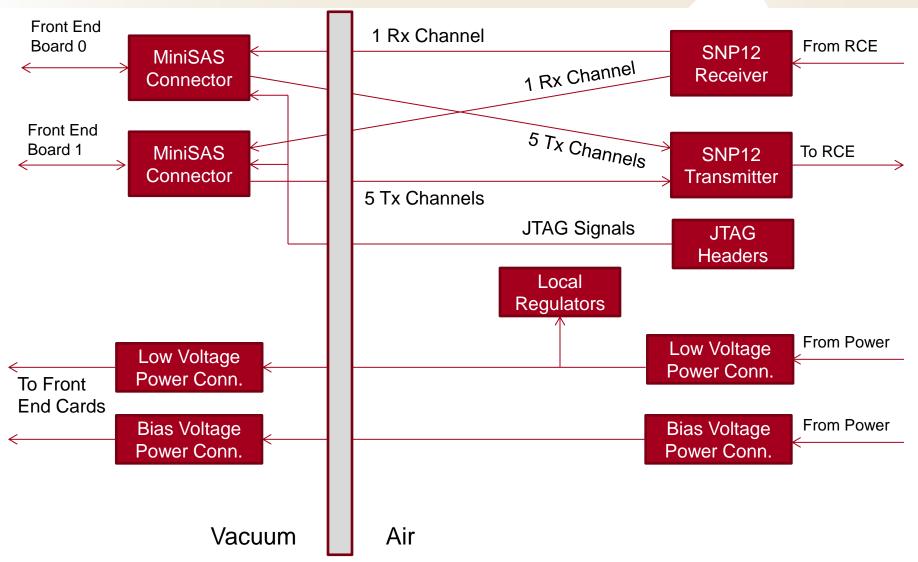
- SVT DAQ Overview
- In chamber electronics
 - Hybrids
 - Flex Cables
 - Front End Boards
- Flange & feed through
 - Signal feed through & fiber optic conversion
 - Low voltage distribution
 - High voltage distribution
- External electronics
 - Fiber optics
 - RCE platform
 - SVT DAQ Software
- Interface to JLAB DAQ

SVT Overview

- 36 hybrids
 - 12 in layers 0 3 (4 per layer, 2 top, 2 bottom)
 - 24 in layers 4 6 (8 per layer, 4 top, 4 bottom)
 - 3.33Gbps raw ADC data per hybrid
- 10 front end boards
 - 4 servicing layers 0 3 with 3 hybrids per board
 - 10 Gbps raw ADC data per board
 - 6 servicing layers 4 6 with 4 hybrids per board
 - 13 Gbps raw ADC data per board
- RCE crate for event building and data reduction

In Chamber Electronics

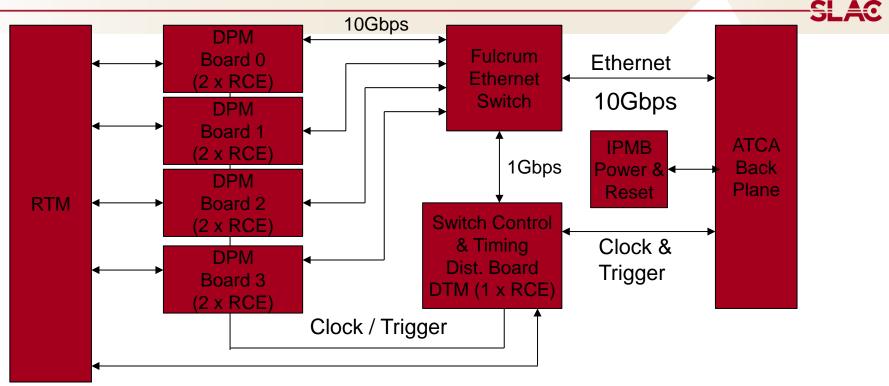
- Hybrids
 - Interface to detector
 - Provide detector bias voltage and filtering
 - 5 x APV25 ASICs for readout
 - Layers 0 3 use existing hybrid/sensor modules
 - Layers 4 6 are an updated design
- Flex cables
 - Interface between hybrids and front end boards
 - New for 2014 run
 - Variety of cables required
 - · One cable set per front end board
 - Creative approaches to minimize number of unique designs
 - Variety of design constraints
 - Must support 100ohm differential analog signals @ 50Mhz readout
 - Must support low voltage busses for each hybrid with minimal voltage drop
 - Must support 1KV bias voltages for each connected hybrid
 - · Reliable connectors which support all of the above
- Front End Board
 - New for 2014 run
 - Provide power to hybrids
 - APV25 configuration and monitoring
 - APV25 clock and trigger generation
 - ADC and data transmission
 - Simple well tested firmware to minimize upgrade necessity


Vacuum Flange

SLAC

- Must support the following:
 - 56 High speed digital signal pairs
 - 1 output per hybrid at 5Gbps
 - 1 output per front end board at 2.5Gbps
 - 1 input per front end board at 2.5Gps
 - 30 low voltage channels
 - 1 digital voltage and return per front end board
 - 1 positive analog voltage and return per front end board
 - 1 negative analog voltage and return per front end board
 - 36 high voltage channels
 - · 1KV bias voltage and return per hybrid
 - 4 JTAG signals per front end board
- Internal vacuum cables
 - Mini-SAS cables for high speed digital and JTAG
 - Twisted pair mil-spec cables for low voltage
 - TBD for bias voltages
- External cables
 - Fiber optics for high speed digital
 - Twisted pair mil-spec cables for low voltage
 - TBD for bias voltages (SHV?)
- Implemented as multi-layer circuit board potted into flange at the middle
 - All active components are socketed for in field replacement
 - Will require its own low voltage supply for transceivers

Vacuum Flange



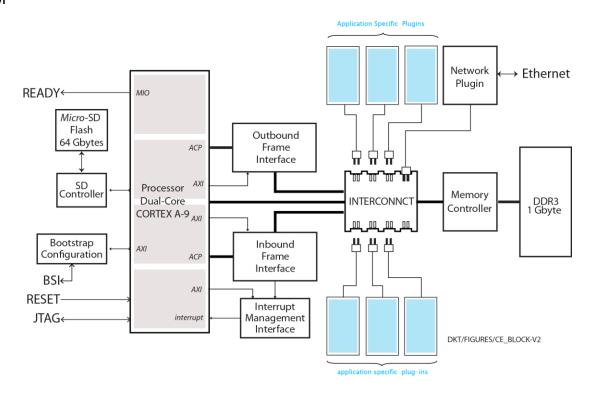
External Electronics

- Fiber optic interface between flange and SVT DAQ
 - Provides distance between beam line and DAQ crate
- DAQ node based upon SLAC RCE platform
 - Reconfigurable cluster element
 - ATCA based platform
 - 10Gbps Ethernet internal interconnect
 - Used in a variety of experiments
 - Current: LCLS, LSST, HPS, ATLAS IBL test stands
 - Planned: ATLAS CSC, LBNE, Darkside
 - Hosts firmware data processing
 - Analog signal filtering
 - Data reduction
 - Event formatting
 - Hosts software event building
 - Buffer management and event packaging
- Interface to JLAB DAQ
 - 10Gbps Ethernet for data path
 - JLAB standard trigger interface

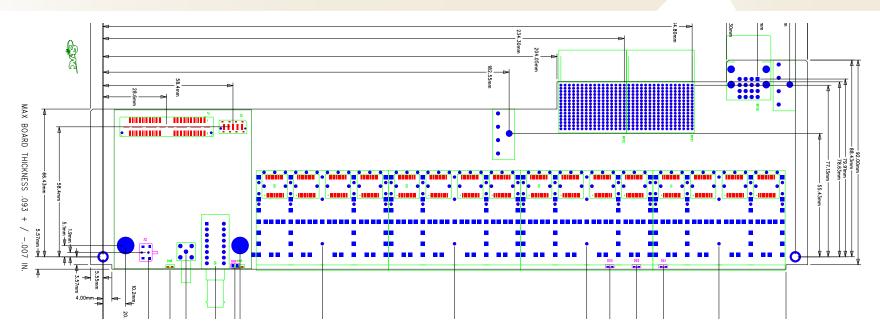
SLAC Gen3 COB

- COB (Cluster On Board)
 - Developed at SLAC as standard DAQ platform
- Supports 4 data processing FPGA mezzanine cards (DPM)
 - Interconnected by Fulcrum Ethernet switch
 - 2 RCE nodes per DPM
 - Each has connection to ¼ RTM
- Data transport module (DTM)
 - 1 RCE node
 - Contains RCE node in smaller FPGA package
 - Provides Fulcrum switch management
 - Interface to backplane clock & trigger lines & external trigger/clock source

RCE GEN3 COB

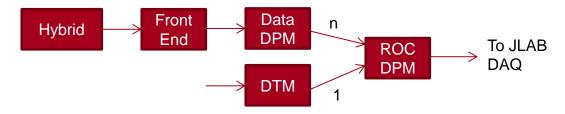

SLAC

RCE (Reconfigurable Cluster Element)

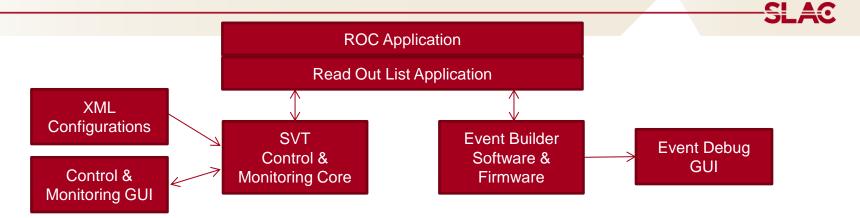

SLAC

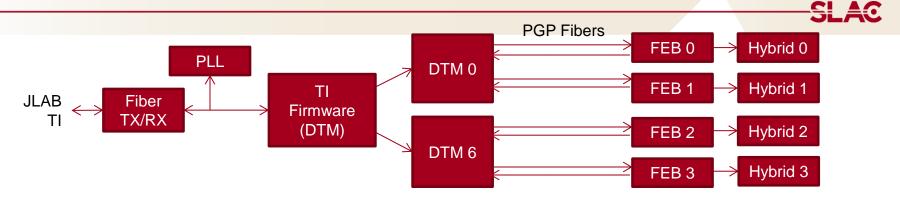
- Two versions
 - 2 x Zynq XC7Z045 FPGA for DPM
 - 1 x Zynq XC7Z030 FPGA for DTM
- ARM (dual-core) A-9 @ 900 MHZ
 - 1 Gbyte DDR3
 - Micro-SD (removable)
 - 10-GE MAC
- Bootstrap configuration
 - External I2C interface
 - Communicates with IPMC
- Socket Interface for plugins
 - · transfer data in units of frames
 - 10Gbps bandwidth into memory
- Software (bundled with CE):
 - Linux
 - Based on 3 series kernel
 - RTEMs
 - Open Source Real-Time kernel
 - POSIX compliant interfaces
 - TCP/IP stack
 - Plugin socket library
- External serial interfaces
 - 10 GTX receive channels
 - 6 GTX transmit channels

RCE GEN3 RTM



- Standard SLAC RTM
 - 10 receive channels per RCE
 - 6 transmit channels per RCE
- SNP12 fiber optic interface
- Daughter board for application specific timing interface and distribution
 - Will host interface to JLAB trigger supervisor
 - Distributes timing and trigger to each RCE on a COB


SVT Data Flow


- RCE platform is fully configurable
 - Number of front end boards per Data RCE?
 - 1 COB model:
 - 7 data RCEs and 1 ROC RCE
 - 4 for layers 0 3 (1 front end per data RCE, 3 hybrids per data RCE)
 - 3 for layers 4 6 (2 front ends per data RCE, 8 hybrids per data RCE)
 - 1 DTM RCE for trigger interface
 - 2 COB model:
 - 10 data RCEs and 2 ROC RCEs
 - 1 front end per RCE
 - 2 DTM RCEs for trigger interface
- Data RCE processes raw ADC data
 - Event builds data at full trigger rate (50Khz)
 - Packs events into blocks defined by buffer size
 - Estimate 32 40 events per block
 - Blocks are then forwarded to ROC DPM over Ethernet
 - May be able to run Linux but RTEMS will have better performance
- ROC RCE accepts event blocks from data RCE nodes and trigger RCE node (DTM)
 - Operates at lower rate of trigger rate / block size (~1 − 2 Khz)
 - Arm Linux

SVT DAQ Software

- ROC application
 - Pre-compiled JLAB software
 - Can either run on ROC RCE or ATCA Intel server blade
 - Preferred location is ROC RCE (direct link to hardware)
 - Depends on success of ROC port to Arm Linux
- Readout List Application
 - Front end specific code developed by SLAC
 - Shared memory interface to control and data modules
 - Replaced by network interface when ATCA server blade used
- SVT Control & Monitoring Core Software
 - Interface to data processing RCEs, front end boards & APV25s
 - Configurations pulled from XML files
 - Local control & monitoring GUI
 - Slave to ROC and readout out list applications during run
- Event builder software
 - Interface to event building firmware layer
 - Hooks for SVT specific debug display
 - Handoff to read out list application

Timing Distribution

- System timing provided by JLAB Trigger Interface
 - 250Mhz base clock
 - Synchronized reset for derived clocks
 - Trigger signal and timestamp
 - Fiber and PLL hardware on RTM daughter board
 - JLAB firmware and driver in DTM
 - Hope to use true subset of JLAB TI firmware
 - Simplified SLAC implementation used in test run
- DTM distributes timing to DPMs on local COB
 - 12Mhz clock
 - PLL reset (used for 41Mhz clock generation)
 - Trigger pulse
 - Trigger timestamp and status to ROC DPM
- DPMs forward timing information to front end boards over PGP
 - Clock encoded into serial data stream which the front end board recovers
 - Fixed latency path for encoded PLL reset and trigger signals
 - Upstream link echoes encoded clock and encoded signals back to DPM
 - Round trip latency is measured and compensated for by adjusting delay elements in FEBs
 - Front end boards aligned in time domain

Conclusions

- Improvements since test run
 - ATCA power supply problems
 - Added external ADC layer inside chamber
 - Fiber optic interface to front end allows greater distance from beam line
 - Reflections on analog interface to APV25s
 - Internal ADC boards with improved internal cabling
 - Sample clock phase
 - See Ben's talk
 - Data rates
 - High rate event processing done in RTOS/firmware
 - ROC and readout list application running at lower rates
 - Determined by event block size
 - General stability
 - More run time in test stands!!!!
- Other issues
 - How do we handle calibrations?
 - Need to adjust APV25 settings periodically during run
 - Need to know which channel was selected during data analysis
 - Lots of options, need to pick the correct one