Quarkyonic Phase in Lattice QCD at Strong Coupling

Akira Ohnishi and Kohtaroh Miura

Yukawa Institute for Theoretical Physics (YITP), Kyoto Univ.

- Introduction
- Strong Coupling Lattice QCD with 1/g² Correction
- Phase diagram in SC-LQCD and Quarkyonic Phase
- Summary

Miura and AO, arXiv:0806.3357 Our previous refs. on 1/g² corr. AO et al. PTP Suppl. 168(07) 261 [arXiv:0704.2823] AO, Kawamoto, Miura, J.Phys.G34(07)S655 [hep-lat/0701024]

Introduction: Quark Matter Phase Diagram

- What is the NEXT to the hadron phase ?
 - High T direction → (Strongly correlated) Quark Gluon Plasma
 - High μ direction ; Important for Dense Matter Physics Baryon rich QGP
 - or Color SuperConductor (CSC)
 - or Quarkyonic (QY) matter McLerran, Pisarski (07)

Quarkyonic Phase & Strong Coupling Lattice QCD

- **Quarkyonic matter at large** N_c *McLerran, Pisarski (07)*
 - Gluon contribution $O(N_c^2) >> Quark O(N_c)$, Hadron $O(1) \rightarrow$ Gluonic (deconf.) P.T. is independent of μ (as far as $\mu = O(1)$)
 - At N_cµ > M_B, baryon density rapidly grows, and soon reaches O(N_c)
 → Existence of "Confined High Baryon Density Matter" made of *quarks* but with baryonic excitation (Quarkyonic Matter)

Do we have Quarkyonic phase at $N_c = 3$?

- Strong Coupling Limit $(g \rightarrow \infty)$
 - Plaquette action disappears
 - In MFA, Eff. Pot. is analytically obtained at finite T and μ.
 - Problem: Too small $R = N_c \mu_c / T_c$ value

"Evolution" of Phase Diagram

- Phase Diagram "Shape" becomes closer to that of Real World.
 - Real world R=3 $\mu_c/T_c \sim (6-12)$
 - $1985 \rightarrow R=0.79$ (Zero T / Finite T)
 - 1992 \rightarrow R=0.83 (Finite T & μ)
 - 2004 \rightarrow R= 0.99 (Finite T& μ)

Quarkyonic phase in SC-LQCD

We study the phase diagram in Strong Coupling Lattice QCD (SC-LQCD) with 1/g² correction, and examine the existence of the Quarkyonic (QY) phase.

- Reservations: It is still a "Toy"
 - One species of staggered fermion without quarter/square root $\rightarrow N_f = 4$
 - Leading order in 1/d (d=spatial dim.)
 → No baryon effects (cf. *Par-Tue, Miura*)
 - Mean Field treatment
 - No Diqaurk condensate
 - NLO in 1/g² expansion, ...

Effective Potential in Strong Coupling lattice QCD with 1/g² Correction

Effective Potential in SCL-LQCD

Effective Potential with 1/g^2 (1)

1/d expansion of Plaquette action (Spatial One-Link Integral)

Faldt, Petersson (86); Bilic, Karsch, Redlich (92)

$$\int dU U_{ab} U_{cd}^{+} = \frac{1}{N_c} \delta_{ad} \delta_{bc}$$

- Spatial plaquett $\rightarrow MMMM$
- Temporal Link $\rightarrow V^+V^-$

$$V_x^+ = e^{\mu} \bar{\chi}_x U_0(x) \chi_{x+\hat{0}}$$
$$V_x^- = e^{-\mu} \bar{\chi}_{x+\hat{0}} U_0^{\dagger}(x) \chi_x$$

Effective Action

$$\begin{split} \Delta S_{\beta}^{(\tau)} &= \frac{1}{4N_c^2 g^2} \sum_{x,j>0} (V_x^+ V_{x+\hat{j}}^- + V_x^+ V_{x-\hat{j}}^-) \\ \Delta S_{\beta}^{(s)} &= -\frac{1}{8N_c^4 g^2} \sum_{x,k>j>0} M_x M_{x+\hat{j}} M_{x+\hat{k}} M_{x+\hat{k}+\hat{j}} \end{split}$$

Effective Potential with $1/g^2$ (2)

Extended Hubbard-Stratonovich Transf.

$$e^{\alpha AB} = \int d\varphi \, d\phi \, e^{-\alpha \left\{\varphi^2 - (A+B)\varphi + \phi^2 - i(A-B)\phi\right\}}$$
$$\approx e^{-\alpha \left\{\varphi^2 - (A+B)\varphi - \phi^2 + (A-B)\phi\right\}}.$$

- Mean field approx. ϕ , Saddle point approx. for ϕ
- E.g. Temporal Plaquette action becomes,

$$\Delta S_{\beta}^{(\tau)} \approx \frac{1}{4N_c^2 g^2} \sum_{x,j>0} \left[\varphi_{\tau}^2 + (V_x^+ - V_{x+\hat{j}}^-)\varphi_{\tau} - \phi_{\tau}^2 - (V_x^+ + V_{x+\hat{j}}^-)\phi_{\tau} \right] + (j \leftrightarrow -j)$$

Effective Action becomes similar to the SCL action,

$$S_{\text{eff}} = \frac{1}{2} \left[1 + \beta_{\tau} \varphi_{\tau} \right] \sum_{x} \left[e^{-\beta_{\tau} \phi_{\tau}} V_{x}^{+} - e^{\beta_{\tau} \phi_{\tau}} V_{x}^{-} \right] + m_{0} \sum_{x} M_{x} \qquad 1/g^{2}$$
$$- \left(\frac{1}{4N_{c}} + \beta_{s} \varphi_{s} \right) \sum_{x,j>0} M_{x} M_{x+\hat{j}} + N_{\tau} L^{d} \left[\frac{\beta_{\tau}}{2} (\varphi_{\tau}^{2} - \phi_{\tau}^{2}) + \frac{d\beta_{s}}{2} \varphi_{s}^{2} \right]$$

Effective Potential with $1/g^2$ (2)

Extended Hubbard-Stratonovich Transf.

$$e^{\alpha AB} = \int d\varphi \, d\phi \, e^{-\alpha \left\{\varphi^2 - (A+B)\varphi + \phi^2 - i(A-B)\phi\right\}}$$
$$\approx e^{-\alpha \left\{\varphi^2 - (A+B)\varphi - \phi^2 + (A-B)\phi\right\}}.$$

- Mean field approx. ϕ , Saddle point approx. for ϕ
- E.g. Temporal Plaquette action becomes,

$$\Delta S_{\beta}^{(\tau)} \approx \frac{1}{4N_c^2 g^2} \sum_{x,j>0} \left[\varphi_{\tau}^2 + (V_x^+ - V_{x+\hat{j}}^-)\varphi_{\tau} - \phi_{\tau}^2 - (V_x^+ + V_{x+\hat{j}}^-)\phi_{\tau} \right] + (j \leftrightarrow -j)$$

$$\blacksquare \mathbf{WF Renormalization} \qquad \blacksquare \mathbf{Mod.}$$

$$\blacksquare \mathbf{Effective Action becomes similar to the SCL action,} \qquad \mathbf{Aux. Terms}$$

$$S_{\text{eff}} = \frac{1}{2} \left[1 + \beta_{\tau} \varphi_{\tau} \right] \sum_x \left[e^{-\beta_{\tau} \phi_{\tau}} V_x^+ - e^{\beta_{\tau} \phi_{\tau}} V_x^- \right] + m_0 \sum_x M_x \left[\frac{M_x M_x}{2} + \frac{M_x M_x}{2} + \frac{M_x M_x}{2} \right]$$

Effective Potential with 1/g^2 (3)

Effective Potential (after subst. equil. value for \phi_{\tau} and \phi_{s})

$$\begin{split} \mathcal{F}_{\text{eff}} = & \mathcal{F}_{\text{X}}(\sigma, \phi_{\tau}) + \mathcal{V}_{\text{q}}(m_{q}(\sigma), \tilde{\mu}(\phi_{\tau}), T) \\ \mathcal{V}_{\text{q}} = & -T \log \left[X_{N_{c}}(E_{q}/T) + 2 \cosh(N_{c}\tilde{\mu}/T) \right] \\ \mathcal{F}_{\text{X}} = & \frac{1}{2} b_{\sigma} \sigma^{2} + \frac{\beta_{\tau}}{2} \sigma^{2} (m_{q}^{\text{SCL}})^{2} + \frac{3d\beta_{s}}{2} \sigma^{4} - \frac{\beta_{\tau}}{2} \phi_{\tau}^{2} \\ m_{q} = & m_{q}^{\text{SCL}} (1 - N_{c}\beta_{\tau}) + \beta_{\tau} \sigma (m_{q}^{\text{SCL}})^{2} + 2d\beta_{s} \sigma^{3} \\ \tilde{\mu} = & \mu - \beta_{\tau} \phi_{\tau} \end{split}$$
from Plaq.

• W.F.Renormalization factor $(1 + \beta_{\tau} \phi_{\tau})$ in the Eff. Action \rightarrow suppr. of quark mass m_{q}

- Higher order terms $M^4 \rightarrow \sigma^4$ (Self-energy of σ)
- Aux. Field $\phi_{\tau} = \rho_{q}$ (equil.) $\rightarrow \mu$ is shifted by baryon density

Let us examine the phase diagram with this F_{eff} !

Phase Diagram in Strong Coupling lattice QCD with 1/g² Correction

Evolution of T_c

- **T**_c (μ =0) rapidly decreases with $\beta = 6/g^2$ increases.
 - WF Renormalization $\rightarrow T_c^{(2nd)} = T_c^{(2nd)}(SCL) \times (1-N_c\beta_{\tau})^2$
 - Higher order terms of $\sigma \rightarrow P.T.$ becomes the first order at $6/g^2 \sim 1$
 - Comparison with MC results (Critical behavior with $N_{\tau} = 2$) Quench $\beta_c = 5.097(1)$ (Kennedy et al, 1985) 2 N = 2 T (2nd)

Evolution of μ_c

- $\mu_{c}^{(2nd)} > \mu_{c}^{(1st)} \text{ at } 6/g^{2} > 3.53$
 - → Appearance of weakly but spontaneously chiral broken high density matter
 - Key: Effective chem. pot.

$$\mu_{\rm eff} = \mu - \beta_\tau \phi_\tau = \mu - \beta_\tau \rho_q$$

Smaller σ

- → Smaller const. quark mass
- \rightarrow Larger ρ_{a} $T_c(2nd)$ $N_c=3$ \rightarrow Smaller μ_{eff} (1st 1.5 \rightarrow P.T. to Wigner phase $T_c\,,\mu_c$ $(\sigma=0)$ is postponed 0.5 Auxiliary field ϕ_{τ} is regarded as "vector" field for quarks, 0 2 1 5 U which shifts μ effectively.

Why do we have QY? Which Explanation do you like?

- Index order P.T. condition $(C_2 = 0) \text{ leads to the relation}$ $Of effective \mu \text{ and T.}$ $F_{--} = F(\sigma = 0) + C_2 \sigma^2 + C_4 \sigma^4 + \dots$ Wightight with the second second

$$\Gamma_{\text{eff}} = \Gamma(0 = 0) + C_2 0^{\circ} + C_4 0$$

$$C_2(T, \mu - \beta_{\tau} \rho_q(\sigma = 0)) = 0$$

$$\rightarrow \mu_c^{(2\text{nd})} = f(T) - \beta_{\tau} \rho_q$$

Smaller σ

- → Smaller const. quark mass
- \rightarrow Larger ρ_q
- \rightarrow Smaller μ_{eff}

 $\sigma = 0$ Later P.T. to Wigner phase ($\sigma = 0$)

Baryon Density and Polyakov Loop in QY

- **Example:** $N_c=3$, $6/g^2=4.5$, $m_0=0$ (χ limit)
- **Baryon Density** (= $\rho_q/3$)
 - $\rho_q \sim 0$ in Nambu-Goldstone (NG) phase $\rho_q > 0$ in Wigner phase
 - ρ_q in QY ~ ρ_q in Wigner phase
- (Quark Driven) Polyakov Loop (=P)
 - Quark driven $P \sim O(N_c)$
 - P(QY) < P (Wig.)

$$P \equiv \frac{1}{2N_c} \left\langle \operatorname{tr} \left[\prod_{\tau} U_0 + \prod_{\tau} U_0^{\dagger} \right] \right\rangle$$
$$= \frac{X_{N_c-1} \cosh\left[\tilde{\mu}/T\right] + X_1 \cosh\left[(N_c - 1)\tilde{\mu}/T\right]}{N_c \left(X_{N_c} + 2 \cosh\left[N_c\tilde{\mu}/T\right]\right)}$$

Baryon Density (Quark Number Density)

- **Baryon Density (=** $\rho_q/3$)
 - $\rho_q \sim 0$ in Nambu-Goldstone (NG) phase $\rho_q > 0$ in Wigner phase
 - ρ_q in QY ~ ρ_q in Wigner phase

Polyakov Loop

(Quark Driven) Polyakov Loop (=P)

$$P \equiv \frac{1}{2N_c} \left\langle \operatorname{tr} \left[\prod_{\tau} U_0 + \prod_{\tau} U_0^{\dagger} \right] \right\rangle$$
$$= \frac{X_{N_c-1} \cosh\left[\tilde{\mu}/T\right] + X_1 \cosh\left[(N_c - 1)\tilde{\mu}/T\right]}{N_c \left(X_{N_c} + 2 \cosh\left[N_c\tilde{\mu}/T\right]\right)}$$

- P(QY) is a little smaller than P(Wig.)
- Quark driven $P = O(1/N_c)$

 $N_{c}=3, 6/g^{2}=4.5, m_{0}=0 (\chi \text{ limit})$

Chiral Condensate

- Chiral Condensate (= σ)
 - $\sigma \sim \sigma_{vac}$ in Nambu-Goldstone (NG) phase $\sigma = 0$ in Wigner phase
 - $0 < \sigma << \sigma_{vac}$ in QY

Phase Diagram

- Three phases in SC-LQCD with $N_c=3$, $6/g^2 > 3.53$, $m_0=0$ (χ limit)
 - Nambu-Goldstone (NG) phase: Large σ, Small ρ_α, Small P
 - Winger phase: $\sigma=0$, Large ρ_{α} , finite P

Comparison with Other Models

Comparison with Other Models

Quarkyonic(-like) Area in SC-LQCD is smaller than in PNJL

Fukushima (08) Abuki, Anglani Gatto, Nardulli, Ruggieril [arXiv:0805.1509]

Ohnishi, Lattice 2008., 2008/07/13-19

Conclusions

Miura and AO, arXiv:0806.3357

- We have investigated the phase diagram in Strong Coupling Lattice QCD with 1/g² corrections. Through the extended Hubbard-Stratonovich transf., we find that vector field for quarks is introduced.
- Critical Temperature at $\mu=0$ is found to be consistent with MC results by P. de Forcrand, $T_c=1/2$ ($N_{\tau}=2$) at $6/g_c^2 \sim 3.6$ The ratio R=N_c μ_c/T_c is also improved.
- We find that the Quarkyonic (QY) phase at large Nc proposed by McLerran & Pisarski appears also at N_c=3 in SC-LQCD with 6/g² > 3.53, where the chiral symmetry is weakly but spontaneously broken, and the baryon density is high. QY may be the "NEXT" to the hadron phase even at N_c=3.

Backups

Towards the Real Phase Diagram

VITP Kyoto

Definitions

$$\begin{split} \mathcal{F}_{\text{eff}} = & \mathcal{F}_{\text{X}}(\sigma, \phi_{\tau}) + \mathcal{V}_{\text{q}}(m_{q}(\sigma), \tilde{\mu}(\phi_{\tau}), T) , \\ \mathcal{F}_{\text{X}} = & \frac{1}{2} b_{\sigma} \sigma^{2} + \frac{\beta_{\tau}}{2} \sigma^{2} (m_{q}^{\text{SCL}})^{2} + \frac{3d\beta_{s}}{2} \sigma^{4} - \frac{\beta_{\tau}}{2} \phi_{\tau}^{2} , \\ \mathcal{V}_{\text{q}} = & -T \log \left[X_{N_{c}}(E_{q}/T) + 2 \cosh(N_{c}\tilde{\mu}/T) \right] , \\ m_{q} = & m_{q}^{\text{SCL}} (1 - N_{c}\beta_{\tau}) + \beta_{\tau}\sigma(m_{q}^{\text{SCL}})^{2} + 2d\beta_{s}\sigma^{3} , \\ \tilde{\mu} = & \mu - \beta_{\tau}\phi_{\tau} , \end{split}$$

$$\beta_{\tau} = d/N_c^2 g^2, \ \beta_s = (d-1)/8N_c^4 g^2$$

$$b_{\sigma} = d/2N_c, \ m_q^{\text{SCL}} = b_{\sigma}\sigma + m_0,$$

$$X_N(x) = \sinh[(N+1)x]/\sinh x$$

$$E_q = \operatorname{arcsinh}(m_q)$$

$$2N_c \sinh(N + \tilde{c}/T)$$

$$\phi_{\tau} = -\frac{\partial \mathcal{V}_{q}}{\partial \mu} = \rho_{q} = \frac{2N_{c}\sinh(N_{c}\tilde{\mu}/T)}{X_{N_{c}} + 2\cosh(N_{c}\tilde{\mu}/T)}$$

I'm interested in

Quark / Hadron / Nuclear Matter EOS and Phase Diagram

Rich Structure / Astrophysical implications / Accessible in HIC

Strong Coupling Limit of Lattice QCD

- SCL-LQCD has been a powerful tool in "phase diagram" study !
 - Chiral restoration, Phase diagram, Baryon effects, Hadron masses, Finite coupling effects, 1.2 α=0.1

Damgaard,Kawamoto, Shigemoto, PRL53('84),2211

PRD75 (07), 014502.

1400

Ohnishi, Lattice 2008., 2008/07/13-19

3

2.5

2

Lattice QCD (1)

QCD Lagrangian

$$L = \bar{\psi} (i \gamma^{\mu} D_{\mu} - m_0) \psi - \frac{1}{4} tr (F_{\mu\nu} F^{\mu\nu})$$

 ψ = Quark, *F* = Gluon tensor, m₀ = (small) quark mass

Lattice Action

$$S_{\text{QCD}} = S_G + S_F^{(s)} + S_F^{(t)} + m_0 \bar{X} X$$

$$S_{G} = -\frac{1}{g^{2}} \sum_{\text{plaq.}} \text{Tr} U_{ij}(x) + c.c.$$

$$S_{F}^{(s)} = \frac{1}{2} \sum_{x, j>0}^{2} \left(\overline{X}_{x} U_{j}(x) X_{x+\hat{j}} - \overline{X}_{x+\hat{j}} U_{j}^{+}(x) X_{x} \right)$$

$$S_{F}^{(t)} = \frac{1}{2} \sum_{x} \left(e^{\mu} \overline{X}_{x} U_{0}(x) X_{x+\hat{0}} - e^{-\mu} \overline{X}_{x+\hat{0}} U_{0}^{+}(x) X_{x} \right)$$

$$U_{\nu}^{+} \underbrace{U_{\mu}}_{U_{\mu}}^{+} U_{\nu} \xrightarrow{\overline{\chi}} U_{\mu} \chi \xrightarrow{\overline{\chi}} U_{\mu} \chi \xrightarrow{\overline{\chi}} U_{\mu} \chi \xrightarrow{\overline{\chi}} U_{\mu} \chi \xrightarrow{\overline{\chi}} M = \overline{\chi} \chi$$

- $\chi = \text{starggered fermion (quark)}$ $U = \text{link variable} \in SU(N_c)$ (gluon),
- μ = quark chemical potential

Lattice QCD (2)

Full QCD MC Simulation

 \rightarrow MC Integral of Det (Fermion Matrix) over link var. (U)

Big Task !

Matrix Size= 4 (spinor) x (Color) x (Space-Time Points) Eigen Values are widely distributed

Complex Weight with finite μ

$$\int d\bar{X} dX dU \exp(-S_G + \bar{X} AX) = \int dU \qquad A \qquad 4 N_c N_\tau N_s^3$$

Quenched QCD

- Assuming Det = 1 ~ Ignoring Fermion Loops
- Works very well for hadron masses
- Strong Coupling Limit $(g \rightarrow \infty)$
 - Pure gluonic action disappears \rightarrow Analytic evaluation of Fermion
 Det.

SCL-LQCD: Tools (1) --- One-Link Integral

Group Integral Formulae

$$\int dU U_{ab} U_{cd}^{+} = \frac{1}{N_c} \delta_{ad} \delta_{bc}$$
$$\int dU U_{ab} U_{cd} U_{ef} = \frac{1}{6} \epsilon_{ace} \epsilon_{bdf}$$

$$\int dUU_{ab}U_{cd}^{+} U_{j}^{+} U_{j}^{+} U_{j}^{+} U_{j}^{+}$$

$$(U_{j})^{3}$$

$$(U_{j})^{3}$$

$$\overline{B} = \epsilon \overline{X} \overline{X} \overline{X} / 6 B = \epsilon X X X / 6$$

$$\int dUU_{ab}U_{cd}^{+} = \frac{1}{N_{c}} \delta_{ad} \delta_{bc}$$

$$\int dUU_{ab}U_{cd}U_{ef} = \frac{1}{6} \epsilon_{ace} \epsilon_{bdf}$$

$$\int dU \exp(-a\bar{X}(x)UX(y) + b\bar{X}(y)U^{+}X(x))$$

= $\int dU \Big[1 - ab\bar{X}(a)^{a}U_{ab}X^{b}(y)\bar{X}^{c}(y)U_{cd}^{+}X^{d}(x) + \cdots \Big]$
= $1 + ab(X\bar{X})(x)(X\bar{X})(y) + \cdots = 1 + abM(x)M(y) + \cdots$
= $\exp[abM(x)M(y) + \cdots]$

Quarks and Gluons \rightarrow One-Link integral \rightarrow Mesonic and Baryonic Composites

SCL-LQCD: Tools (2) --- 1/d Expansion

■ Keep mesonic action to be indep. from spatial dimension d → Higher order terms are suppressed at large d.

$$\sum_{j} (\bar{X} U_{j} X) (\bar{X} U_{j}^{\dagger} X) \rightarrow -\frac{1}{N_{c}} \sum_{j} M(x) M(x + \hat{j}) = O(1)$$
$$\rightarrow M \propto 1/\sqrt{d}, X \propto d^{-1/4}$$

$$\sum_{j} (\bar{X} U_{j} X) (\bar{X} U_{j} X) (\bar{X} U_{j} X) \rightarrow N_{c}! \sum_{j} B(x) B(x + \hat{j}) = O(1/\sqrt{d})$$

$$\sum_{j} (\overline{X} U_{j} X)^{2} (\overline{X} U_{j}^{+} X)^{2} \rightarrow \sum_{j} M^{2}(x) M^{2}(x+\hat{j}) = O(1/d)$$

We can stop the expansion in U, since higher order terms are suppressed !

SCL-LQCD: Tools (3) --- Bosonization

We can reduce the power in χ by introducing bosons

$$\exp\left(\frac{1}{2}M^{2}\right) = \int d\sigma \exp\left(-\frac{1}{2}\sigma^{2} - \sigma M\right)$$

Nuclear MFA: $V = -\frac{1}{2}(\bar{\psi}\psi)(\bar{\psi}\psi) \simeq -U(\bar{\psi}\psi) + \frac{1}{2}U^{2}$
$$\exp\left[-\frac{1}{2}M^{2}\right] = \int d\varphi \exp\left[-\frac{1}{2}\varphi^{2} - i\varphi M\right]$$

Reduction of the power of $\chi \rightarrow$ Bi-Linear form in $\chi \rightarrow$ Fermion Determinant

SCL-LQCD: Tools (4) --- Grassman Integral **Bi-linear Fermion action leads to -log(det A) effective action** $\int d X d \bar{X} \exp[\bar{X} A X] = det A = \exp[-(-\log det A)]$ $\int d X \cdot 1 = \operatorname{anti-comm. \ constant} = 0 \quad , \quad \int d X \cdot X = \operatorname{comm. \ constant} \equiv 1$ $\int d X d \bar{X} \exp[\bar{X} A X] = \int d X d \bar{X} \frac{1}{N!} (\bar{X} A X)^{N} = \cdots = det A$

Constant $\sigma \rightarrow -\log \sigma$ interaction (Chiral RMF)

- Temporal Link Integral, Matsubara product, Staggered Fermion,
 - \rightarrow I will explain next time

Effective Potential in SCL-LQCD (Zero T)

QCD Lattice Action (Zero T treatment)

$$S = \sum_{k}^{Kawamoto, Smit, 1981} S = \sum_{k}^{Kawamoto, Smit, 1981} S = \sum_{k}^{Kawamoto, Smit, 1981} Strong Coupling Limit
\rightarrow -\frac{1}{2}(\bar{\chi}\chi) V_{M}(\bar{\chi}\chi) + m_{0}\bar{\chi}\chi$$
 One-link integral
(1/d expansion*)

$$\rightarrow \frac{1}{2}\sigma V_{M}^{-1}\sigma + \bar{\chi}(\sigma + m_{0})\chi$$
 Bosonization

$$\rightarrow \frac{1}{2}\sigma V_{M}^{-1}\sigma - N_{c}\sum_{x} \log(\sigma(x) + m_{0})$$
Fermion
Integral

$$= L^{d} N_{\tau} \left[\frac{N_{c}}{d+1} \bar{\sigma}^{2} - N_{c} \log(\bar{\sigma} + m_{0}) \right]$$

* d = Spatial dim.

Effective Potential

Fermion Matrix = Just a number \rightarrow Simple Logarithmic Effective Potential for σ $V_{\sigma} = \frac{1}{2}a_{\sigma}\sigma^2 - b_{\sigma}\log\sigma$

Effective Potential in SCL-LQCD (Zero T)

 $F_{\text{eff}}(\sigma)$

Effective Pot. at Zero T

Kawamoto, Smit, 1981 Kluberg-Stern, Morel, Napoly, Petersson, 1981

$$F_{eff}(\sigma) = \frac{1}{2}a_{\sigma}\sigma^2 - b_{\sigma}\log\sigma$$

Spontaneous Chiral Symmetry breaking at T=0 is naturally explained !

No Phase Transition ?

σ

Fermion Determinant

Fermion action is separated to each spatial point and bi-linear \rightarrow Determinant of N τ x Ne matrix

$$\exp(-V_{\text{eff}}/T) = \int dU_0 \begin{bmatrix} I_1 & e & 0 & e \\ -e^{-\mu} & I_2 & e^{\mu} \\ 0 & e^{-\mu} & I_3 & e^{\mu} \\ \vdots & \ddots \\ -e^{\mu}U & -e^{-\mu} & I_N \end{bmatrix} \text{Nc x NT}$$
$$= \int dU_0 det \Big[X_N[\sigma] \otimes \mathbf{1}_c + e^{-\mu/T} U^+ + (-1)^{N_{\tau}} e^{\mu/T} U \Big] \text{Nc}$$

Λ

 $I_k = 2(\sigma(k) + m_0)$

$$X_{N} = \begin{vmatrix} I_{1} & e^{\mu} & 0 & \cdots & e^{-\mu} \\ -e^{-\mu} & I_{2} & e^{\mu} & & 0 \\ 0 & -e^{-\mu} & I_{3} & & 0 \\ \vdots & & \ddots & \\ & & & I_{N-1} & e^{\mu} \\ -e^{\mu} & 0 & 0 & \cdots & -e^{-\mu} & I_{N} \end{vmatrix} - \left[e^{-\mu/T} + (-1)^{N} e^{\mu/T} \right]$$

Faldt, Petersson, 1986

Effective Potential in SCL-LQCD (Time dependence...)

10

5

0

-10

 F_{eff}/b_{σ}

Zero T, no Baryon Kawamoto, Smit, 1981

$$\mathcal{F}_{\text{eff}}^{(0)} = \frac{1}{2} b_{\sigma}^{(0)} \sigma^2 - N_c \log(b_{\sigma}^{(0)} \sigma + m_0) \, .$$

Zero T, with Baryon Damgaad, Hochberg, Kawamoto, 1985

$$\mathcal{F}_{\text{eff}}^{(0b)} = \frac{1}{2} b_{\sigma}^{(0)} \sigma^2 + F_{\text{eff}}^{(b\mu)}(4m_q^3; T, \mu) \,^{\bullet}$$

Finite T, no Baryon Fukushima, 2004; Nishida, 2004

$$\mathcal{F}_{\text{eff}}^{(T)} = \frac{1}{2} b_{\sigma}^{(T)} \sigma^2 + F_{\text{eff}}^{(q)}(m_q)$$

Finite T, with Baryon

$$\mathcal{F}_{\text{eff}} = \frac{b_{\sigma}}{2}\sigma^2 + F_{\text{eff}}^{(q)}(m_q) + \Delta F_{\text{eff}}^{(b)}(g_{\sigma}\sigma)$$

$$\mathbf{F}_{\text{eff}}^{(q)}(\mathbf{m}_{q}) = -\text{T}\log\left(\frac{\sinh((\mathbf{N}_{c}+1)\mathbf{E}(\mathbf{m}_{q})/\text{T})}{\sinh(\mathbf{E}(\mathbf{m}_{q})/\text{T})} + 2\cosh(\mathbf{N}_{c}\mu/\text{T})\right)$$

2

3

σ

Ohnishi, Lattice 2008., 2008/07/13-19

8

9

 $\mathbf{F}^{(\mathbf{T})}$ $\mathbf{F}^{(\mathbf{Tb})}$

How do we get vector field ?

- Relativistic Mean Field
 - = Baryon + Scalar Field + Vector Field
 - → Saturation of Nuclear Matter, Binding Energy of Nuclei,
- Vector Meson is indispensable in RMF !
 - Couples to baryon number density
 - Modifies the baryon Energy \rightarrow Shifts μ effectively $E = \sqrt{m^{2} + p^{2} + g_{\omega}} \omega \rightarrow E - \mu = \sqrt{m^{2} + p^{2} - (\mu - g_{\omega}\omega)}$

A Long Way to the "Ultimate Goal"

Ohnishi, Lattice 2008., 2008/07/13-19

Summary

