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Motivations: Why higher representations?

Technicolor models.
SU(2) gauge theories + fermions in the symmetric two-index representation

Orientifold planar equivalence.
SU(3) + fund. fermions −→ SU(N) + 2AS fermions −→ SU(∞) + Adj fermions

Softly-broken SYM.
SU(N) gauge theories + one Majorana fermion in the adjoint representation
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The HiRep code

Wilson action + Wilson fermions.
Standard HMC/RHMC algorithm.
Second order Omelyan integrator for the molecular dynamics evolution, with
different time steps for the gauge and fermion actions.
Link update implemeted by left multiplication of a unitary matrix that is a
second-order approximation for exp (iπ∆t).
Even/odd preconditiong for the Dirac operator.
Fermions in the representation R (fund, 2AS, 2S, Adj).

Dψ(x) = ψ(x)−
1
κ

X
µ

n
(1− γµ)UR(x, µ)ψ(x + µ) + (1 + γµ)UR(x− µ, µ)†ψ(x− µ)

o
d

dτ
U(x, µ) = iπa(x, µ)Ta

FU(x, µ)

H =
1
4

X
x,µ

πa(x, µ)2 −
β

N

X
x,µ<ν

Pµν(x) +
X

x

φ†(x)[D†RDR − s]−1φ(x)

dHf

dτ
= i

X
a,x,µ

πa(x, µ)trR{Ta
RFf [UR](x, µ)}

1
2

d
dτ
πa(x, µ) + trF[iTa

FFg(x, µ)] + trR[iTa
RFf (x, µ)] = 0
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Conformal point?

ChSB ChS

Conf

beta

m

Catteral, Giedt, Sannino, Schneible, hep-lat/0807.0792

next talk by Hietanen
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The parameters

β = 2.0

lattice V κ −am0 Ntraj 〈P〉 τ

T2-A1 8× 43 0.12500 0.0 28800 0.5093(14) 2.9(0.4)
T2-A2 8× 43 0.14286 0.5 28800 0.5163(16) 3.1(0.5)
T2-A3 8× 43 0.15385 0.75 28800 0.5235(18) 3.1(0.5)
T2-A4 8× 43 0.16667 1.0 28800 0.5373(20) 6.0(1.2)
T2-A5 8× 43 0.18182 1.25 27200 0.5742(37) 12.0(3.6)
T2-A6 8× 43 0.18382 1.28 25600 0.5850(50) 22.3(9.3)
T2-A7 8× 43 0.18587 1.31 41600 0.6013(55) 48.3(23.3)
T2-A8 8× 43 0.18657 1.32 51200 0.6159(58) 40.7(16.3)
T2-A1′ 8× 43 0.12500 0.0 3000 0.5094(45) 2.7(1.2)
T2-B7 16× 83 0.18587 1.31 3200 0.5951(42) 5.8(3.6)
T2-B8 16× 83 0.18657 1.32 1600 0.6040(56) 9.0(9.6)
T2-B9 16× 83 0.18692 1.325 2240 0.6107(53) 4.2(2.6)
T2-B10 16× 83 0.18727 1.33 1100 0.6168(73) 2.6(1.8)
T2-B11 16× 83 0.18797 1.34 3840 0.6347(58) 13.6(11.5)



Motivations The HiRep code SU(2) with nf = 2 adjoint Conclusions Extra slides

The chiral limit

Wilson fermions explictly break the chiral symmetry for each value of κ. The chiral point
is fine-tuned by requiring that the Ward identities for the chiral symmetry are recovered.

〈ψ̄γ5ψ(x) ∂µψ̄γµγ5ψ(y)〉 = 2m〈ψ̄γ5ψ(x) ψ̄γ5ψ(y)〉

am ' A
„

1
κ
−

1
κc

«
In the chiral point m = 0 and in the continuum limit, we assume that the chiral
symmetry is spontaneously broken. Then the lightest PS meson is massless and for
small values of mPS, the χPT is valid.

MPS

4πFPS
� 1

aMPS ' B
√

am

FPS ' FPS(0) + Cm

MV ' MV(0) + Dm

We want to check this assumption. We need to go to small PCAC masses but we need
to be careful in this region.
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Troubles at small m at fixed lattice spacing

SU(4)
broken by m, a−−−−−−−→ SO(4)

sp. broken in Aoki phase−−−−−−−−−−−−→ U(1)× U(1)

In the Aoki phase, flavour is spontaneously broken. Four Goldstone bosons are
expected in this case.
The transition to the Aoki phase is expected around the chiral limit in a width
a∆m ∼ (aΛ)3.
In the Aoki phase, exact zero modes of the Dirac operator (and instability of the
algorithm) are expected.
At finite volume, the phase transition becomes a wide cross-over. Thus, we can
have a region of stability of the algorithm in which the measured observables are
highly sensitive to lattice artifacts.

Safe chiral limit

We need to check the stability of our results close to the chiral point, by increasing the
volume and reducing the lattice spacing (the width of the distribution of the lowest Dirac
eigenvalue shrinks as a/

√
V and the Aoki phase width shrinks as a3).
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Extracting the masses from correlators
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The PCAC mass and the chiral limit
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−→ κc = 0.18679(7)



Motivations The HiRep code SU(2) with nf = 2 adjoint Conclusions Extra slides

The PS mass
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The V mass
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The PS decay constant
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Validity region of χPT
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We are at the superior corner of the region of applicability of χPT. So far data are
compatible with the standard scenario of chiral symmetry breaking at the chiral point.
Anyway more exotic scenarios (like the presence of a conformal chiral point) cannot be
excluded. We need to go closer to the chiral point in a safe way (increasing the volume
and reducing the lattice spacing).
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Conclusions

SU(N) gauge theories with fermions in two-index representations are relevant for
the physics beyond SM.

We have implemented and tested the HMC/RHMC algorithm for fermions in the
generic representation of SU(N).

We have produced some preliminary phenomenological results for SU(2) with
nf = 2 adjoint fermions at fixed lattice spacing.

Our results are affected by systematic errors, due to both finite lattice spacing
and finite volume. In particular the chiral limit and the scaling region require
deeper investigation.

Our results are compatible with the standard scenario of chiral symmetry
breaking in the chiral point and χPT. However more exotic scenarios cannot be
excluded. Lighest quarks are necessary.



Motivations The HiRep code SU(2) with nf = 2 adjoint Conclusions Extra slides

Behaviour of the HMC/RHMC algorithm

If ∆H is the difference of the value of the Hamiltonian at the beginning and at the
end of the MD evolution, we expect

〈exp(−∆H)〉 = 1

If ∆t is the MD step size, we expect

〈∆H〉 ∼ ∆t4

If Pacc is the acceptance probability, we expect

Pacc = erfc(
p
〈∆H〉/2)

The average of the plaquette is independent of ∆t.

Violation of reversibility. Fix a starting configuration, evolve for τ = 1, flip the
momenta and evolve back for τ = 1. The starting and ending configurations
should be the same. We get

|δH| ' 10−7
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Test of the group structure

SU(3) + nf = 2 in the fundamental representation, checked against:

M. Luscher, Comput. Phys. Commun. 165, 199 (2005) [arXiv:hep-lat/0409106]

SU(3) + nf = 2 in the fundamental representation =
= SU(3) + nf = 2 in the antisymmetric two-index representation

SU(2) + nf = 2 in the adjoint representation, checked against:

S. Catteral and F. Sannino, Phys. Rev. D 76, 034504 (2007)
[arXiv:hep-lat/0705.1664]

SU(2) + nf = 2 in the adjoint representation =
= SU(2) + nf = 2 in the symmetric two-index representation
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The lowest eigenvalue of D
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Failure of the naive TC scaling
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The PS mass
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The V mass
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Compatibility with exotic scenarios
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