Meson-Baryon Scattering in Lattice QCD

Aaron Torok
University of New Hampshire

Overview

- Motivation
- Scattering in a Finite Volume
- Resources
- Lattice Results
- Analysis
- Conclusion

Motivation

- Meson interaction studies have reached a high level of precision (see papers by the NPLQCD collaboration: Precise Determination of the $\mathrm{I}=2 \pi \pi$ Scattering Length..., The $K^{+} K^{+}$Scattering Length..., Multi-Pion States in Lattice QCD...)
- Baryon correlators have a decreasing signal to noise ratio as time increases, while the meson S/N ratio remains constant.
- The meson baryon scattering signal should be better than the baryon baryon
- Determination of the low energy constants in $H B \chi P T$ contribute to the understanding of the nuclear force.
- Meson baryon interactions are a fundamental aspect of nuclear physics.

Energy Eigenvalues in a Box

The exact energy eigenvalue equation for E_{n} :

$$
\Delta E_{n} \equiv E_{n}-m_{1}-m_{2}=\sqrt{p_{n}^{2}+m_{1}^{2}}+\sqrt{p_{n}^{2}+m_{2}^{2}}-m_{1}-m_{2}
$$

Energy levels occur at momenta $\mathbf{p}=2 \pi \mathbf{j} / L$; The Lüscher formula relates the phase shift to the momenta:

$$
p \cot \delta(p)=\frac{1}{\pi L} \mathbf{S}\left(\frac{p L}{2 \pi}\right), \quad \mathbf{S}\left(\frac{p L}{2 \pi}\right) \equiv \sum_{\mathbf{j}}^{\Lambda_{j}} \frac{1}{|\mathbf{j}|^{2}-\left(\frac{p L}{2 \pi}\right)^{2}}-4 \pi \Lambda_{j}
$$

the effective range expansion for $\operatorname{pcot} \delta(p) \rightarrow 1 / a$, as $p \rightarrow 0$.

Meson-Baryon Correlation Functions

The correlation functions are computed as follows:

$$
\begin{aligned}
& C_{\phi}(t)=\sum_{\mathbf{x}}\left\langle\phi^{\dagger}(t, \mathbf{x}) \phi(0, \mathbf{0})\right\rangle, \quad C_{B}(t)=\sum_{\mathbf{x}}\langle\bar{B}(t, \mathbf{x}) B(0, \mathbf{0})\rangle \\
& C_{\phi B}(p, t)=\sum_{|\mathbf{p}|=p} \sum_{\mathbf{x}, \mathbf{y}} e^{i \mathbf{p} \cdot(\mathbf{x}-\mathbf{y})}\left\langle\phi^{\dagger}(t, \mathbf{x}) \bar{B}(t, \mathbf{y}) \phi(0, \mathbf{0}) B(0, \mathbf{0})\right\rangle
\end{aligned}
$$

And the following ratio yields the energy:

$$
G_{\phi B}(p, t) \equiv \frac{C_{\phi B}(p, t)}{C_{\phi}(t) C_{B}(t)} \rightarrow \sum_{n=0}^{\infty} \mathcal{A}_{n} e^{-\Delta E_{n} t}
$$

Meson-Baryon Scattering Processes

There are six elastic MB scattering processes that we calculated on the Lattice:

$$
\begin{array}{rll}
K^{+}+n & \rightarrow & K^{+}+n \\
K^{+}+p & \rightarrow & K^{+}+p \\
\bar{K}^{0}+\Sigma^{+} & \rightarrow & \bar{K}^{0}+\Sigma^{+} \\
\bar{K}^{0}+\Xi^{0} & \rightarrow & \bar{K}^{0}+\Xi^{0} \\
\pi^{+}+\Sigma^{+} & \rightarrow & \bar{K}^{0}+\Sigma^{+} \\
\pi^{+}+\Xi^{0} & \rightarrow & \bar{K}^{0}+\Xi^{0}
\end{array}
$$

these processes do not have disconnected diagrams.

Isospin Channels

The scattering amplitudes from HB $\chi P T$ are [Liu and Zhu hep-ph/0607100v3; N. Kaiser nucl-th/0107006v2]:

Particles	Isospin content	$\chi P T$ L.O.	$\chi P T$ N.L.O.
$\pi^{+} \Sigma^{+}$	$T_{\pi \Sigma}^{(2)}$	$\frac{-m_{\pi}}{f_{\pi}^{2}}$	$\frac{m_{\pi}^{2}}{f_{\pi}^{2}} C_{1}$
$\pi^{+} \Xi^{0}$	$T_{\pi \Xi}^{(3 / 2)}$	$\frac{-m_{\pi}}{2 f_{\pi}^{2}}$	$\frac{m_{\pi}^{2}}{f_{\pi}^{2}}\left(C_{1}+C_{0}\right)$
$K^{+} p$	$T_{K N}^{(1)}$	$\frac{-m_{k}}{f_{k}^{2}}$	$\frac{m_{k}^{2}}{f_{k}^{2}} C_{1}$
$K^{+} n$	$\frac{1}{2}\left(T_{K N}^{(1)}+T_{K N}^{(0)}\right)$	$\frac{-m_{k}}{2 f_{k}^{2}}$	$\frac{m_{k}^{2}}{2 f_{k}^{2}}\left(C_{1}+C_{0}\right)$
$\bar{K}^{0} \Xi^{0}$	$T_{K \Xi}^{(1)}$	$\frac{-m_{k}}{f_{k}^{2}}$	$\frac{m_{k}^{2}}{f_{k}^{2}} C_{1}$
$\bar{K}^{0} \Sigma^{+}$	$T_{K \Sigma}^{(3 / 2)}$	$\frac{-m_{k}}{2 f_{k}^{2}}$	$\frac{m_{k}^{2}}{2 f_{k}^{2}}\left(C_{1}+C_{0}\right)$

Scattering Lengths

The threshold T matrix is related to the scattering length by:

$$
T_{\phi B}^{(I)}=4 \pi\left(1+\frac{m_{\phi}}{M_{B}}\right) a_{\phi B}^{(I)}
$$

So at tree-level a is:

$$
a_{\phi B}=-\frac{\mu_{\phi B}}{4 \pi f_{\phi}^{2}}, \quad \text { or } \quad a_{\phi B}=-\frac{\mu_{\phi B}}{8 \pi f_{\phi}^{2}},
$$

with μ being the reduced mass of the meson and baryon:

$$
\mu_{\phi B}=\frac{m_{\phi} M_{B}}{m_{\phi}+M_{B}}
$$

MILC Configurations Used in the Calculation

Config Set	Dimensions	$b m_{l}$	$b m_{s}$	m_{π}	\# configs	\# sources
2896f21b709m0062m031	$28^{3} \times 96$	0.0062	0.05	317 MeV	1001	7
2064 f 21 b 676 m 007 m 050	$20^{3} \times 64$	0.007	0.05	294 MeV	1039	24
2064 f 21 b 676 m 010 m 050	$20^{3} \times 64$	0.010	0.05	348 MeV	769	24
2064 f 21 b 679 m 020 m 050	$20^{3} \times 64$	0.020	0.05	484 MeV	486	24
2064 f 21 b 681 m 030 m 050	$20^{3} \times 64$	0.030	0.05	565 MeV	564	16

$$
b_{c}=0.125 \mathrm{fm}, \quad b_{f}=0.09 \mathrm{fm}, \quad L=2.5 \mathrm{fm}
$$

m007 Effective Mass Plots

m030 Effective Mass Plots

m0062 μa Effective Plots

m030 μa Effective Plots

PRELIMINARY

$\pi^{+} \Sigma^{+}$Scattering Length vs. Reduced Mass

From left to right, the mass points are ordered: m007, m0062, m010, m020, m030.

the blue error bar is statistical, and the red error bar is an estimate of the systematic error due to fitting.

Conclusion

- we will be able to extract the scattering lengths for some of these processes, but not with high precision.
- we can also fit the low energy constants C_{1} and C_{0} that appear at NNLO in the $H B \chi P T$ Lagrangian

To Do:

- Use Mixed Action $\chi P T$ for the chiral extrapolations

Thanks to NPLQCD: Silas Beane, William Detmold, Tom Luu, Kostas Orginos, Assumpta Parreño, Martin Savage, and André Walker-Loud

Thanks to The College of William and Mary, and the organizers

Jackknife

Once we have the numbers from the correlators, we average over the number of gauge configurations using the jackknife method

$$
\begin{gathered}
\alpha_{i}=\left[\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}\right] \\
\alpha_{i}^{j a c k k n i f e}=\frac{1}{N-1}\left[\sum_{i=1}^{N} \alpha_{i}-\alpha_{1}, \sum_{i=1}^{N} \alpha_{i}-\alpha_{2}, \ldots, \sum_{i=1}^{N} \alpha_{i}-\alpha_{N}\right]
\end{gathered}
$$

time	config 1	config 2	\ldots	config N
0	0.00012	0.00013	\ldots	0.00012
1	0.00007	0.00006	\ldots	0.00004
\vdots	\vdots	\vdots	\vdots	\vdots
31	0.00009	0.00008	\ldots	0.00007

The reason for jackknife is that the measurements at different coordinates (x, y) are not statistically independent (see DeGrand \& DeTar, "Lattice Methods for Quantum Chromodynamics").

Energy Eigenvalues and Scattering Length

The scattering length can be expressed in terms of known constants, and quantities we can measure on the lattice;

$$
\Delta E_{0}=-\frac{4 \pi a}{M L^{3}}\left[1+c_{1} \frac{a}{L}+c_{2}\left(\frac{a}{L}\right)^{2}\right]+\mathcal{O}\left(\frac{1}{L^{6}}\right)
$$

where the constants, c_{1}, c_{2} contain infinite sums, and a regulator Λ, which have to be evaluated numerically (see S.R. Beane, P.F.Bedaque, A. Parreno, M.J. Savage, hep-lat/0312004)

Using the above expression, we can solve for the scattering length since we can fit both masses and ΔE, from our lattice data.

This expression is obtained from the exact equation for $\mathbf{S}\left(\frac{p L}{2 \pi}\right)$.

Heavy Baryon χ PT

invariant Lagrangian of $\mathrm{HB} \chi$ PT reads ${ }^{\text {a }}$

$$
\mathcal{L}=\mathcal{L}_{\phi \phi}+\mathcal{L}_{\phi B},
$$

$\mathcal{L}_{\phi \phi}$ incorporates even chiral order terms while the terms in $\mathcal{L}_{\phi B}$ start from $\mathcal{O}(p)$.

$$
\begin{aligned}
& \mathcal{L}_{\phi \phi}^{(2)}=f^{2} \operatorname{tr}\left(u_{\mu} u^{\mu}+\frac{\chi+}{4}\right), \\
& \mathcal{L}_{\phi B}^{(1)}= \operatorname{tr}\left(\bar{B}\left(i \partial_{0} B+\left[\Gamma_{0}, B\right]\right)\right)-D \operatorname{tr}(\bar{B}\{\vec{\sigma} \cdot \vec{u}, B\})-F \operatorname{tr}(\bar{B}[\vec{\sigma} \cdot \vec{u}, B]), \\
& \mathcal{L}_{\phi B}^{(2)}= b_{D} \operatorname{tr}\left(\bar{B}\left\{\chi_{+}, B\right\}\right)+b_{F} \operatorname{tr}\left(\bar{B}\left[\chi_{+}, B\right]\right)+b_{0} \operatorname{tr}(\bar{B} B) \operatorname{tr}\left(\chi_{+}\right) \\
&+\left(2 d_{D}+\frac{D^{2}-3 F^{2}}{2 M_{0}}\right) \operatorname{tr}\left(\bar{B}\left\{u_{0}^{2}, B\right\}\right)+\left(2 d_{F}-\frac{D F}{M_{0}}\right) \operatorname{tr}\left(\bar{B}\left[u_{0}^{2}, B\right]\right) \\
&+\left(2 d_{0}+\frac{F^{2}-D^{2}}{2 M_{0}}\right) \operatorname{tr}(\bar{B} B) \operatorname{tr}\left(u_{0}^{2}\right) \\
&+\left(2 d_{1}+\frac{3 F^{2}-D^{2}}{3 M_{0}}\right) \operatorname{tr}\left(\bar{B} u_{0}\right) \operatorname{tr}\left(u_{0} B\right)
\end{aligned}
$$

$\mathbf{H B} \chi \mathbf{P T}$

$$
\begin{aligned}
& \Gamma_{\mu}=\frac{i}{2}\left[\xi^{\dagger}, \partial_{\mu} \xi\right], \quad u_{\mu}=\frac{i}{2}\left\{\xi^{\dagger}, \partial_{\mu} \xi\right\}, \quad \xi=\exp (i \phi / 2 f), \\
& \chi_{+}=\xi^{\dagger} \chi \xi^{\dagger}+\xi \chi \xi, \quad \chi=\operatorname{diag}\left(m_{\pi}^{2}, m_{\pi}^{2}, 2 m_{K}^{2}-m_{\pi}^{2}\right), \\
& \phi=\sqrt{2}\left(\begin{array}{ccc}
\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}} \eta
\end{array}\right), B=\left(\begin{array}{ccc}
\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\
\Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda}{\sqrt{6}} & n \\
\Xi^{-} & \Xi^{0} & -\frac{2}{\sqrt{6}} \Lambda
\end{array}\right)
\end{aligned}
$$

where $C_{1,0}$ are defined in Ref. (N. Kaiser, Chiral Corrections to Kaon Nucleon Scattering lengths)

$$
\begin{aligned}
& C_{1}=2\left(d_{0}-2 b_{0}\right)+2\left(d_{D}-2 b_{D}\right)+d_{1}-\frac{D^{2}+3 F^{2}}{6 M_{0}}, \\
& C_{0}=2\left(d_{0}-2 b_{0}\right)-2\left(d_{F}-2 b_{F}\right)-d_{1}-\frac{D(D-3 F)}{3 M_{0}} .
\end{aligned}
$$

Meson-Baryon Scattering Lengths in HB χ PT, Liu and Zhu, 2007

