Motivations o	The HiRep code ○	$SU(2)$ with $n_f = 2$ adjoint	Conclusions O	Extra slides

Fermions in higher representations. Some results about SU(2) with adjoint fermions.

Agostino Patella

Swansea University

with L. Del Debbio, C. Pica - arXiv:0805.2058 [hep-lat]

Lattice08, Williamsburg 18/7/2008

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

O				
Motivations o	The HiRep code o	$SU(2)$ with $n_f = 2$ adjoint	Conclusions o	Extra slides

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Motivations

Why higher representations?

SU(2) with $n_f = 2$ adjoint

- Conformal point?
- The parameters
- The chiral limit
- Troubles at small m at fixed lattice spacing
- Extracting the masses from correlators
- Results

Conclusions

Motivations	The HiRep code ○	$SU(2)$ with $n_f = 2$ adjoint	Conclusions o	Extra slides
Outling				

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outime

Motivations Why higher representations?

- The HiRep code
 - - Conformal point?

 - Troubles at small *m* at fixed lattice spacing
 - Extracting the masses from correlators
 - Results

Motivations •	The HiRep code o	$SU(2)$ with $n_f = 2$ adjoint	Conclusions o	Extra slides

Motivations: Why higher representations?

- Technicolor models. SU(2) gauge theories + fermions in the symmetric two-index representation
- Orientifold planar equivalence. SU(3) + fund. fermions $\longrightarrow SU(N)$ + 2AS fermions $\longrightarrow SU(\infty)$ + Adj fermions
- Softly-broken SYM.

SU(N) gauge theories + one Majorana fermion in the adjoint representation

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

		000000000		0000000
Motivations	The HiRep code	$SU(2)$ with $n_f = 2$ adjoint	Conclusions	Extra slides

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Why higher representations?

The HiRep code The HiRep code

- Conformal point?

- Troubles at small *m* at fixed lattice spacing
- Extracting the masses from correlators
- Results

Motivations O	The HiRep code ●	$SU(2)$ with $n_f = 2$ adjoint	Conclusions o	Extra slides	
The HiRep code					

- Wilson action + Wilson fermions.
- Standard HMC/RHMC algorithm.
- Second order Omelyan integrator for the molecular dynamics evolution, with different time steps for the gauge and fermion actions.
- Link update implemented by left multiplication of a unitary matrix that is a second-order approximation for exp $(i\pi\Delta t)$.
- Even/odd preconditiong for the Dirac operator.
- Fermions in the representation *R* (fund, 2AS, 2S, Adj).

$$\begin{split} D\psi(x) &= \psi(x) - \frac{1}{\kappa} \sum_{\mu} \left\{ (1 - \gamma_{\mu}) U^{R}(x, \mu) \psi(x + \mu) + (1 + \gamma_{\mu}) U^{R}(x - \mu, \mu)^{\dagger} \psi(x - \mu) \right\} \\ \frac{d}{d\tau} U(x, \mu) &= i\pi^{a}(x, \mu) T^{a}_{F} U(x, \mu) \\ H &= \frac{1}{4} \sum_{x,\mu} \pi^{a}(x, \mu)^{2} - \frac{\beta}{N} \sum_{x,\mu < \nu} \mathcal{P}_{\mu\nu}(x) + \sum_{x} \phi^{\dagger}(x) [D^{\dagger}_{R} D_{R} - s]^{-1} \phi(x) \\ \frac{dH_{f}}{d\tau} &= i \sum_{a,x,\mu} \pi^{a}(x, \mu) \operatorname{tr}_{R} \{T^{a}_{R} F_{f}[U_{R}](x, \mu)\} \\ \frac{1}{2} \frac{d}{d\tau} \pi^{a}(x, \mu) + \operatorname{tr}_{F} [iT^{a}_{F} F_{g}(x, \mu)] + \operatorname{tr}_{R} [iT^{a}_{R} F_{f}(x, \mu)] = 0 \end{split}$$

Motivations o	The HiRep code ○	$SU(2)$ with $n_f = 2$ adjoint	Conclusions o	Extra slides
Outling				

Outline

Why higher representations?

The HiRep code

SU(2) with $n_f = 2$ adjoint

- Conformal point?
- The parameters
- The chiral limit
- Troubles at small m at fixed lattice spacing
- Extracting the masses from correlators
- Results

Motivations o	The HiRep code ○	$SU(2)$ with $n_f = 2$ adjoint	Conclusions o	Extra slides
Conform	al point?			

- Catteral, Giedt, Sannino, Schneible, hep-lat/0807.0792
- next talk by Hietanen

Motivations o	The HiRep code ○	$SU(2)$ with $n_f = 2$ adjoint	Conclusions o	Extra slides
The parar	neters			

 $\beta = 2.0$

lattice	V	κ	$-am_0$	N _{traj}	$\langle P \rangle$	au
T2-A1	8×4^3	0.12500	0.0	28800	0.5093(14)	2.9(0.4)
T2-A2	8×4^3	0.14286	0.5	28800	0.5163(16)	3.1(0.5)
T2-A3	8×4^3	0.15385	0.75	28800	0.5235(18)	3.1(0.5)
T2-A4	8×4^3	0.16667	1.0	28800	0.5373(20)	6.0(1.2)
T2-A5	8×4^3	0.18182	1.25	27200	0.5742(37)	12.0(3.6)
T2-A6	8×4^3	0.18382	1.28	25600	0.5850(50)	22.3(9.3)
T2-A7	8×4^3	0.18587	1.31	41600	0.6013(55)	48.3(23.3)
T2-A8	8×4^3	0.18657	1.32	51200	0.6159(58)	40.7(16.3)
T2-A1′	8×4^3	0.12500	0.0	3000	0.5094(45)	2.7(1.2)
T2-B7	16×8^{3}	0.18587	1.31	3200	0.5951(42)	5.8(3.6)
T2-B8	16×8^{3}	0.18657	1.32	1600	0.6040(56)	9.0(9.6)
T2-B9	16×8^{3}	0.18692	1.325	2240	0.6107(53)	4.2(2.6)
T2-B10	16×8^{3}	0.18727	1.33	1100	0.6168(73)	2.6(1.8)
T2-B11	16×8^{3}	0.18797	1.34	3840	0.6347(58)	13.6(11.5)

Motivations o	The HiRep code ○	$SU(2)$ with $n_f = 2$ adjoint	Conclusions o	Extra slides
The chi	ral limit			

Wilson fermions explicitly break the chiral symmetry for each value of κ . The chiral point is fine-tuned by requiring that the Ward identities for the chiral symmetry are recovered.

$$\begin{split} \langle \bar{\psi}\gamma_5\psi(x)\;\partial_\mu\bar{\psi}\gamma_\mu\gamma_5\psi(y)\rangle &= 2m\langle\bar{\psi}\gamma_5\psi(x)\;\bar{\psi}\gamma_5\psi(y)\rangle\\ am \simeq A\left(\frac{1}{\kappa}-\frac{1}{\kappa_c}\right) \end{split}$$

In the chiral point m = 0 and in the continuum limit, we assume that the chiral symmetry is spontaneously broken. Then the lightest PS meson is massless and for small values of m_{PS} , the χ PT is valid.

$$\frac{M_{PS}}{4\pi F_{PS}} \ll 1$$
$$aM_{PS} \simeq B\sqrt{am}$$
$$F_{PS} \simeq F_{PS}(0) + Cm$$
$$M_V \simeq M_V(0) + Dm$$

We want to check this assumption. We need to go to small PCAC masses but we need to be careful in this region.

$$SU(4) \xrightarrow{\text{broken by } m, a} SO(4) \xrightarrow{\text{sp. broken in Aoki phase}} U(1) \times U(1)$$

- In the Aoki phase, flavour is spontaneously broken. Four Goldstone bosons are expected in this case.
- The transition to the Aoki phase is expected around the chiral limit in a width $a\Delta m \sim (a\Lambda)^3$.
- In the Aoki phase, exact zero modes of the Dirac operator (and instability of the algorithm) are expected.
- At finite volume, the phase transition becomes a wide cross-over. Thus, we can have a region of stability of the algorithm in which the measured observables are highly sensitive to lattice artifacts.

Safe chiral limit

We need to check the stability of our results close to the chiral point, by increasing the volume and reducing the lattice spacing (the width of the distribution of the lowest Dirac eigenvalue shrinks as a/\sqrt{V} and the Aoki phase width shrinks as a^3).

Motivations	The HiRep code	$SU(2)$ with $n_f = 2$ adjoint	Conclusions	Extra slides
		0000000		

Extracting the masses from correlators

ヨー わくで

The PCAC mass and the chiral limit

Motivations o	The HiRep code ○	$SU(2)$ with $n_f = 2$ adjoint	Conclusions o	Extra slides
-				

The PS mass

 $a^2 M_{PS}^2 = Bam$

		000000000				
Motivations	The HiRep code	$SU(2)$ with $n_f = 2$ adjoint	Conclusions	Extra slides		

The V mass

 $M_V = M_V(0) + Dm$

Motivations O	The HiRep code ○	$SU(2)$ with $n_f = 2$ adjoint	Conclusions o	Extra slides

The PS decay constant

$$C_{\gamma_5,\gamma_5}(t) \simeq \frac{G_{PS}^2}{M_{PS}} \exp\{-M_{PS}t\}$$
$$F_{PS} = \frac{m}{M_{PS}^2} G_{PS}$$
$$F_{PS} = F_{PS}(0) + Cm$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Motivations o	The HiRep code ○	$SU(2)$ with $n_f = 2$ adjoint	Conclusions o	Extra slides
Validity re				

We are at the superior corner of the region of applicability of χ PT. So far data are compatible with the standard scenario of chiral symmetry breaking at the chiral point. Anyway more exotic scenarios (like the presence of a conformal chiral point) cannot be excluded. We need to go closer to the chiral point in a safe way (increasing the volume and reducing the lattice spacing).

• • • •				
Motivations o	The HiRep code ○	$SU(2)$ with $n_f = 2$ adjoint	Conclusions o	Extra slides

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Motivations

- Why higher representations?
- 2 The HiRep code• The HiRep code

3

U(2) with $n_f = 2$ adjoin

- Conformal point?
- The parameters
- The chiral limit
- Troubles at small m at fixed lattice spacing
- Extracting the masses from correlators
- Results

Motivations o	The HiRep code ○	$SU(2)$ with $n_f = 2$ adjoint	Conclusions •	Extra slides
Conclusio	ons			

- SU(N) gauge theories with fermions in two-index representations are relevant for the physics beyond SM.
- We have implemented and tested the HMC/RHMC algorithm for fermions in the generic representation of *SU*(*N*).
- We have produced some preliminary phenomenological results for SU(2) with $n_f = 2$ adjoint fermions at fixed lattice spacing.
- Our results are affected by systematic errors, due to both finite lattice spacing and finite volume. In particular the chiral limit and the scaling region require deeper investigation.
- Our results are compatible with the standard scenario of chiral symmetry breaking in the chiral point and xPT. However more exotic scenarios cannot be excluded. Lighest quarks are necessary.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Motivations	The HiRep code	$SU(2)$ with $n_f = 2$ adjoint	Conclusions	Extra slides
				000000

Behaviour of the HMC/RHMC algorithm

 If △H is the difference of the value of the Hamiltonian at the beginning and at the end of the MD evolution, we expect

$$\langle \exp(-\Delta H) \rangle = 1$$

• If Δt is the MD step size, we expect

 $\langle \Delta H \rangle \sim \Delta t^4$

If Pacc is the acceptance probability, we expect

$$P_{acc} = \operatorname{erfc}(\sqrt{\langle \Delta H \rangle}/2)$$

- The average of the plaquette is independent of Δt .
- Violation of reversibility. Fix a starting configuration, evolve for $\tau = 1$, flip the momenta and evolve back for $\tau = 1$. The starting and ending configurations should be the same. We get

$$|\delta H| \simeq 10^{-7}$$

Motivations	The HiRep code	$SU(2)$ with $n_f = 2$ adjoint	Conclusions	Extra slides
o	o		o	o●ooooo
Test of the	e group strue			

• $SU(3) + n_f = 2$ in the fundamental representation, checked against:

M. Luscher, Comput. Phys. Commun. 165, 199 (2005) [arXiv:hep-lat/0409106]

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- SU(3) + n_f = 2 in the fundamental representation =
 SU(3) + n_f = 2 in the antisymmetric two-index representation
- $SU(2) + n_f = 2$ in the adjoint representation, checked against:

S. Catteral and F. Sannino, Phys. Rev. D 76, 034504 (2007) [arXiv:hep-lat/0705.1664]

SU(2) + n_f = 2 in the adjoint representation =
 SU(2) + n_f = 2 in the symmetric two-index representation

Motivations o	The HiRep code o	$SU(2)$ with $n_f = 2$ adjoint	Conclusions O	Extra slides

The lowest eigenvalue of D

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 の々で

0	0	000000000	O	0000000				
Motivations	The HiBen code	$SU(2)$ with $n_c = 2$ adjoint	Conclusions	Extra elidee				

From the naive TC scaling:

$$\frac{M_V}{F_{PS}} = \frac{M_\rho}{F_\pi} \simeq 8.4$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

				0000000		

Motivations	The HiRep code	$SU(2)$ with $n_f = 2$ adjoint	Conclusions	Extra slides
o	○		o	○○○○○●○
The V n	nass			

